Золото как химический элемент реферат

Обновлено: 02.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Министерство образования Российской Федерации

Южно – Российский государственный технический университет

РЕФЕРАТ

Выполнил: студент группы СП – 00 – Д1 Иванов Сергей Тихонович

Проверил: Егоров С.Н.

Волгодонск

В связи с быстрыми темпами развития техники связи, электронной, авиационной, космической и других отраслей промышленности значительно вырос интерес к золоту. В настоящее время разработано большое количество новых сплавов золота, а так же технологические процессы нанесения покрытия золотом и получение многослойных материалов.

Распространенность золота в природе

В земной коре содержится золота в 20 раз меньше, чем серебра, и в 200 раз меньше, чем ртути. Неравномерное распределение золота в различных частях земной коры затрудняет изучение его геохимических особенностей. В морях и океанах содержится около 10 млрд. т золота. Примерно столько же содержится золота в речных и подземных водах.

Повышенное содержание золота обнаруживают в водах источников и рек, протекающих в золотоносных районах. В природе золото находится главным образом в самородном виде и представляет собой минерал, являющийся твердым раствором серебра в золоте, содержащим до 43% Ag, с примесями меди, железа, свинца, реже висмута, ртути, платины, марганца и других элементов. Кроме того золото встречается в виде природных амальгам, а также химических соединений – соленидов и теллуридов. По размеру частиц самородное золото делится на тонкодисперсное (1 – 5 мкм), пылевидное (5 – 50 мкм), мелкое (0,05 – 2 мм) и крупное (более 2 мм). Частицы массой более 5 г относятся к самородкам. Крупнейшие самородки – ''Плита Холтермана'' (285 кг) и ''Желанный Незнакомец'' (71 кг) найдены в Австралии. Находки самородков известны во многих районах Урала, Сибири, Якутии и Колымы. Самородное золото концентрируется в гидротермальных месторождениях.

Месторождения золота делятся на коренные и рассыпные. Месторождения золота формировались в разные геологические эпохи на разных глубинах – от десятков метров до 4 – 5 км от поверхности земли. Коренные месторождения представлены жилами, системами жил, залежами и зонами прожилково - вкрапленных руд протяженностью от десятков до тысяч метров. В течение длительного периода истории земли горы разрушались и вода уносила все, что не растворялось в реках. Одновременно отделялись тяжелые минералы от легких и скапливались в местах, где скорость течения мала. Так образовались россыпные месторождения с концентрацией относительно крупного золота. Как правило, промышленные россыпи образуются относительно недалеко от коренных месторождений. Определенная часть микроскопических частиц золота остается в россыпях, однако вследствие невозможности его извлечения оно практического значения не имеет. Часть микроскопических и коллоидных частиц золота уносится водными истоками в моря, океаны и озера, где оно рассеянно в виде тончайших суспензий или находится в илистых осадках. Таким образом в результате действия эрозионных процессов большая часть золота безвозвратно утрачивается.

Химические свойства

Несмотря на то что золото в периодической системе Д. И. Менделеева находится в одной группе с серебром и медью, его химические свойства гораздо ближе к химическим свойствам металлов платиновой группы. Электродный потенциал пары Au – Au (111) равен – 1,5 В. Вследствие такого высокого значения на золото не действуют разбавленные и концентрированные HCI, HNO, HSO. Однако в HCI оно растворяется в присутствии таких окислителей, как двуокись магния, хлористое железо и медь, а также под большим давлением и при высокой температуре в присутствии кислорода. Золото легко растворяется также в смеси HCI и HNO (царская водка). В химическом отношении золото - малоактивный металл. На воздухе оно не изменяется, даже при сильном нагревании. Золото легко растворяется в хлорной воде и в аэрируемых растворах цианидов щелочных металлов. Ртуть также растворяет золото, образуя амальгаму, которая при содержании более 15% золота становится твердой. Известны два ряда соединений золота, отвечающие степеням окисленности +1 и +3. Так, золото образует два оксида – оксид золота (1), или закись золота, Au O и оксид золота (111), или окись золота, Au O. Более устойчивы соединения, в которых золото имеет степень окисленности +3. Соединения золота легко восстанавливаются до металла. Восстановителями могут быть водород под большим давлением, многие металлы, стоящие в ряду напряжений до золота, перекись водорода, двух хлористое олово, сернокислое железо, треххлористый титан, окись свинца, двуокись марганца, перекиси щелочных и щелочноземельных металлов. Для восстановления золота используют также различные органические вещества: муравьиную и щавелевую кислоты, гидрохинон, гидразин, метол, ацетилен и др. Для золота характерна способность к образованию комплексов с кислородом и серосодержащими лигандами, аммиаком и аминами вследствие высокой энергии образования соответствующих ионов. Чаще всего встречаются соединения одновалентного и трехвалентного золота. Часто их рассматривают как сложные молекулы, состоящие из равного числа атомов Au (1) и Au (3). Трехвалентное золото – очень сильный окислитель, оно образует много устойчивых соединений. Золото соединяется с хлором, фтором, йодом, кислородом, серой, теллуром и селеном.

Физико-механические свойства

Золото давно является объектом научных исследований и относится к числу металлов, чьи свойства изучены достаточно глубоко. Атомный номер золота 79, атомная масса 197.967, атомный объем 10.2см /моль. Природное золото моноизотопно и в нормальных условиях инертно по отношению к большинству органических и неорганических веществ. Золото имеет гранецентрированную кубическую решетку и не претерпевает аллотропических превращений. Постоянная решетки а составляет 4.07855 А при 25 С, что соответствует значению 4.0724 А при 20 С. Влияние давления на плотность золота показано на рисунке:

0 100 200 300 400

Большие расхождения существуют в результате измерения температуры плавления золота – от 1062.7 до 1067.4 С. Как правило, температурой плавления золота считают 1063 С. Теплота сублимации золота при 25 С равна 87.94 ккал. Поверхностное натяжение расплавленного золота составляет 1.134 Дж/м. Теплопроводность золота  при 20 С составляет 0.743 кал и мало меняется с повышением температуры. При низких температурах наблюдается максимум теплопроводности при 10 К. Температурный коэффициент электросопротивления при 0 – 100 С равен 0.004 С. Облучение, наклеп и закалка золота приводят в результате образования дефектов решетки к небольшим изменениям параметра решетки и объема металла. Однако эти изменения очень не значительны, линейные размеры изменяются лишь на несколько сотых процентов. В процессе отжига происходит термический возврат свойств, изменение которых было вызвано дефектами решетки. Для чистого золота характерны низкое значение предела прочности  - порядка 13 – 13.3 кгс/мм – и высокое значение относительного удлинения – порядка 50% - в отожженном состоянии. Предел текучести  также очень низок, он равен 0.35 кгс/мм. Упрочение в процессе пластической деформации весьма не значительно вследствие склонности золота к рекристаллизации в процессе деформирования.

Применение золота в науке и технике

Тысячелетиями золото использовалось для производства ювелирных украшений и монет, а применение золота для зубопротезирования известно еще древним египтянам. Применение золота в стекольной промышленности известно с конца XVII в. Золотую фольгу, а позднее гальванопокрытия золотом широко применяли для золочения куполов церковных храмов. Лишь последние 40 – 45 лет можно отнести к периоду чисто технического применения золота. Золото обладает уникальным комплексом свойств, которого не имеет ни какой другой металл. Оно обладает самой высокой стойкостью к воздействию агрессивных сред, по электро – и теплопроводности уступает лишь серебру и меди, ядро золота имеет большое сечение захвата нейтронов, способность золота к отражению инфракрасных лучей близка к 100%, в сплавах оно обладает каталитическими свойствами. Золото очень технологично, из него легко изготавливают сверхтонкую фольгу и микронную проволоку. Покрытия золотом легко наносят на металлы и керамику. Золото хорошо паяется и сваривается под давлением. Такая совокупность полезных свойств послужила причиной широкого использования золота в важнейших современных отраслях техники: электронике, технике связи, космической и авиационной технике, химии.

Следует отметить, что в электронике на 90% золото используют в виде покрытий. Электроника и связанные с ней отрасли машиностроения являются основными потребителями золота в технике. В этой области золото широко используют для соединения интегральных схем сваркой давлением или ультразвуковой сваркой, контактов штепсельных разъемов, в качестве тонких проволочных проводников, для пайки элементов транзисторов и других целей. В последнем случае особенно важно то, что золото образует легкоплавкие эвтектики с индием, галлием, кремнием и другими элементами, которые обладают проводимостью определенного типа. Помимо технологических усовершенствований в электронике, для ряда деталей и узлов вместо золота стали использовать палладий, покрытия оловом, сплавами олова со свинцом и сплавом 65% Sn + 35% Ni с золотым подслоем. Сплав олова с никелем обладает высокой износостойкостью, коррозионной стойкостью, приемлемой величиной контактного сопротивления и электропроводностью. Несмотря на то что в настоящее время расход золота в электронике непрерывно возрастает, считается, что он мог быть на 30% выше, если бы не меры, направленные на экономию золота.

В микроэлектронике широко применяют пасты на основе на основе золота с различным электросопротивлением. Широкое использование золота и его сплавов для контактов слаботочной аппаратуры обусловлено его высокими электрическими и коррозионными свойствами. Серебро, платина и их сплавы при использовании в качестве контактов, коммутирующих микротоки при микронапряжениях, дают гораздо худшие результаты. Серебро быстро тускнеет в атмосфере, загрязненной сероводородом, а платина полимеризует органические соединения. Золото свободно от этих недостатков, и контакты из его сплавов обеспечивают высокую надежность и длительный срок службы. Золотые припои с низким давлением пара используют для пайки вакуумноплотных швов деталей электронных ламп, а также для пайки узлов в аэрокосмической промышленности.

В измерительной технике для контроля температуры и особенно для измерений низких температур используют сплавы золота с кобальтом или хромом. В химической промышленности золото главным образом используют для плакирования стальных труб, предназначенных для транспортировки агрессивных веществ.

Золотые сплавы применяют в производстве часовых корпусов и перьев для авторучек. В медицине используют не только зубопротезные золотые сплавы, но и медицинские препараты, содержащие соли золота, для различных целей, например при лечении туберкулеза. Радиоактивное золото используют при лечении злокачественных опухолей. В научных исследованиях золото используют для захвата медленных нейтронов. С помощью радиоактивных изотопов золота изучают диффузионные процессы в металлах и сплавах.

Золото применяют для металлизации оконных стекол зданий. В жаркие летние месяцы через оконные стекла зданий проходит значительное количество инфракрасного излучения. В этих обстоятельствах тонкая пленка (0.13 мкм) отражает инфракрасное излучение и в помещении становится значительно прохладнее. Если через такое стекло пропустить ток, то оно обретет противотуманные свойства. Покрытые золотом смотровые стекла судов, электровозов и т.д. эффективны в любое время года.

Валютно – финансовое значение золота

До появления монет средствами платежа служили слитки или кольца из золота, серебра или меди, что вило к большим неудобствам в торговых расчетах. Слитки приходилось взвешивать, делить на более мелкие. Это послужило решающей предпосылкой для перехода к чеканке монет.

Большинство исследователей считают, что первая золотая монета была отчеканена в VII в. до н.э. в Лидии из сплава, содержащего 73% Au и 27% Ag. Чуть позже стали чеканить золотые монеты и в древней Греции. В странах Средиземноморья и на Ближнем Востоке наравне с золотыми имели обращение серебрянные монеты, что указывает на раннее происхождение биметаллизма. Соотношение ценности между золотом и серебром было различным в зависимости от эпохи и наличия запасов этих металлов. По свидетельству Плиния, первую золотую монету римляне выбили в III в. до н.э. Само слово ''монета'' произошло от названия римского храма Юнона – Монета, где был организован первый римский монетный двор.

В начале XIX в. намечается переход к золотому стандарту в Великобритании, законодательно – в конце XVIII в., фактически – в 1823 г. Во Франции, Германии, России, Японии и США переход к монометаллической денежной системе завершился в последней четверти XIX в. Высшей формой золотого стандарта был золотомонетный стандарт, характеризующийся свободной циркуляцией во внутреннем обращении золотых монет и их свободной чеканкой, неограниченным разменом на бумажные деньги по твердым паритетам, свободным ввозом и вывозом золота за границу.

Свободная циркуляция золота в наибольшей степени отвечала требованиям системы свободного предпринимательства, служила развитию международных денежных связей, постепенно оформившихся в валютную систему.

Громоздкость золотых монет и связанные с этим неудобства и издержки при транспортировке, постепенное истирание монет, издержки в обращении явились объективными причинами перехода на бумажные деньги.

Высокие цены на золото стимулируют разработку его заменителей, но совершенно очевидно, что универсального заменителя золоту найти не удается. Можно только говорить о замене золота более дешевым материалом в отдельных устройствах, где условия работы позволяют это сделать. Если принять во внимание рост космических программ, то можно ожидать значительного роста технического применения золота. Несомненно, что если бы не специфические монетарные функции золота, этот металл гораздо более широко применялся бы в технике уже в настоящее время.

В организме взрослого человека содержится около 10 мг золота, примерно половина от этого количества сконцентрировано в костях. Распределение золота в организме зависит от растворимости его соединений. Коллоидные соединения в большей степени накапливаются в печени, тогда как растворимые – в почках.

Содержание

Введение…………………………………………………………………………
1) Химическая характеристика элемента………………………………………
а) открытие элемента…………………………………………………………
б) нахождение в природе……………………………………………………..
2) Химические свойства элемента……………………………………………..
3) Получение элемента………………………………………………………….
4) Применение элемента и его соединений.
5) Биологическая роль…………………………………………………………..
Заключение:
1) Физиологическая роль элемента в организме………………………………
2) Гиппоэлементоз……………………………………………………………….
3) Гиперэлементоз……………………………………………………………….
4) Профилактика элементоза………………………………………………….
Библиографический список литературы……………………………………….

Вложенные файлы: 1 файл

химия элементов (2).docx

Кафедра общей химии и

на тему: «Химическая характеристика элемента золото

Студентка 103 группы

1) Химическая характеристика элемента………………………………………

2) Химические свойства элемента……………………………………………..

4) Применение элемента и его соединений. . .

1) Физиологическая роль элемента в организме………………………… ……

Библиографический список литературы……………………………………….

Золото – это химический элемент с атомным номером 79, атомная масса 196,9665. Известно с глубокой древности. В природе один стабильный изотоп 197Au. Конфигурация внешней и предвнешней электронных оболочек 5s2p6d106s1. Расположено в IВ группе и 6-м периоде периодической системы, относится к благородным металлам. Степени окисления 0, +1, +3, +5 (валентности от I, III, V).
Металлический радиус атома золота 0,137 нм, радиус иона Au+ — 0,151 нм для координационного числа 6, иона Au3+ — 0,084 нм и 0,099 нм для координационных чисел 4 и 6. Энергии ионизации Au0 — Au+ — Au2+ — Au3+ соответственно равны 9,23, 20,5 и 30,47 эВ.

1) Химическая характеристика элемента

а) открытие элемента

Золото - один из семи металлов древности. Обычно считают, что золото было первым металлом, с которым познакомился человек еще в эпоху каменного века благодаря его распространению в самородном состоянии. Особые свойства золота - тяжесть, блеск, неокисляемость, ковкость, тягучесть - объясняют, почему его стали использовать с самых древнейших времен главным образом для изготовления украшений и отчасти - оружия. Золотые предметы различного назначения найдены археологами в культурных слоях, относящихся к IV и даже V тысячелетию до нашей эры, то есть к эпохе неолита. В III и II тысячелетиях до нашей эры золото уже было широко распространено в Египте, Месопотамии, Индии, Китае, с глубокой древности оно было известно в качестве драгоценного металла народам американского и европейского континентов. Золото, из которого сделаны древнейшие украшения, нечисто, в нем содержатся значительные примеси серебра, меди и других металлов. Лишь в VI в. до нашей эры в Египте появилось практически чистое золото (99,8%). В эпоху Среднего царства началась разработка нубийских месторождений золота. В Месопотамии добыча золота в широком масштабе велась уже во II тысячелетии до нашей эры. Золото как наиболее драгоценный металл служило издавна меновым эквивалентом в торговле, в связи с чем возникли способы изготовления золотоподобных сплавов на основе меди. Эти способы получили широкое развитие и распространение и послужили основой возникновения алхимии. Главной целью алхимиков было найти способы превращения неблагородных металлов в золото и серебро. Европейские алхимики, идя по следам арабских, разработали теорию "совершенного" или даже "сверхсовершенного" золота, добавка которого к неблагородному металлу превращает последний в золото.

б) Нахождение в природе


Содержание в земной коре 4,3·10–7% по массе, в воде морей и океанов менее 5·10–6% мг/л. Относится к рассеянным элементам. Известно более 20 минералов, из которых главный — самородное золото (электрум, медистое, палладиевое, висмутовое золото). Самородки большого размера встречаются крайне редко и, как правило, имеют именные названия. Химические соединения золота в природе редки, в основном это теллуриды — калеверит AuTe2, креннерит (Au,Ag,Te2 ) и другие. Золото может присутствовать в виде примеси в различных сульфидных минералах: пирите, халькопирите, сфалерите и других.
Современные методы химического анализа позволяют обнаружить присутствие ничтожных количеств Au в организмах растений и животных, в винах и коньяках, в минеральных водах и в морской воде.

2) Химические свойства элемента

Золото — самый инертный металл, стоящий в ряду напряжений правее всех других металлов. При нормальных условиях оно не взаимодействует с большинством кислот и не образует оксидов, благодаря чему было отнесено к благородным металлам, в отличие от обычных металлов, разрушающихся под действием окружающей среды. Затем была открыта способность царской водки растворять золото, что опровергло мнение об его химической инертности. Наиболее устойчивая степень окисления золота в соединениях +3, в этой степени окисления оно легко образует с однозарядными анионами (F−, Cl−. CN−) устойчивые плоские квадратные комплексы [AuX4]−. Относительно устойчивы также соединения со степенью окисления +1, дающие линейные комплексы [AuX2]−. Долгое время считалось, что +3 — высшая из возможных степеней окисления золота, однако, используя дифторид криптона, удалось получить соединения Au+5 (фторид AuF5, соли комплекса [AuF6]−). Соединения золота(V) стабильны лишь со фтором и являются сильнейшими окислителями. При взаимодействии атомарного фтора с пентафторидом золота были получены летучие фториды золота (VI) и (VII): AuF6 и AuF7. Они крайне неустойчивы, особенно AuF6, который дисмутирует с образованием AuF5 и AuF7. Степень окислен ия +2 для золота нехарактерна, в веществах, в которых она формально равна 2, половина золота, как правило, окислена до +1, а половина — до +3, например, правильной ионной формулой сульфата золота(II) AuSO4 будет не Au2+(SO4)2−, а Au1+Au3+(SO4)2−2, однако обнаружены комплексы, в которых золото всё-таки имеет степень окисления +2.

Есть соединения золота, называемые ауридами, со степенью окисления −1. Например, CsAu (аурид цезия), Na3Au (аурид натрия). Из чистых кислот золото растворяется только в горячей концентрированной селеновой кислоте:

2Au + 6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O

Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:

4Au + 8CN− + 2H2O + O2 → 4[Au(CN)2]− + 4 OH−

Цианоаураты легко восстанавливаются до чистого золота:

2Na[Au(CN)2] + Zn = Na2[Zn(CN)4] + 2Au

В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °C с образованием хлорида золота(III), то в концентрированном водном растворе соляной и азотной кислот (царская водка) золото растворяется с образованием хлораурат-иона уж е при комнатной температуре:

2Au + 3Cl2 + 2Cl− → 2[AuCl4]−

Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, давая трибромид AuBr3. Со фто ром золото реагирует в интервале температур 300−400 °C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются. Золото также растворяется во ртути, фактически образуя легкоплавкий сплав (амальгаму), содержащий интерметаллиды. Существуют золотоорганические соединения (например, бромид диэтилзолота).

3) Получение элемента

Для получения золота используются его основные физические и химические свойства: присутствие в природе в самородном состоянии, способность реагировать лишь с немногими веществами (ртуть, цианиды). С развитием современных технологий более популярными становятся химические способы.

В 1947 году американские физики Ингрем, Гесс и Гайдн проводили эксперимент по измерению эффективного сечения поглощения нейтронов ядрами ртути. В качестве побочного эффекта эксперимента было получено около 35 мкг золота. Таким образом, была осуществлена вековая мечта алхимиков — трансмутация ртути в золото. Однако, экономического значения такое производство золота не имеет, так как обходится во много раз дороже добычи золота из самых бедных руд.

Метод промывки основан на высокой плотности золота, благодаря которой в потоке воды минералы с плотностью меньше смываются, и металл концентрируется в тяжёлой фракции песка, которая называется шлихом. Этот процесс называется отмывкой шлиха или шлихованием. В небольших объёмах такую промывку можно проводить вручную с помощью промывочного лотка. Этот способ используется с древности и до нашего времёни для отработки маленьких россыпных месторождений старателями, но основное его применение — поиск месторождений золота, алмазов и других ценных металлов.

Промывка используется для разработки крупных россыпных месторождений, но при этом применяются специальные технические устройства: драги и промывочные установки. Полученные шлихи, кроме золота, содержат множество других тяжёлых минералов, и металл из них извлекается путём, например, амальгамации.

Методом промывки разрабатываются все россыпные месторождения золота, но ограничено он применяется и на коренных месторождениях. Для этого породу дробят и затем подвергают промывке. Этот метод не может быть применён на месторождениях с рассеянным золотом, где оно так распылено в породе, что после дробления не обособляется в отдельные зёрна и смывается при промывке вместе с другими минералами. К сожалению, при промывке теряется не только мелкое золото, которое легко смывается с промывочной колоды, но и крупные самородки, гидравлическая крупность которых не позволяет им спокойно оседать в ячейках коврика. Поэтому на драгах и на промприборах обязательно следят за крупными катящимися обломками — это вполне могут оказаться самородки.

2. Амальгамация Метод амальгамации основан на способности ртути образовывать сплавы — амальгамы с различными металлами, в том числе и с золотом. В этом методе увлажнённая дроблёная порода смешивалась со ртутью и подвергалась дополнительному измельчению в мельницах — бегунных чашах. Амальгаму золота извлекали из получившегося шлама промывкой, после чего ртуть отгонялась из собранной амальгамы и использовалась повторно. Метод амальгамации известен с I века до нашей эры, наибольшие масштабы приобрёл в американских колониях Испании начиная с XVI века: это стало возможным благодаря наличию в Испании огромного ртутного месторождения — Альмаден. В более позднее время использовался метод внешней амальгамации, когда дроблёная золотоносная порода при промывке пропускалась через обогатительные шлюзы, выстланные медными листами, покрытыми тонким слоем ртути. Метод амальгамации применим только на месторождениях с высоким содержанием золота или уже при его обогащении. Сейчас он используется очень редко, главным образом старателями в Африке и Южной Америке.

Золото растворяется в растворах синильной кислоты и её солей, и это его свойство дало начало ряду методов извлечения путем цианирования руд.

Метод цианирования основан на реакции золота с цианидами в присутствии кислорода воздуха: измельчённая золотоносная порода обрабатывается разбавленным (0,3-0,03 %) раствором цианида натрия, золото из образующегося раствора цианоаурата натрия Na[Au(CN)2] осаждается либо цинковой пылью, либо на специальных ионнообменых смолах.

Метод цианирования первоначально применялся на крупных заводах, где порода дробилась и цианирование проводилось в специальных чанах. Однако развитие технологии привело к появлению метода кучного выщелачивания, который заключается в следующем: готовится водонепроницаемая площадка, на неё насыпается руда и её орошают растворами цианидов, которые, просачиваясь через толщу породы, растворяют золото. После этого они поступают в специальные сорбционные колонны, в которых золото осаждается, а регенерированный раствор вновь отправляется на кучу.

Метод цианирования ограничен минеральным составом руд, он неприменим, если руда содержит большое количество сульфидов или арсен идов, так как цианиды реагируют с этими минералами. Поэтому цианированием перерабатываются малосульфидные руды или руды из зоны окисления, в которой сульфиды и арсениды окислены атмосферным кислородом.

Для извлечения золота из сульфидных руд используются сложные многоэтапные технологии. Золото, добытое из месторождений, содержит различные примеси, поэтому его подвергают специальным процессам высокой очистки, которые производятся на аффинажных заводах.

Осуществляется действием 10 % раствора щёлочи на растворы солей золота с последующим осаждением аффинажного золота на алюминий из горячего раствора гидроксида.

4) Применение элемента и его соединений.

Имеющееся в настоящее время в мире золото распределено так: около 10 % — в промышленных изделиях, остальное делится приблизительно поровну между централизованными запасами (в основном, в виде стандартных слитков химически чистого золота), собственностью частных лиц в виде слитков и ювелирными изделиями.

1. В промышленности

По своей химической стойкости и механической прочности золото уступает большинству платиноидов, но незаменимо как материал для электрических контактов. Поэтому в микроэлектронике золотые проводники и гальванические покрытия золотом контактных поверхностей, разъёмов, печатных плат используются очень широко.

Золото используется в качестве мишени в ядерных исследованиях, в качестве покрытия зеркал, работающих в дальнем инфракрасном диапазоне, в качестве специальной оболочки в нейтронной бомбе.

относится к числу металлов, чьи свойства изучены достаточно глубоко. Атомный номер золота 79, атомная масса 197.967, атомный объем 10.2см /моль. Природное золото моноизотопно и в нормальных условиях инертно по отношению к большинству органических и неорганических веществ. Золото имеет гранецентрированную кубическую решетку и не претерпевает аллотропических превращений. Большие расхождения существуют в результате измерения температуры плавления золота – от 1062.7 до 1067.4 С. Как правило, температурой плавления золота считают 1063 С. Теплота сублимации золота при 25 С равна 87.94 ккал. Поверхностное натяжение расплавленного золота составляет 1.134 Дж/м. Теплопроводность золота l при 20 С составляет 0.743 кал и мало меняется с повышением температуры. При низких температурах наблюдается максимум теплопроводности при 10 К. Температурный коэффициент электросопротивления при 0 – 100 С равен 0.004 С. Облучение, наклеп и закалка золота приводят в результате образования дефектов решетки к небольшим изменениям параметра решетки и объема металла. Однако эти изменения очень не значительны, линейные размеры изменяются лишь на несколько сотых процентов. В процессе отжига происходит термический возврат свойств, изменение которых было вызвано дефектами решетки. Упрочение в процессе пластической деформации весьма не значительно вследствие склонности золота к рекристаллизации в процессе деформирования.

Общая характеристика золота.

Золото — ярко-жёлтый блестящий металл. Золото – один из самых малоактивных металлов, стандартный электродный потенциал его равен +1,68 В.Оно очень ковко и пластично; путём прокатки из него можно получить листочки толщиной менее 0.0002мм, а из 1 грамма золота можно вытянуть проволоку длиной 3.5км. Золото — прекрасный проводник тепла и электрического тока, уступающий в этом отношении только серебру и меди. Золото очень мягкий металл(и опять-таки не самый мягкий, свинец и олово, например, еще мягче). Чистое золото царапается ногтем. Мягкость всегда делала золото очень удобным для обработки материалом. Ввиду мягкости золото употребляется в сплавах, обычно с серебром или медью. Эти сплавы применяются для электрических контактов, для зубопротезирования и в ювелирном деле. Золото очень легко истирается, превращаясь в тончайшую пыль. Благодаря этому свойству оно рассеяно везде, и таким образом, широко распространено в природе. Золото очень ковко и тягуче, что, конечно, является результатом его мягкости. На воздухе оно не изменяется даже при высоких температурах, не растворяется в соляной, серной и азотных кислотах. Но в царской водке золото легко растворяется с получением комплексной золотохлористоводородной кислоты:

Au + HNO + 4HCl = H [AuCl ] + NO + 2H O

Так же легко растворяется золото в хлорной воде, ртути и в аэрируемых (продуваемых воздухом) растворах цианидов щелочным металлов.

Золото в природе.

Золотовстречается в природе почти исключительно в самородном состоянии, главным образом в виде мелких зёрен, вкраплённых в кварц или содержащихся в кварцевом песке. В небольших количествах золото встречается в сульфидных рудах железа, свинца и меди. Следы его открыты в морской воде. Крупные месторождения золота находятся в Южной Африке, на Аляске, в Канаде и Австралии.

Золото отделяется от песка и измельченной кварцевой породы промыванием водой, которая уносит частицы песка, как более лёгкие, или обработкой песка жидкостями, растворяющими золото. Чаще всего применяется раствор цианида натрия (NaCN), в котором золото растворяется в присутствии кислорода с образованием комплексных анионов [Au(CN)2 ] - :

4Au + 8NaCN + O2 + 2H2 0 —> 4Na[Au(CN)2 ] + 4NaOH

Из полученного раствора золото выделяют цинком:

Освобождённое золото обрабатывают для отделения от него цинка разбавленной серной кислотой, промывают и высушивают. Дальнейшая очистка золота от примесей (главным образом от серебра) производится обработкой его горячей концентрированной серной кислотой или путём электролиза.

Метод извлечения золота из руд с помощью растворов цианидов калия или натрия был разработан в 1843 году русским инженером П.Р.Багратионом. Этот метод, принадлежащий к гидрометаллургическим способам получения металлов, в настоящее время наиболее распространён в металлургии золота. Самородное золото, имеющее примеси серебра и меди, существенно отличается от искусственных сплавов с этими же металлами. Сплав имеет однородную структуру, которая образуется в результате затвердевания расплавленной смеси металлов. Самородный металл появляется в результате кристаллизации из водных растворов.

В чистом виде золото имеет красивый соломенно-желтый цвет с сильным металлическим блеском. В данном случае можно сказать что золото – самый желтый из всех металлов.

В природе золото в чистом виде не встречается, а металлы-примеси (прежде всего медь и серебро) придают ему различные цвета и оттенки – от бледно-желтого (даже зеленоватого) до ярко желто-красного. Примесь палладия окрашивает золото в белый цвет (“белое” золото).

Цвет золота также зависит от толщены куска металла и его агрегатного состояния. Так, очень тонкая золотая пластинка имеет на просвет зеленый цвет. Такого же цвета и расплавленное золото, а его пары – зеленовато-желтого. В депрессионном состоянии золото обычно рубинового или темно-фиолетового цвета.

говорить о его применении.

Иногда самородное золото бывает покрыто пленкой оксидов железа. В этом случае цвет его может быть самым заурядным – грязно-бурым, коричневым, а то и почти черным. При добыче такое золото очень трудно отличить от вмещающей пустой породы, и поэтому нужен весьма тщательный контроль, чтобы избежать потерь. О таком золоте говорят что оно “в рубашке”, которая может состоять не только из оксидов железа. В некоторых случаях это могут быть мельчайшие частицы пустой породы, вдавленные в поверхность золотины. Надо сказать, что такая “рубашка” не только мешает различать золото, но и затрудняет его обработку.

Золото хорошо поглощает рентгеновские лучи. Дробность атомной массы природного золота (196,9) говорит о том, что оно состоит из смеси различных изотопов. Как и положено “благородному” металлу, золото в химические реакции вступает очень не охотно, но с некоторыми элементами оно все-таки взаимодействует, в частности с галоидами (хлором, бромом, йодом), образуя соединения типа AuCl, AuCl3 . Взаимодействует оно также с цианидами, ртутью и теллуром. Существуют соединения, полученные искусственным путем, в том числе и так называемое гремучее золото – Au(NH)3 , (CH)3, которое легко взрывается при ударе или просто при нагреве. В некоторых жидкостях, хотя и очень трудно, золото растворяется. Извлечение золота из руд, песков и концентратов, основанное на его растворении в цианидах, - один из основных процессов при его гидрометаллургической переработке.

Золото кристаллизуется в кубической системе. Форма кристаллов может быть удлиненной или октаэдрической. При затвердевании после плавки кристаллы золота выглядят неправильными многоугольниками. Чем медленнее идет охлаждение, тем больше размеры кристаллов.

В 1953 году Ф. Фриденсбург, исходя из предельной глубины разработки 3000м, определил, что земная кора содержит 4 470 000 т золота. В настоящее время золотые рудники ЮАР вплотную подошли к 4-километровой глубине. Результаты расчетов для этой глубины еще более впечатляющие.

Находки золота в метеоритах являются неопровержимым доказательством того, что золото распространено не только на Земле, но и на других космических телах.

Но золото встречается не только в горных породах. Весьма много его в морях и океанах, хотя концентрация его и общее количество не установлены.

Применение золота в науке и технике

Тысячелетиями золото использовалось для производства ювелирных украшений и монет, а применение золота для зубопротезирования известно еще древним египтянам. Применение золота в стекольной промышленности известно с конца XVII в. Золотую фольгу, а позднее гальванопокрытия золотом широко применяли для золочения куполов церковных храмов. Лишь последние 40 – 45 лет можно отнести к периоду чисто технического применения золота. Золото обладает уникальным комплексом свойств, которого не имеет ни какой другой металл. Оно обладает самой высокой стойкостью к воздействию агрессивных сред, по электро – и теплопроводности уступает лишь серебру и меди, ядро золота имеет большое сечение захвата нейтронов, способность золота к отражению инфракрасных лучей близка к 100%, в сплавах оно обладает каталитическими свойствами. Золото очень технологично, из него легко изготавливают сверхтонкую фольгу и микронную проволоку. Покрытия золотом легко наносят на металлы и керамику. Золото хорошо паяется и сваривается под давлением. Такая совокупность полезных свойств послужила причиной широкого использования золота в важнейших современных отраслях техники: электронике, технике связи, космической и авиационной технике, химии.

Следует отметить, что в электронике на 90% золото используют в виде покрытий. Электроника и связанные с ней отрасли машиностроения являются основными потребителями золота в технике. В этой области золото широко используют для соединения интегральных схем сваркой давлением или ультразвуковой сваркой, контактов штепсельных разъемов, в качестве тонких проволочных проводников, для пайки элементов транзисторов и других целей. В последнем случае особенно важно то, что золото образует легкоплавкие эвтектики с индием, галлием, кремнием и другими элементами, которые обладают проводимостью определенного типа. Помимо технологических усовершенствований в электронике, для ряда деталей и узлов вместо золота стали использовать палладий, покрытия оловом, сплавами олова со свинцом и сплавом 65% Sn + 35% Ni с золотым подслоем. Сплав олова с никелем обладает высокой износостойкостью, коррозионной стойкостью, приемлемой величиной контактного сопротивления и электропроводностью. Несмотря на то, что в настоящее время расход золота в электронике непрерывно возрастает, считается, что он мог быть на 30% выше, если бы не меры, направленные на экономию золота.

В микроэлектронике широко применяют пасты на основе на основе золота с различным электросопротивлением. Широкое использование золота и его сплавов для контактов слаботочной аппаратуры обусловлено его высокими электрическими и коррозионными свойствами. Серебро, платина и их сплавы при использовании в качестве контактов, коммутирующих микротоки при микронапряжениях, дают гораздо худшие результаты. Серебро быстро тускнеет в атмосфере, загрязненной сероводородом, а платина полимеризует органические соединения. Золото свободно от этих недостатков, и контакты из его сплавов обеспечивают высокую надежность и длительный срок службы. Золотые припои с низким давлением пара используют для пайки вакуумноплотных швов деталей электронных ламп, а также для пайки узлов в аэрокосмической промышленности.

В измерительной технике для контроля температуры и, особенно для измерений низких температур используют сплавы золота с кобальтом или хромом. В химической промышленности золото главным образом используют для плакирования стальных труб, предназначенных для транспортировки агрессивных веществ.

Золотые сплавы применяют в производстве часовых корпусов и перьев для авторучек. В медицине используют не только зубопротезные золотые сплавы, но и медицинские препараты, содержащие соли золота, для различных целей, например при лечении туберкулеза. Радиоактивное золото используют при лечении злокачественных опухолей. В научных исследованиях золото используют для захвата медленных нейтронов. С помощью радиоактивных изотопов золота изучают диффузионные процессы в металлах и сплавах.

Золото применяют для металлизации оконных стекол зданий. В жаркие летние месяцы через оконные стекла зданий проходит значительное количество инфракрасного излучения. В этих обстоятельствах тонкая пленка (0.13 мкм) отражает инфракрасное излучение и в помещении становится значительно прохладнее. Если через такое стекло пропустить ток, то оно обретет противотуманные свойства. Покрытые золотом смотровые стекла судов, электровозов и т.д. эффективны в любое время года.

1. Общая характеристика золота.

2. Химические свойства.

3. Физико-механические свойства.

4. Золото в природе.

5. Применение золота в науке и технике.

6. Список используемой литературы.

Список используемой литературы.

2. Манкевич В.А. Основы химии. Справочник. Санкт-Петербург,1990

3. Степин Б.Д Книга по химии для домашнего чтения. Москва: Химия, 1995.

Золото

Золото — минерал, являющийся природным твёрдым раствором серебра (следы, до 43%) в золоте; обычны примеси (следы, до 0,9%) меди, железа, свинца, реже – висмута, ртути, платины, марганца и др. Известны разновидности с повышенным содержанием меди – до 20% (медистое золото, купроаурит), висмута – до 4% (висмутистое золото, висмутаурит), платиноидов (платинистое и иридистое золото; порпецит – Au, Pd, родит – Au, Rh), природные амальгамы (Au, Hg).

СТРУКТУРА

Кристаллическая структура золота

Кристаллическая структура золота

Кристаллизуется в кубической сингонии, в виде октаэдров, ромбододекаэдров, кубов и более сложных по форме кристаллов; нередко они искажены, сильно вытянуты, образуя “проволочки”, “волоски”, или уплощены параллельно грани октаэдра. Для самородного золота особенно низкопробного, характерно многообразие форм роста, оно обычно в виде скелетных кристаллов, дендритов, нитевидных и скрученно-нитевидных кристаллов. Широко распространены прожилковидные и неправильные комковидные, “крючковатые” выделения; на их поверхности нередко сохраняются отпечатки кристаллов других минералов, агрегаты которых включали скопления самородного золота. Травление выявляет кристаллически-зернистое строение золотых частиц.

СВОЙСТВА

Золотые слитки и самородки

Золотые слитки и самородки

Золото — очень тяжёлый металл: плотность чистого золота равна 19,32 г/см³ (шар из чистого золота диаметром 46,237 мм имеет массу 1 кг). Диамагнетик, то есть, магнитное поле в золоте ослабевает. Среди металлов по плотности занимает седьмое место после осмия, иридия, рения, платины, нептуния и плутония. Сопоставимую с золотом плотность имеет вольфрам (19,25). Высокая плотность золота облегчает его добычу, отчего даже простые технологические процессы — например, промывка на шлюзах, — могут обеспечить высокую степень извлечения золота из промываемой породы.
Золото — очень мягкий металл: твёрдость по шкале Мооса ~2,5, по Бринеллю 220—250 МПа (сравнима с твёрдостью ногтя).
Золото также высокопластично: оно может быть проковано в листки толщиной до ~0,1 мкм (100 нм) (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем — окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку с линейной плотностью до 2 мг/м.
Температура плавления золота 1064,18 °C (1337,33 К), кипит при 2856 °C (3129 К). Плотность жидкого золота меньше, чем твёрдого, и составляет 17 г/см 3 при температуре плавления. Жидкое золото довольно летучее, и активно испаряется задолго до температуры кипения.

ЗАПАСЫ И ДОБЫЧА

Золотой самородок

Содержание золота в земной коре очень низкое — 4,3·10 -10 % по массе (0,5-5 мг/т), но месторождения и участки, резко обогащённые металлом, весьма многочисленны. Золото содержится и в воде. Один литр и морской, и речной воды содержит менее 5·10 −9 граммов Au, что примерно соответствует 5 килограммам золота в 1 кубическом километре воды.
Золоторудные месторождения возникают преимущественно в районах развития гранитоидов, небольшое их количество ассоциирует с основными и ультраосновными породами.
Для получения золота используются его основные физические и химические свойства: присутствие в природе в самородном состоянии, способность реагировать лишь с немногими веществами (ртуть, цианиды). С развитием современных технологий более популярными становятся химические способы.
В 1947 году американские физики Ингрем, Гесс и Гайдн проводили эксперимент по измерению эффективного сечения поглощения нейтронов ядрами ртути. В качестве побочного эффекта эксперимента было получено около 35 мкг золота. Таким образом, была осуществлена многовековая мечта алхимиков — трансмутация ртути в золото. Однако экономического значения такое производство золота не имеет, так как обходится во много раз дороже добычи золота из самых бедных руд.

ПРОИСХОЖДЕНИЕ

Изделия из золота

Изделия из золота

Самородное золото – главная форма нахождения золота в природе. Оно концентрируется в гидротермальных месторождениях образуя золотые руды, неравномерно распределяясь в трещиноватом жильном кварце и в сульфидах – пирите, арсенопирите, пирротине и др. В существенно сульфидных рудах самородное золото тонкодисперсное. При окислении руд на земной поверхности мелкое самородное золото частично растворяется и переотлагается; в ряде случаев оно обогащает верхние части рудных тел. Процессы их разрушения приводят к освобождению частиц самородного золота и их накоплению в россыпях; перемещаясь водными потоками вместе с другим кластическим материалом, частицы окатываются, округляются, деформируются, частично перекристаллизовываются; в результате электрохимической коррозии на них образуется тонкая оболочка высокопробного золота, что приводит к общему повышению пробы самородного золота в россыпях.

ПРИМЕНЕНИЕ

Золотые монеты

По своей химической стойкости и механической прочности золото уступает большинству платиноидов, но незаменимо как материал для электрических контактов. Поэтому в микроэлектронике золотые проводники и гальванические покрытия золотом контактных поверхностей, разъёмов, печатных плат используются очень широко.
Золото используется в качестве мишени в ядерных исследованиях, в качестве покрытия зеркал, работающих в дальнем инфракрасном диапазоне, в качестве специальной оболочки в нейтронной бомбе. Тонкий слой золота (20 нм) на внутренней поверхности оконных и витражных стекол существенно уменьшает нежелательные тепловые потери зимой, а летом предохраняет внутренние помещения зданий и транспортных средств от нагревания инфракрасными лучами.
Золотые припои очень хорошо смачивают различные металлические поверхности и применяются при пайке металлов. Тонкие прокладки, изготовленные из мягких сплавов золота, используются в технике сверхвысокого вакуума.
Традиционным и самым крупным потребителем золота является ювелирная промышленность. Ювелирные изделия изготавливают не из чистого золота, а из его сплавов с другими металлами, значительно превосходящими золото по механической прочности и стойкости. В настоящее время для этого служат сплавы Au-Ag-Cu, которые могут содержать добавки цинка, никеля, кобальта, палладия. Стойкость к коррозии таких сплавов определяются, в основном, содержанием в них золота, а цветовые оттенки и механические свойства — соотношением серебра и меди.
Значительные количества золота потребляет стоматология: коронки и зубные протезы изготовляют из сплавов золота с серебром, медью, никелем, платиной, цинком. Такие сплавы сочетают коррозионную стойкость с высокими механическими свойствами.
Соединения золота входят в состав некоторых медицинских препаратов, используемых для лечения ряда заболеваний (туберкулёза, ревматоидных артритов и т. д.). Радиоактивный изотоп 198 Au (период полураспада 2,967 сут.) используется при лечении злокачественных опухолей в радиотерапии.

Среди полезных ископаемых есть такие, что высоко ценятся людьми. Ювелирные украшения и иные аксессуары из драгоценных металлов стали популярными ещё в древности. Одним из самых дорогих материалов считается золото. В таблице Менделеева химический элемент занимает место между платиной и ртутью. В прошлом он подталкивал людей к преступлениям и даже войнам.

  • История металла
  • Открытие в природе
  • Строение атома и физические свойства
  • Химические особенности
  • Способы получения
  • Сферы применения

Золото в таблице менделеева

История металла

Новость о первой найденном золотом самородке датируется аж периодом неолита. Тогда горную породу использовали при изготовлении посуды и различных предметов быта. Металл был распространён в Древнем Египте, Риме, Китае и Индии. В те времена золото называли царём всех металлов. Древние люди верили, что материал жёлтого цвета обладает лечебными и магическими свойствами, он был символом солнца. Позже его стали использовать как платёжное средство. Золото подчёркивало высокий статус владельца, но и было опасно: люди были готовы на любые поступки, чтобы завладеть привлекательным и драгоценным материалом.

Самородок золота

Первые цивилизации на территории Центральной Европы, Южной Америки и Северной Африки добывали золото ручным способом. Несколько самородков весом в 8−10 г можно было получить только за 2−3 дня. Поскольку минерал не могли очистить от примесей, в тот период он имел низкую пробу. Во время поздней античности стала набирать популярность алхимия. Люди научились превращать недрагоценные вещества в благородные. Хотя алхимия не достигла больших успехов, благодаря ей существуют современные технологии, которые позволяют добыть из руды золото и очистить его от примесей.

Открытие в природе

В природных условиях золото встречается часто. Оно составляет почти 5% всей литосферы планеты. Высокая цена металла обусловлена его трудоёмкой добычей даже со специальной техникой. Существует много видов горных пород, в составе которых есть мелкие частицы золота, однако оно представлено рассеянной пылью. Из истории известны интересные факты, что люди находили крупные залежи ископаемого просто под пластами земли.

Химический элемент формируется в земной коре под влиянием перепадов температуры. Материал добывают из железных и минеральных руд. В основном металл встречается в виде самородков, но в природе можно встретить его соединения с серебром, висмутом, медью, селеном или сурьмой. Известные природные твёрдые растворы называются:

Электрум (серебристое золото);

  • электрум (серебристое золото);
  • аурокуприд (медистое золото);
  • порпецит (палладистое золото).

Есть вторичные месторождения вещества, которые представляют собой результат разрушения первичных соединений. Причины происхождения таких ископаемых могут быть:

  • физическими (ветер, вода, колебания температуры);
  • химическими (химические реакции);
  • биологическими (бактерии и другие микроорганизмы).

Довольно большой объём химического элемента встречается в морской воде, но добывать его оттуда нерентабельно. Россыпь материала похожа на песок, который разносится течением на далёкие расстояния от первичного месторождения. Небольшое количество чистого вещества можно обнаружить даже в обычной проточной воде.

Сегодня драгметалл добывают во многих странах мира:

Добыча золота в России

Золото обнаружено в Гане, Индонезии и Мексике. Эти страны поставляют золото на мировой рынок металлов. На физической карте он отмечается условным знаком в виде круга с затушёванной левой половиной.

Строение атома и физические свойства

В таблице золото располагается в шестом периоде в подгруппе меди 11 группы. Его обозначение буквами — Au. Элемент имеет порядковый номер — 79. В ядре атома металла находится 79 протонов и 117 нейтронов. На шести энергетических уровнях атома располагаются 79 электронов. Природный элемент существует в виде химически устойчивого изотопа 197Au. Остальные нестабильны и возможны только в условиях ядерного реактора.

Строение атома золота

Распределение электронов по орбиталям в электронной формуле золота — 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4f 14 5s 2 5p 6 5d 10 6s 1 . В своих соединениях металл проявляет валентность I. Это обусловлено наличием одного неспаренного электрона. Но для элемента также характерна валентность II.

Золото относится к группе переходных металлов. Абсолютно чистое вещество характеризуется ярко-жёлтым цветом. Если в минерале есть примеси меди, тогда он может обладать красноватым оттенком. Химическому элементу характерна гранецентрированная кубическая кристаллическая решётка.

Основные физические характеристики золота:

  • температура плавления — 1064,18 °C;
  • температура кипения — 2856 °C;
  • атомная масса — 196,96655;
  • плотность — 19,3 г/см 3 ;
  • молярный объём — 10,2 см 3 /моль;
  • твёрдость по шкале Мооса — 2,5.

Вещество характеризуется пластичностью и гибкостью. Золото — самый мягкий среди всех металлов, оно отлично поддаётся обработке. Изделия из этого вещества высокой пробы возможно погнуть и повредить, поэтому их нужно беречь от любых механических повреждений. При изготовлении столовых приборов производители добавляют в золото дополнительные сплавы, которые повышают прочность предметов. Жидкое вещество летучее и способно испаряться ещё до температуры плавления.

Минерал отличается высокой стойкостью к химическим реакциям и процессам. Это отличный проводник, который быстро транспортирует электрический ток и тепловую энергию. Металл легко полируется, после обработки приобретает мягкий блеск. Тонкая пластина, изготовленная из золота, способна пропускать свет. Поскольку температура вещества падает, его можно применять для тонировки окон.

Химические особенности

Золото имеет несколько степеней окисления: +1, +3, -1. Показатель +5 проявляется с фтором, соединение с которым выступает сильнейшим окислителем.

Поскольку элемент характеризуется относительной инертностью, он обычно не растворяется в кислотах. Поэтому его можно очищать от примесей этими соединениями. Однако есть несколько исключений: золото может растворяться в селеновой и синильной кислотах, цианидах, а также в царской водке.

Золото в царской водке

В естественных условиях металл не окисляется под влиянием кислорода. Это одна из причин, почему он считается драгоценным. При высоких температурах вещество взаимодействует с галогенами (йодом, бромом и хлором).

Наиболее устойчивая — степень окисления +3. С однозарядными анионами золото образует плоско-квадратные комплексы. Степень окисления +1 считается относительно устойчивой. Показатель +2 обычно выражен формально, но при нём в веществах половина металла окислена до +1, а другая — до +3. В ауридах степень окисления Au равна -1.

Золото может реагировать с хлорной кислотой при комнатной температуре с образованием нестойких оксидов хлора, оно взаимодействует с кислородом и иными окислителями при комплексообразователях: растворяясь в цианидах, элемент образует цианоаураты.

Способы получения

Современные технологии позволяют получать благородный металл химическими способами. В 1947 году физики из США смогли преобразовать ртуть в золото. Однако такой путь требует крупных затрат, поэтому он не имеет экономического значения.

Популярные способы получения вещества:

Амальгамация золота

  1. Промывка. Поскольку металл обладает высокой плотностью, его можно получить в потоке воды, которая смывает примеси с материала. Предварительно добытые ископаемые дробят, а затем промывают. В результате остаётся шлих, который представляет собой золотой песок тяжёлой фракции. Промывка применяется ещё с древних времён для обработки небольших россыпных месторождений. Сегодня при этом методе используются специальные промывочные установки и драги. Во время промывки специалисты следят не только за мелкими, но и за крупными обломками, которые могут оказаться самородками.
  2. Амальгамация. Этот метод был распространён в Испании в XVI веке. Тогда дроблёную породу сначала увлажняли, затем смешивали со ртутью и дополнительно измельчали на мельницах. После этого получался сплав амальгам, который подвергали промывке для получения золота. Позже дроблёный материал стали пропускать через специальные шлюзы с медными листами, покрытыми тонким слоем ртути. Этот способ применяется только на месторождениях с большим объёмом драгоценного металла. Сегодня он популярен в Африке и Южной Америке.
  3. Цианирование. При этом методе золото смешивают с цианидами в присутствии кислорода. Полученный измельчённый материал обрабатывают раствором цианида натрия, а затем осаждают нужное вещество цинковой пылью или ионообменными смолами. Сначала такой способ использовался на крупных заводах в специальных чанах для дробления добытых ископаемых. Но с развитием технологий было придумано кучное выщелачивание: на водонепроницаемую площадку насыпают руду и орошают её растворами цианидов. Растворившееся вещество попадает в специальные колонны, в которых осаждается.

Есть метод регенерации. Его осуществляют с помощью раствора щёлочи 10%, который воздействует на растворы солей золота и потом осаждает металл на алюминий из горячего раствора гидроксида. Чтобы извлечь элемент из сульфидных руд, используются многоэтапные технологии с высокой степенью очистки.

Сферы применения

Золото давно используется различными странами в виде монет. Однако в качестве монопольного денежного средства их утвердили только к XIX веку.

Сегодня драгметалл используется во многих сферах жизни общества:

Ювелирная промышленность

Посуда с позолотой

  1. Ювелирная промышленность. Именно на эту область приходится большой объём добываемой горной породы. Украшения и аксессуары производят не из чистого вещества, а из его сплавов с другими металлами, которые повышают механическую прочность и стойкость изделий. Обычно золото соединяют с серебром и медью. Дополнительными компонентами служат цинк, кобальт, никель или палладий. Драгметалл определяет устойчивость сплава к коррозии, соотношение меди и серебра — оттенок и механические особенности. Важная характеристика таких изделий — проба. Она определяется содержанием золота в них.
  2. Промышленность. Вещество используется для электрических контактов. Микроэлектроника не обходится без золотых проводников и гальванических покрытий металлом. Обработка оконных стёкол этим материалом позволяет уменьшить потери тепла зимой и предохранить помещения от нагревания ультрафиолетовыми лучами летом. Золотыми припоями смачивают поверхности из разных металлов. Вещество применяется для защиты от коррозии и придания другим материалам дорогого вида.
  3. Стоматология. Золотые сплавы применяют для производства коронок и зубных протезов, которые не портятся.
  4. Фармакология. Вещество часто служит дополнительным компонентом в лекарствах от туберкулёза и ревматоидных артритов. Радиоактивный изотоп, который обозначается 198 Au, применяется для лечения злокачественных опухолей. Перед использованием препаратов необходимо убедиться в том, что у пациента нет негативных реакций на золото.
  5. Пищевая промышленность. Элементом в качестве пищевой добавки E175 декорируют различные блюда.

Во все времена золото служило важным элементом финансовой системы. Этот металл не подвержен коррозии, поэтому ему стараются найти применение в различных областях. Периодически роль металла снижалась в качестве международной валюты, однако банки в любых странах хранят его как самый важный источник ликвидности.

Читайте также: