Железобетонные опоры вл реферат

Обновлено: 02.07.2024

Опоры воздушных линий электропередачи, материалы и виды опор

Опоры воздушных линий поддерживают провода на необходимом расстоянии от поверхности земли, проводов других линий, крыш зданий и т. п. Опоры должны быть достаточно механически прочными в различных метеорологических условиях (ветер, гололед и пр.).

В качестве материала для опор на сельских линиях широко применяют древесину деревьев хвойных пород, в первую очередь сосны и лиственницы, а затем пихты и ели (для линий напряжением 35 кВ и ниже). Для траверс и приставок опор ель и пихту применять нельзя.

Деревянные опоры изготовляют из круглого леса — бревен со снятой корой. Стандартная длина бревен колеблется от 5 до 13 м через 0,5 м, а диаметр в верхнем отрубе — от 12 до 26 см через 2 см. Толщину бревна в комле, то есть в нижнем, толстом конце, определяют естественной конусностью ствола дерева. Изменение диаметра бревна на каждый погонный метр его длины, называемое сбегом, принимается 0,8 см. Чем больше длина бревен для опор (чем длинномернее лес), тем выше стоимость кубического метра древесины.

Главный недостаток деревянных опор линий электропередачи — малый срок службы вследствие загнивания древесины, особенно в месте выхода ее из земли на поверхность. В связи с этим эксплуатационные расходы на ремонт опор составляют около 16% их стоимости.

Деревянные опоры

Древесина опор подвергается воздействию внешних условий и особенно переменной влажности в месте заделки в землю. Вследствие этого она загнивает, разрушается и, если не принять специальных мер, быстро выходит из строя.

Способы антисептирования древисины для деревянных опор воздушных линий

Срок службы опор из непропитанной древесины составляет: для опор из сосны 4 - 5 лет, из лиственницы 14 - 15 лет, из ели 3 - 4 года. В южных районах, где высокие температуры способствуют ускоренному гниению древесины, срок службы непропитанных опор уменьшается в 1,5 - 2 раза против приведенных цифр. В связи с этим необходимо применять бревна, только пропитанные антисептиком, за исключением лиственницы зимней рубки, которая не требует пропитки.

Пропитка древесины масляничными антисептиками снижает прочность древесины до 10%. Главная ценность пропитки масляничными антисептиками зависит не от глубины пропитки, а от качества сушки древесины.

Кроме того, масляничный антисептик не выщелачивается. Древесина должна пропитываться после доведения ее до воздушного-сухого состояния, т. е. влажность ее равна влажности воздуха данного района.

В таком состоянии древесина не будет терять своей влажности, на ней не будут появляться трещины усушки и спорам грибков негде будет развиваться.

При пропитке влажной древесины последняя будет усыхать, в ней появятся трещины и даже глубокая пропитка будет мало способствовать сохранению древесины от загнивания.

Деревянные опоры

Наилучшим способом антисептирования древесины опор признана пропитка ее каменноугольным маслом, получаемым при перегонке сырой каменноугольной смолы. Хорошие результаты дает также пропитка антраценовым маслом и флегмой. Влажность древесины должна быть не более 25 %.

Бревна, предназначенные для изготовления опор, при пропитке загружают в стальной цилиндр. В него вводят консервирующую жидкость и создают на некоторое время давление до 0,9 МПа для того, чтобы жидкость проникла в глубь древесины. После этого в цилиндре создают разрежение, чтобы жидкость стекла. На этом процесс пропитки заканчивается. Срок службы опор при описанном способе пропитки значительно увеличивается и достигает 25 - 30 лет. В зарубежной практике он принимается даже 35 - 40 лет.

Деревянные опоры

Сосновую и еловую древесину можно пропитывать водорастворимыми антисептиками. Для этой цели рекомендуется доналит разных марок. При пропитке древесины в стальных цилиндрах под давлением влажность ее может быть в пределах от 30 до 80 %. Древесину загружают в цилиндр на 15 мин, создают в нем вакуум, затем на 1. 2,5 ч подают раствор антисептика под давлением 1,3 МПа.

Древесину при влажности 60 - 80 % можно пропитывать водорастворимыми антисептиками также в ваннах в течение 20 ч с последующим прогревом до 100 - 110 °С в течение 2 ч.

Древесину из ели, пихты и лиственницы перед пропиткой любым способом следует накалывать на глубину 15 мм. Длина накола 6 - 19 мм, ширина 3 мм. Сетка наколов зависит от вида пропитки.

Для увеличения срока службы опор, пропитанных водорастворимыми антисептиками, рекомендуют через 15 - 17 лет эксплуатации ставить на них антисептические бандажи. Бандаж ставят на часть опоры, расположенную выше поверхности земли на 30 см и ниже ее также на 30 см. Его изготовляют из полосы толя, рубероида или пергамина шириной 70 см. На опору наносят слой антисептической пасты, бандаж прибивают гвоздями и обвязывают проволокой. Столб возле бандажа и сам бандаж покрывают слоем битума.

Учитывая ядовитые и опасные в пожарном отношении свойства антисептиков, работу по пропитке древесины диффузионным методом проводят с соблюдением правил безопасности.

Железобетонные опоры воздушных линий

Железобетонные опоры воздушных линий

Преимущества железобетонных опор заключаются в практически неограниченном сроке службы и небольших эксплуатационных расходах.

Опоры из железобетона превосходят деревянные и металлические опоры по долговечности, при этом расходы на эксплуатацию практически отсутствуют, для их изготовления требуется на 65 — 70% металла меньше, чем на металлические опоры.

Железобетонные опоры широко применяются на ВЛ до 500 кВ включительно. Срок служб ы железобетонных опор считаетсяв среднем в два раза выше, чем деревянных, хорошо пропитанных опор. Отпадает необходимость в использовании древесины, повышается надежность электроснабжения. Применение железобетонных пасынков позволило резко увеличить срок службы деревянных опор.

При изготовлении железобетонных опор для обеспечения необходимой плотности бетона применяются виброуплотнение и центрифугирование. Виброуплотнение производится различными вибраторами (инструментами или навесными приборами), а также на вибростолах. Центрифугирование обеспечивает очень хорошее уплотнение бетона и требует специальных машин–центрифуг. На ВЛ 110 кВ и выше стойки опор и траверсы портальных опор – центрифугированные трубы, конические или цилиндрические. На ВЛ 35 кВ стойки – центрифугированные или из вибробетона, а для воздушных линий более низкого напряжения – только из вибробетона. Траверсы одностоечных опор – металлические оцинкованные.



Железобетонная опора 10 кВ

Железобетонная опора 110 кВ


Железобетонная опора 110 кВ

Металлические опоры воздушных линий

Металлические опоры (стальные), применяемые на линиях электропередачи напряжением 35 кВ и выше, достаточно металлоемкие и требуют окраски в процессе эксплуатации для защиты от коррозии.

Срок службы металлических опор в несколько раз больше, чем деревянных, но они требуют значительных затрат металла и дороги в эксплуатации.

Устанавливают металлические опоры на железобетонных фундаментах. Независимо от конструктивного решения и схемы металлические опоры выполняются в виде пространственных решетчатых конструкций.

Металлические опоры воздушных линий

Классификация опор воздушных линий по назначению

По назначению опоры воздушных линий разделяют на промежуточные, анкерные, угловые, концевые и специальные .

Промежуточные опоры предназначены только для поддержания проводов, их не рассчитывают на одностороннее тяженке. В случае обрыва провода с одной стороны опоры при креплении его на штыревых изоляторах он проскальзывает в вязке и одностороннее тяжение снижается. При подвесных изоляторах гирлянда отклоняется и тяжение также снижается.

Промежуточные опоры составляют подавляющее большинство (свыше 80 %) опор, применяемых на воздушных линиях.

На анкерных опорах провода закрепляют жестко, поэтому такие опоры рассчитывают на обрыв части проводов. К штыревым изоляторам на анкерных опорах провода крепят особенно прочно, увеличивая при необходимости число изоляторов до двух или трех.



Анкерная металлическая опора 110 кВ

Часто на анкерных опорах вместо штыревых ставят подвесные изоляторы. Будучи более прочными, анкерные опоры ограничивают разрушения воздушных линий в аварийных случаях.

Классификация опор воздушных линий по назначению

Для надежности работы линий анкерные опоры устанавливают на прямых участках не реже чем через 5 км, а при толщине слоя гололеда свыше 10 мм не реже чем через 3 км. Ко н цевые опоры —это разновидность анкерных. Для них одностороннее тяжение проводов — не аварийное состояние, а основной режим работы.

Угловые опоры устанавливают в местах изменения направления воздушной линии. При нормальном режиме угловые опоры воспринимают одностороннее тяжение по биссектрисе внутреннего угла линии. Углом поворота линии считают угол, дополняющий до 180° внутренний угол линии.

При небольших углах поворота (до 20°) угловые опоры выполняют по типу промежуточных, для больших углов поворота (до 90°) — по типу анкерных.

Специальные опоры

Специальные опоры сооружают при переходах через реки, железные дороги, ущелья и т. п. Они обычно значительно выше нормальных, и их выполняют по особым проектам.

На воздушных линиях применяются специальные опоры следующих типов: транспозиционные – для изменения порядка расположения проводов на опорах; ответвительные – для выполнения ответвлений от основной линии; переходные – для пересечения рек, ущелий и т. д.

Транспозицию применяют на линиях напряжением 110 кВ и выше протяженностью более 100 км для того, что- бы сделать емкость и индуктивность всех трех фаз цепи ВЛ одинаковыми. При этом последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу на разных участках линии. Провод каждой фазы проходит одну треть длины линии на одном, вторую – на другом и третью – на третьем месте. Одно такое тройное перемещение проводов называют циклом транспозиции

Классификация опор воздушных линий по конструкции

По конструкции различают опоры ц ельностоечные и составные из стоек и приставок . Деревянные опоры выполняют на деревянных либо на железобетонных приставках. При прохождении воздушных линий по местам, где возможны низовые пожары, следует применять опоры с железобетонными приставками. Для цельностоечных опор, которые желательно использовать, необходимо применять длинномерную антисептированную древесину высокого качества, что ограничивает их распространение.

Большинство промежуточных опор выполняют одностоечными . Анкерные и конечные опоры выполняют А-образными. Для напряжений 110 кВ и выше опоры промежуточного типа выполняют П-образными, а анкерного А—П-образными.

За рубежом при изготовлении анкерных, концевых и других сложных опор применяют оттяжки из стального троса. У нас они распространения не получили.

деревянная опора

При сооружении опор воздушных линий должны быть выдержаны расстояния между проводами и другими предметами, находящимися в непосредственной близости от линии.

На линиях напряжением до 1 кВ в I - III районах гололедности расстояние между проводами должно быть не менее 40 см при вертикальном расположении проводов и наибольшей стреле провеса 1,2 м, а в IV и особом районах по гололеду — 60 см. При других расположениях проводов во всех районах по гололеду при скорости ветра при гололеде до 18 м/с расстояние между проводами 40 см, а при скорости ветра более 18 м/с — 60 см.

Расстояние по вертикали между проводами разных фаз на опоре при ответвлении от воздушной линии и пересечении разных линий должно быть не менее 10 см. Расстояние между изоляторами ввода должно быть не менее 20 см.

При подвеске проводов линий напряжением до 1 кВ на общих опорах с проводами линий напряжением до 10 кВ включительно вертикальное расстояние между проводами высшего и низшего напряжений должно быть не менее расстояния, требуемого для линий высшего напряжения.

Классификация опор воздушных линий по конструкции

Наименьшее допустимое расстояние от проводов воздушных линий до поверхности земли или воды называют габаритом линии . Габарит линии зависит от районов, в которых она проходит .

На промежуточных опорах для напряжений 6 - 20 кВ, устанавливаемых в населенной местности, предусматривают двойное крепление проводов на штыревых изоляторах, а на анкерных и угловых опорах применяют подвесные изоляторы.

Железобетонные опоры, как правило, выполняют цельностоечными. Для напряжения 0,38 кВ их схемы напоминают схемы деревянных опор. На напряжении 0,38 кВ их применяют для подвески пяти, восьми и девяти проводов таких же и больших сечений, что и на деревянных опорах.. Все промежуточные опоры выполняют одностоечными, свободно стоящими, а анкерные и угловые — с подкосами.

Для напряжений 35 кВ железобетонные опоры изготовляют без прокладки грозозащитного троса и с тросом. Последние применяют на подходах к трансформаторным подстанциям.

Железобетонные опоры линий электропередачи используются в монтаже воздушных линий электропередачи (ВЛ и ВЛИ) в населенных пунктах и на не населенной местности. Делаются железобетонные опоры на основе стандартных бетонных столбов: СВ 95-2В, СВ 95-3В, СВ110-1А, СВ 110-3,5А, СВ110-5А.

Железобетонные опоры ЛЭП – классификация по назначению

Классификация железобетонных опор по назначению, не выходит за рамки видов опор стандартизированных в ГОСТ и СНиП. Подробно читать: Виды опор по назначению, а здесь напомню кратко.

opory nomenklatura 1

Промежуточные бетонные опоры нужны для поддержания тросов и проводов. На них не оказывается нагрузка продольного или углового натяжения. (маркировка П10-3, П10-4)

Анкерные бетонные опоры обеспечивают удержание проводов при их продольном тяжении. Анкерные опоры обязательно ставятся в местах пересечения ЛЭП с железными дорогами и другими естественными и инженерными преградами.

Угловые опоры ставятся на поворотах трассы ЛЭП. На малых углах (до 30°), где нагрузка от натяжения не велика и если нет смены сечения проводов, ставятся угловые промежуточные опоры (УП). При больших углах поворота (более 30°) ставятся угловые анкерные опоры (УА). На конце ЛЭП ставятся анкерные они же концевые опоры (А). Для ответвлений к абонентам, ставятся ответвительные анкерные опоры (ОА).

opora OA 10 2 1

ustroystvo otvetvlenija 1

Маркировка опор из бетона

Стоит остановиться на маркировке опор. В предыдущем параграфе я использовал маркировку для опор 10-2. Поясню, как читать маркировку опор. Маркируются железобетонные опоры следующим образом.

Конструкции железобетонных опор

Конструкции опор из железобетона, тоже не выходят за рамки стандартных опорных конструкций.

  • Портальные опоры с оттяжками – две параллельные опоры держатся на тросах оттяжках;
  • Свободностоящие портальные опоры с поперечинами;
  • Свободностоящие опоры;
  • Опоры с оттяжками.

Применение опор должно соответствовать проектных расчетам. Для расчетов используются различные нормативные таблицы, объем которых занимает несколько томов.

Бетонные опоры по количеству удерживаемых цепей

Если ригели опоры позволяют цеплять только одну линию ЭП, она называется одноцепной (ригель с одной стороны). Если ригель с двух сторон, то опора двухцепная. Если можно навесить много линий проводов, то это многоцепная опора.

Установка бетонных опор

Чтобы закрепить промежуточную опору типа П10-3(4) нужно просверлить цилиндрический котлован диаметром 35-40 см, на глубину 2000 -25000 мм. Установочный ригель на такую опору не нужен.

Анкерные угловые и анкерные ответвительные опоры, обычно монтируются с установочными ригелями. Обращу внимание, что ригеля могут ставиться на нижний край опоры и подкоса, закапываемого в землю и/или на верхний край опоры, по верху котлована. Ригеля обеспечивают дополнительную устойчивость опоры. Глубина закапывания опоры зависит от промерзания грунта. Обычно 2000-2500 мм.

Заземление бетонных опор

Благодаря конструкции стоек опоры, заземление опор делать очень удобно. В стойках СВ опор, в заводских условиях при их изготовлении, сверху и снизу стойки выводится металлическая арматура 10 мм в диаметре. Эта арматура неразрывно идет по всей длине стойки. Именно эта арматура и служит для заземления железобетонных опор.

КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ВОЗДУШНЫХ ЛИНИЙ СВЯЗИ

Описание: Опоры воздушных линий связи должны обладать достаточной механической прочностью сравнительно продолжительным сроком службы быть относительно легкими транспортабельными и экономичными. До последнего времени на воздушных линиях связи применялись опоры из деревянных столбов. Затем начали широко применяться железобетонные опоры.

Дата добавления: 2014-07-07

Размер файла: 1.05 MB

Работу скачали: 135 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

ЛЕКЦИЯ 2. КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ВОЗДУШНЫХ ЛИНИЙ СВЯЗИ

Типы воздушных линий связи.

Воздушные линии пригодны лишь для ограниченного числа каналов (система так как они подвержены внешним электромагнитным влияниям (гроза, ЛЭП и т.д.) и атмосферным воздействиям (температура, влажность) и связь по ним менее стабильна и надежна, чем по подземным кабельным линиям. Однако ВЛС существенно проще в строительстве и дешевле по капитальным затратам.

В настоящее время воздушные линии связи применяются в качестве линий внутризоновой внутриобластной) связи и в большей степени -линий сельской телефонной связи (СТС). По своему назначению воздушные линии подразделяются на три класса:

1 класс— магистральные линии,

II класс — новые и соединительные линии СТС

Ш класс — абонентские линии сельской связи.

По механической прочности ВЛС подразделяются на четыре типа:

особо усиленный ОУ.

Тип линии определяется гололедностью района, по территории которого проходит линия. Некоторые конструктивные особенности воздушных линий определяются температурной зоной:

I зона (северная) — расчетные температуры от —55 до +30°С,

П зона (средняя)—от -40 до +45°С и

Ш зона (южная)—от -25 до +60°С.

Указанная классификация определяется метеорологическими условиями района строительства : основным критерием является эквивалентная толщина стенки гололеда, образующегося на проводах, так как при гололеде не увеличения массы проводов и их поверхности, подвергающейся давлению ветра, воздушная линия испытывает наибольшую механическую нагрузку. Каждый из данных типов линий характеризуется, главным образом, числом опор на 1 км (табл. 2.1). Из таблицы следует, что в районах с интенсивной гололедностью для обеспечения механической прочности линий устанавливается большее число опор на 1 км

Район климатических условий

Толщина гололеда на проводе,

Число опор на 1 км

Длина пролета (расстояние между опорами),

Негололедный и слабогололедный

Средней интенсивности гололеда

Особо сильной интенсивности

Проволока, применяемая на воздушных линиях, ее характеристика.

Воздушные линии связи состоят из металлических проводов, подвешенных на опорах с помощью изоляторов и специальной арматуры.

Элементами воздушных линий связи являются:

проволока (линейная и перевязочная), арматура для изоляции и крепления проводов на опорах.

Проволока. Провода воздушных линий связи подвергаются действию ветра, гололеда, влаги, химических реагентов, находящихся в воздухе, колебаниям температуры.

Линейная проволока , применяемая для проводов воздушных линий связи, должна обладать высокой электрической проводимостью, большой механической прочностью и достаточной эластичностью, устойчивостью против коррозии, экономичностью изготовления. В соответствии с указанными требованиями наибольшее применение для проводов воздушных линий связи получили медная, биметаллическая и стальная проволоки.

Медная проволока изготовляется диаметрами 4; 3,5 и 3 мм. Она хорошо противостоит атмосферным воздействиям и большинству химических реагентов, находящихся в воздухе. Покрываясь толстым слоем окиси меди, провода хорошо защищены от коррозии. Медная проволока дефицитна, имеет высокую стоимость и поэтому широкого применения не получила.

Стальная проволока изготовляется диаметром 5; 4; 3; 2,5; 2 и 1,5 мм. Проволока диаметром 5; 4 и 3 мм применяется для линий междугородной связи, а диаметром 2,5; 2 и 1,5 мм — для местных линий.

Стальная проволока имеет сравнительно небольшую стоимость. Однако большое активное сопротивление ее, сильно возрастающее с увеличением частоты (вследствие значительного поверхностного аффекта в стали, являющейся магнитным материалом), ограничивает возможность уплотнения стальных цепей и их использование для дальних телефонных связей (практически для телефонной связи стальные цепи используются на расстоянии до 200 — 250 км). Кроме того, стальная проволока подвержена коррозии. Для лучшей защиты от коррозии стальную проволоку покрывают слоем цинка.

Биметаллическая сталемедная проволока состоит из стальной сердцевины и медной оболочки. Применение такой проволоки обеспечивает экономию меди при сохранении примерно той же величины активного сопротивления на высоких частотах, как и у медной (вследствие поверхностного эффекта на высоких частотах, ток распространяется в основном по медной оболочке). Изготовление биметаллической проволоки осуществляется термическим способом. В зависимости от толщины медного слоя биметаллическая проволока подразделяется на два типа: БСМ-1 и БСМ-2.

В табл. 2.2 приведены диаметры проволоки и толщины медного слоя. Биметаллическая проволока диаметром 3 и 4 мм широко применяется для междугородной высокочастотной связи, а проволока меньших диаметров — для сельских и пригородных сетей. Механическая прочность биметаллической проволоки выше медной, а устойчивость против коррозии такая же.

В целях экономии меди применяют сталеалюминиевый биметалл. Биметаллическая ста-леалюминиевая проволока представляет собой стальной сердечник, покрытый алюминиевой оболочкой, которая наносится методом горячего опрессования. Проволока имеет марку БСА и изготовляется наружными диаметрами 5,1 и 4,1 мм с толщиной алюминиевого слоя 0,55 мм. Коррозионная устойчивость и прочность сталеалюминиевой проволоки БСА хуже, чем сталемедной БСМ.

Применяют также сталеалюминиевый многопроволочный провод марки АС. На сердечник из одной или нескольких стальных оцинкованных проволок навиты алюминиевые проволоки. Эти провода изготовляются с номинальным сечением алюминиевой части провода 25, 16 и 10 мм2 (соответственно АС-25, АС-16 и АС-10).

При удлиненных пролетах (переходы через реки, овраги), а также переходных линий связи через электрифицированные железные дороги и контактные трамвайные и троллейбусные провода, применяются многопроволочные канаты (тросы) высокой механической прочности: для цепей из цветного металла (цепи ЦМ) — бронзовые марок П A Б-10 и ПАБ-25 (провод антенный бронзовый сечением 10 и 25 мм2) диаметром соответственно 4,6 и 7,4 мм; для остальных цепей — стальные семипроволочные диаметром 4,2; 5 и 6,6 мм.

Основные физические и механические свойства линейной проволоки и канатов приведены в табл. 2.3.

Для крепления проводов на изолятор применяется перевязочная проволока диаметром 2 и 2,5 мм (соответственно для линейных проводов диаметром 3 и 4 мм), стальная мягкая оцинкованная — для стальных проводов и медная мягкая - для проводов из цветного металла

Для соединения концов линейных проводов пайкой используется спаечная проволока: стальная мягкая луженая диаметром 1—1,2 мм — для стальных проводов и медная мягкая диаметром 1 и 1,5 мм — для проводов из цветного металла (соответственно диаметром 3 и 3,5—4 мм).

Изоляторы, крюки, штыри, траверсы, кронштейны, накладки, крепежные детали.

Арматура. Для изоляций проводов воздушных линий связи их укрепляют на изоляторах . должны обладать большим электрическим сопротивлением, малыми диэлектрическими потерями и высокой механической прочностью. Этим требованиям в наибольшей мере удовлетворяют фарфоровые изоляторы. Употребляются также стеклянные изоляторы, изготавливаемые из малощелочного стекла. Фарфоровые и стеклянные изоляторы имеют одинаковую форму (рис. 2.1). Внутри изолятор имеет винтовую нарезку для укрепления его на крюке или штыре. При навертывании изолятора на штырь на последний предварительно наматывается просмоленная пенька (каболка) или полиэтиленовый колпачок. Для увеличения поверхностного сопротивления в изоляторах делают две юбки (увеличивается длина пути утечки тока). Фарфоровые изоляторы имеют марку ТФ (телефонный фарфоровый), а стеклянные —ТСМ (телефонный стеклянный малощелочной), В зависимости от материала и диаметра подвешиваемых проводов применяются изоляторы различных типов, отличающихся между собой размерами: ТФ-20 и ТСМ-2 — для стальных проводов диаметром 5 и 4 мм и проводов из цветного металла диаметром 4; 3 мм; 16 и ТСМ-3 — для стальных проводов 3 мм; ТФ-12 и ТСМ-4 — для местных линий при диаметре проводов 2,5 мм и менее. Нормированные сопротивления изоляции изоляторов ТФ-20, ТФ-16 и ТФ-12 составляют соответственно 50000, 40000 и 20000 МОм, а стеклянных соответствующих типов — в 10 раз меньше.

Для укрепления изоляторов на опорах применяют крюки и траверсы со штырями.

Стальные крюки (рис. 2.2) изготовляют следующих типов: КН-20, КН-18, КН-16 и К.Н-12 (крюк низковольтный диаметром соответственно 20, 18, 16 и 12 мм). Крюки типов КН-20 и КН-18 предназначаются для изоляторов типов ТФ-20 и ТСМ-2; КН-16 —для изоляторов ТФ-16 и ТСМ-3; КН-12 —для изоляторов ТФ-12. Крюки окрашивают черным асфальтовым лаком для предохранения их от коррозии.

Траверсы изготавливают из дерева (дуба, сосны, лиственницы, ели, кедра и угловой разнобокой стали. Деревянные траверсы пропитывают противогнилостным составом. Наиболее широко применяются восьмиштырные траверсы. Вид и основные размеры восьмиштырной деревянной траверсы показаны на рис. 2.3. Стальные траверсы по сечению имеют следующие размеры: восьмиштырные — 50X50X6 мм и 60X60X6 мм, четырехштырные —40X40X4 мм и 50x50x6 мм.


Рис. 2.1. Изолятор


Рис. 2.3. Восьмиштырная траверса и стальной штырь

На траверсах укрепляются стальные штыри (см. рис. 2.3) с размерами, соответствующими типу траверс (деревянные или стальные), и изоляторы.

Арматура в основном выбирается исходя из диаметра и условий крепления, применяемого провода (табл. 2.4).

Кроме рассмотренной основной арматуры, при строительстве воздушных линий связи применяются кронштейны, подвесные крюки, накладки, а также различные крепежные материалы (болты, глухари, подкосы и пр.).

Типы опор и приставок.

Опоры. Опоры воздушных линий связи должны обладать достаточной механической прочностью, сравнительно продолжительным сроком службы, быть относительно легкими, транспортабельными и экономичными. До последнего времени на воздушных линиях связи применялись опоры из деревянных столбов. Затем- начали широко применяться железобетонные опоры.

Деревянные столбы для опор линий связи заготавливают в основном из сосны, лиственницы, ели, кедра и пихты. Размеры столбов выбирают в зависимости от класса и линии, числа проводов, способа их подвески и допускаемого расстояния от нижнего вода до земли. Наиболее широко применяются столбы длиной 6,5; 7,5; 8,5 м с диаметром в вершине от 12 до 22 см; для устрой переходных опор большей высоты применяются, кроме того, столбы длиной 9,5; 11 и 13 м с диаметром в вершине от 14 до 24 см.

Деревянные опоры , особенно их нижние части, находящиеся у поверхности земли, подвержены гниению. По этой причине срок службы деревянных столбов сравнительно велик — 5—7 лет. Для увеличения срока службы деревянные столбы (а также приставки, служащие для укрепления столбов) пропитывают противогнилостным составом — антисептиками. В качестве последних применяются креозотовое и антраценовое масло, а та уралит, фтористый натрий и др.

Железобетонные опоры и приставки прочны и долговечны. Из железобетона изготовляют все основные типы опор: промежуточные, угловые, анкерные, вводные, кабельные, строительства линий связи наиболее широко применяются опоры прямоугольного сечения.

Железобетонные опоры изготовляются длиной 6,5; 7,5 и 8,5 м.

Марка опоры имеет букву, указывающую тип профиля, и две цифры — первая указывает величину расчетного изгибающего момента (кН-м), который может быть допущен данной опоры в направлении, перпендикулярном направлению линии, и вторая показывает длину опоры. Для линий связи применяют следующие марки железобетонных опор ПО — прямоугольная облегченная и ПОР то же, с предварительно напряженной арматурой.

Основные характеристики железобетон опор приведены в табл. 2.5.

Наряду с железобетонными опорами линиях связи широко применяют железобетонные приставки, укрепляющие деревянные опоры для удлинения срока их службы.

Железобетонные опоры воздушных линий 1

Железобетонные опоры воздушных линий электропередач широко распространены и используются для линий электропередач рабочим напряжением до 500 кВ включительно. В сравнении с деревянными хорошо пропитанными опорами железобенные служат примерно в 2 раза дольше, что повышает надёжность электроснабжения. Для повышения прочности бетон армируют металлом.

Чтобы повысить плотность и долговечность материала при производстве бетона используются дополнительные операции: центрифугирование и виброуплотнение (с помощью вибростолов и вибраторов). Наибольшую степень плотности обеспечивает центрифугирование с использованием специальных машин-центрифуг. Такой вид бетона используется на линиях напряжением от 110 кВ и выше. Для линий 35 кВ чаще применяется только вибробетон, а траверсы изготавливаются из оцинкованной стали. Прочностные характеристики также позволяет увеличить использование преднаряжённого железобетона.

Достоинства и недостатки железобетонных опор

Железобетонные опоры воздушных линий 2

К достоинствам данного типа опор относят технологичность изготовления, высокую устойчивость против влияния коррозии и химических реагентов, присутствующих в воздухе. Также ЖБ опоры могут нести значительно больший вес, чем деревянные опоры, однако, уступают в этом металлическим.

— сложность транспортировки, что проявляется в частом возникновении дефектов при перевозке (трещины, сколы);

— плохая переносимость циклических колебаний температуры, из-за чего в результате замерзания и оттаивания приповерхностного слоя грунта происходит выкрашивание бетона;

— большой вес и габариты опор, что не только предъявляет серьёзные требования к автотранспорту, но и подразумевает необходимость использования специальной техники для погрузочно-разгрузочных работ;

Железобетонные опоры воздушных линий 3

— сложность демонтажа и утилизации.

Даже несмотря на то, что ЖБ опоры выносят в 2-3 раза меньшие аварийные нагрузки, чем металлические опоры, более половины всех опор в России выполнены именно из железобетона, что связано с отличным соотношением стоимость/характеристики.

Железобетонные стойки опор ЛЭП изготавливаются на заводах ЖБИ в соответствии с требования специальных технических условий и ГОСТов. Они применимы для использования в составе железобетонных опор ЛЭП разных рабочих напряжений. Конструктивные особенности и материалы дают возможность применения их в агрессивных средах, а также в климатических зонах с минимальной температурой -55 °С, в том числе в районах с высокой сейсмической активностью до 9 баллов. Гололёдная и ветровая нагрузка соответствует СНиП2.01.07-85 — VII и V району.

Читайте также: