Застосування радіоактивних ізотопів реферат

Обновлено: 08.07.2024

Радиоактивность – превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. Отсюда и название явления: на латыни radio – излучаю, activus – действенный. Это слово ввела Мария Кюри. При распаде нестабильного ядра – радионуклида из него вылетают с большой скоростью одна или несколько частиц высокой энергии. Поток этих частиц называют радиоактивным излучением или попросту радиацией.

Новые лучи стали исследовать во всем мире, только за один год на эту тему было опубликовано свыше тысячи работ. Несложные по конструкции рентгеновские аппараты появились и в госпиталях: медицинское применение новых лучей было очевидным.

Сейчас рентгеновские лучи широко используются (и не только в медицинских целях) во всем мире.

Беккерель решил проверить, связаны ли лучи Рентгена с флуоресценцией. Яркой желто-зеленой флуоресценцией обладают некоторые соли урана, например, уранилнитрат UO2 (NO3 )2. Такие вещества были в лаборатории Беккереля, где работал. С препаратами урана работал еще его отец, который показал, что после прекращения действия солнечного света их свечение исчезает очень быстро – менее чем за сотую долю секунды. Однако никто не проверял, сопровождается ли это свечение испусканием каких-то других лучей, способных проходить сквозь непрозрачные материалы, как это было у Рентгена. Именно это после доклада Пуанкаре решил проверить Беккерель. 24 февраля 1896 на еженедельном заседании Академии он рассказал, что беря фотопластинку, завернутую в два слоя плотной черной бумаги, кладя на нее кристаллы двойного сульфата калия-уранила K2 UO2 (SO4 )2·2H2O и выставляя все это на несколько часов на солнечный свет, то после проявления фотопластинки на ней можно видеть несколько размытый контур кристаллов. Если между пластинкой и кристаллами поместить монету или вырезанную из жести фигуру, то после проявления на пластинке появляется четкое изображение этих предметов.

Беккерель не мог ни принять эту гипотезу, ни придумать что-то более правдоподобное, ни отказаться от принципа сохранения энергии. Кончилось тем, что он вообще на некоторое время бросил работу с ураном и занялся расщеплением спектральных линий в магнитном поле. Этот эффект был обнаружен почти одновременно с открытием Беккереля молодым голландским физиком Питером Зееманом и объяснен другим голландцем – Хендриком Антоном Лоренцем.

На этом закончился первый этап исследования радиоактивности. Альберт Эйнштейн сравнил открытие радиоактивности с открытием огня, так как считал, что и огонь и радиоактивность – одинаково крупные вехи в истории цивилизации.

1. Виды радиоактивных излучений

Отклоняющиеся лучи обладали более сильной способностью проникать через различные материалы, тогда как неотклоняющиеся легко поглощались даже тонкой алюминиевой фольгой – так вело себя, например, излучение нового элемента полония – его излучение не проникало даже сквозь картонные стенки коробки, в которой хранился препарат.

Долгое время было неясно, откуда берутся все эти лучи. В течение нескольких десятилетий трудами многих физиков была выяснена природа радиоактивного излучения и его свойства, были открыты новые типы радиоактивности.γ

В ядре протоны и нейтроны удерживаются вместе ядерными силами, Поэтому было непонятно, каким образом альфа-частица, состоящая из двух протонов и двух нейтронов, может покинуть ядро. Ответ дал в 1928 американский физик (эмигрировавший в 1933 из СССР)Джордж (Георгий Антонович) Гамов). По законам квантовой механики α -частицы, как и любые частицы малой массы, обладают волновой природой и потому у них есть некоторая небольшая вероятность оказаться вне ядра, на небольшом (примерно 6· 10–12 см) расстоянии от него. Как только это происходит, на частицу начинает действовать с кулоновское отталкивание от очень близко находящегося положительно заряженного ядра.

Альфа-распаду подвержены, в основном, тяжелые ядра – их известно более 200, α-частицы испускаются большинством изотопов элементов, следующих за висмутом. Известны ти более легкие альфа-излучатели, в основном, это атомы редкоземельных элементов. Но почему из ядра вылетают именно альфа-частицы, а не отдельные протоны? Качественно это объясняется энергетическим выигрышем при α-распаде (α-частицы – ядра гелия устойчивы). Количественная же теория α-распада была создана лишь в 1980-х, в ее разработке принимали участие и отечественные физики, в их числе Лев Давидович Ландау, Аркадий Бейнусович Мигдал (1911–1991), заведующий кафедрой ядерной физики Воронежского университета Станислав Георгиевич Кадменский с сотрудниками.

Вылет из ядра α-частицы приводит к ядру другого химического элемента, который смещен в периодической таблице на две клетки влево. В качестве примера можно привести превращения семи изотопов полония (заряд ядра 84) в разные изотопы свинца (заряд ядра 82): 218 Po → 214 Pb, 214 Po → 210 Pb, 210 Po → 206 Pb, 211 Po → 207 Pb, 215 Po →211 Pb, 212 Po → 208 Pb, 216 Po → 212 Pb. Изотопы свинца 206 Pb 207 Pb и 208 Pb стабильны, остальные радиоактивны.

Бета-распад наблюдается как у тяжелых, так и у легких ядер, например, у трития. Эти легкие частицы (быстрые электроны) обладают более высокой проникающей способностью. Так, в воздухе β -частицы могут пролететь несколько десятков сантиметров, в жидких и твердых веществах – от долей миллиметра до примерно 1 см. В отличие от α-частиц, энергетический спектр β -лучей не дискретный. Энергия вылетающих из ядра электронов может меняться почти от нуля до некоторого максимального значения, характерного для данного радионуклида. Обычно средняя энергия β -частиц намного меньше, чем у α -частиц; например, энергия β -излучения 228 Ra составляет 0,04 МэВ. Но бывают и исключения; так β -излучение короткоживущего нуклида 11 Ве несет энергию 11,5 МэВ. Долго было неясно, каким образом из одинаковых атомов одного и того же элемента вылетают частицы с разной скоростью. Когда же стало известно понятно строение атома и атомного ядра, появилась новая загадка: откуда вообще берутся вылетающие из ядра β -частицы – ведь в ядре никаких электронов нет. После того как в 1932 английский физик Джеймс Чедвиком открыл нейтрон, отечественные физики Дмитрий Дмитриевич Иваненко (1904–1994) и Игорь Евгеньевич Тамм и независимо немецкий физик Вернер Гейзенберг предположили, что атомные ядра состоят из протонов и нейтронов. В таком случае β -частицы должны образоваться в результате внутриядерного процесса превращения нейтрона в протон и электрон: n → p + e. Масса нейтрона немного превышает суммарную массу протона и электрона, избыток массы, в соответствии с формулой Эйнштейна E = mc 2, дает кинетическую энергию вылетающего из ядра электрона, поэтому β -распад наблюдается, в основном, у ядер с избыточным числом нейтронов. Например, нуклид 226 Ra – α-излучатель, а все более тяжелые изотопы радия (227 Ra, 228 Ra, 229 Ra и 230 Ra) – β -излучатели.

Превращение нейтрона в протон при β-распаде практически не изменяет массу нуклида, но увеличивает заряд ядра на единицу. Следовательно, образуется новый элемент, смещенный в периодической таблице на одну клетку вправо, например: → , →, → и т.д. (одновременно из ядра вылетают электрон и антинейтрино).

2. Другие виды радиоактивности

Помимо альфа- и бета-распадов, известны и другие типы самопроизвольных радиоактивных превращений. В 1938 американский физик Луис Уолтер Альварес открыл третий тип радиоактивного превращения – электронный захват (К-захват). В этом случае ядро захватывает электрон с ближайшей к нему энергетической оболочки (К-оболочки). При взаимодействии электрона с протоном образуется нейтрон, а из ядра вылетает нейтрино, уносящее избыток энергии. Превращение протона в нейтрон не изменяет массу нуклида, но уменьшает заряд ядра на единицу. Следовательно, образуется новый элемент, находящийся в периодической таблице на одну клетку левее, например, из получается стабильный нуклид (именно на этом примере Альварес открыл этот тип радиоактивности).

В 1940 Георгий Николаевич Флеров (1913–1990) и Константин Антонович Петржак (1907–1998) на примере урана открыли самопроизвольное (спонтанное) деление, при котором нестабильное ядро распадается на два более легких ядра, массы которых различаются не очень сильно, например: → + + 2n. Этот тип распада наблюдается только у урана и более тяжелых элементов – всего более чем у 50 нуклидов. В случае урана спонтанное деление происходит очень медленно: среднее время жизни атома 238 U составляет 6,5 миллиарда лет. В 1938 немецкий физик и химик Отто Ган, австрийский радиохимик и физик Лизе Мейтнер (в ее честь назван элемент Mt – мейтнерий) и немецкий физикохимик Фриц Штрассман (1902–1980) обнаружили, что при бомбардировке нейтронами ядра урана делятся на осколки, причем вылетевшие из ядер нейтроны способны вызвать деление соседних ядер урана, что приводит к цепной реакции). Этот процесс сопровождается выделением огромной (по сравнению с химическими реакциями) энергии, что привело к созданию ядерного оружия и строительству АЭС.

В 1934 дочь Марии Кюри Ирэн Жолио-Кюри и ее муж Фредерик Жолио-Кюри открыли позитронный распад. В этом процессе один из протонов ядра превращается в нейтрон и антиэлектрон (позитрон) – частицу с той же массой, но положительно заряженную; одновременно из ядра вылетает нейтрино: p → n + e+ + 238. Масса ядра при этом не изменяется, а смещение происходит, отличие от β– -распада, влево, β+-распад характерен для ядер с избытком протонов (так называемые нейтронодефицитные ядра). Так, тяжелые изотопы кислорода 19 О, 20 О и 21 О β– -активны, а его легкие изотопы 14 О и 15 О β+ — активны, например: 14 O → 14 N + e+ + 238. Как античастицы, позитроны сразу же уничтожаются (аннигилируют) при встрече с электронами с образованием двух γ-квантов. Позитронный распад часто конкурирует с К-захватом.

В 1982 была открыта протонная радиоактивность: испускание ядром протона (это возможно лишь для некоторых искусственно полученных ядер, обладающих избыточной энергией). В 1960 физико-химик Виталий Иосифович Гольданский (1923–2001) теоретически предсказал двухпротонную радиоактивность: выбрасывание ядром двух протонов со спаренными спинами. Впервые она наблюдалась в 1970. Очень редко наблюдается и двухнейтронная радиоактивность (обнаружена в 1979).

В 1984 была открыта кластерная радиоактивность (от англ. cluster – гроздь, рой). При этом, в отличие от спонтанного деления, ядро распадается на осколки с сильно отличающимися массами, например, из тяжелого ядра вылетают ядра с массами от 14 до 34. Кластерный распад также наблюдается очень редко, и это в течение длительного времени затрудняло его обнаружение.

Некоторые ядра способны распадаться по разным направлениям. Например, 221 Rn на 80% распадается с испусканием α-частиц и на 20% – β-частиц, многие изотопы редкоземельных элементов (137 Pr, 141 Nd, 141 Pm, 142 Sm и др.) распадаются либо путем электронного захвата, либо с испусканием позитрона. Различные виды радиоактивных излучений часто (но не всегда) сопровождаются γ-излучением. Происходит это потому, что образующееся ядро может обладать избыточной энергией, от которой оно освобождается путем испускания гамма-квантов. Энергия γ-излучения лежит в широких пределах, так, при распаде 226 Ra она равна 0,186 МэВ, а при распаде 11 Ве достигает 8 МэВ.

Почти 90% из известных 2500 атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью. У больших ядер нестабильность возникает вследствие конкуренции между притяжением нуклонов ядерными силами и кулоновским отталкиванием протонов. Не существует стабильных ядер с зарядовым числом Z > 83 и массовым числом A > 209. Но радиоактивными могут оказаться и ядра атомов с существенно меньшими значениями чисел Z и A. Если ядро содержит значительно больше протонов, чем нейтронов, то нестабильность обуславливается избытком энергии кулоновского взаимодействия. Ядра, которые содержали бы большой избыток нейтронов над числом протонов, оказываются нестабильными вследствие того, что масса нейтрона превышает массу протона. Увеличение массы ядра приводит к увеличению его энергии.

Явление радиоактивности было открыто в 1896 году французским физиком А. Беккерелем, который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года французские физики М. и П. Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний и радий

В последующие годы исследованием природы радиоактивных излучений занимались многие физики, в том числе Э. Резерфорд и его ученики. Было выяснено, что радиоактивные ядра могут испускать частицы трех видов: положительно и отрицательно заряженные и нейтральные. Эти три вида излучений были названы α-, β- и γ-излучениями. Эти три вида радиоактивных излучений сильно отличаются друг от друга по способности ионизировать атомы вещества и, следовательно, по проникающей способности. Наименьшей проникающей способностью обладает α-излучение. В воздухе при нормальных условиях α-лучи проходят путь в несколько сантиметров. β-лучи гораздо меньше поглощаются веществом. Они способны пройти через слой алюминия толщиной в несколько миллиметров. Наибольшей проникающей способностью обладают γ-лучи, способные проходить через слой свинца толщиной 5–10 см.

Превращение атомных ядер веществ в другие ядра. Применение радиоактивных изотопов и меченых соединений для исследования органов и систем человека с целью распознавания болезней. Радиоактивный метод анализа вещества. Радиоизотопные источники энергии.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.07.2011
Размер файла 19,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ядро радиоактивный изотоп анализ

Радиоактивные изотопы и их применение

Изотопы - разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу.

Радиоактивность - превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения.

В природе встречаются как стабильные изотопы, так и нестабильные - радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам радиоактивного распада). Сейчас известно около 270 стабильных изотопов. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше. Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов - 10 обнаружено у олова, у железа, например, их - 4, у ртути - 7.

С помощью ядерных реакций можно получить радиоактивные изотопы всех химических элементов. Получают их на ускорителях электронных частиц и атомных реакторах. Их еще называют "меченые атомы".

Радиоизотопная диагностика -- применение радиоактивных изотопов и меченых соединений для исследования органов и систем человека с целью распознавания болезней. Основным методом радиоизотопной диагностики является метод радиоактивной индикации, т. е. способ наблюдения за введенными в организм радиоактивными веществами.

Одним из наиболее выдающихся исследований явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми. Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей. Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения, йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного йода, можно быстро поставить диагноз. Большие дозы радиоактивного йода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный йод используют для лечения базедовой болезни. Интенсивное гамма-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка).

Не менее обширны применения радиоактивных изотопов в промышленности. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.

Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами гамма-лучей от радиоактивных препаратов приводит к заметному увеличению урожайности. Большие дозы радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция). Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высоко продуктивные микроорганизмы, применяемые в производстве антибиотиков. Гамма-излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов. Широкое применение получили радиоактивные изотопы в агротехнике. Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором 15 32P. Исследуя затем растения на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения.

Радиоуглеромдный анамлиз -- физический метод датирования биологических останков, предметов и материалов биологического происхождения путём измерения содержания в материале радиоактивного изотопа 14C по отношению к стабильным изотопам углерода.. Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом .Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате ?-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели. Таким методом узнают возраст египетских мумий, остатков доисторических костров и т. д.

Радиоактивный метод анализа вещества дает возможность определить содержание в нем различных металлов от кальция до цинка, в чрезвычайно малых концентрациях - до 1-10г. (при этом требуется всего лишь 10-12г. вещества). Радиоактивные препараты широко используются в медицинской практике для лечения многих заболеваний, в том числе и злокачественных опухолей. Изотопы плутония-238, кюрия-224 применяются для производства батарей небольшой мощности для стабилизаторов ритма сердца. Для их непрерывной работы в течение 10 лет достаточно всего 150-200 мг плутония (обычные батареи служат до четырех лет).

· Межзвездные зонды: Электротеплопитание космических аппаратов.

· Медицина: электропитание электрокардиостимуляторов и др.

· Энергопитание маяков и бакенов.

Перспективные области применения:

· Роботы-андроиды: Электротеплопитание. Как основной источник энергии.

· Боевые лазеры космического базирования: Накачка лазеров и электротеплопитание.

· Боевые машины: Мощные двигатели с большим ресурсом (беспилотные разведывательные аппараты -- самолеты и мини-лодки, энергопитание боевых вертолетов и самолетов, а также танков и автономных пусковых установок).

· Глубоководные гидроакустические станции: длительное энергопитание невозвращаемых аппаратов.

Радиоактивные изотопы и соединения, меченные радиоактивными изотопами, широко применяются в самых разных областях человеческой деятельности. Промышленность и технологический контроль, сельское хозяйство и медицина, средства связи и научные исследования -- охватить весь спектр применения радиоактивных изотопов практически невозможно, хотя все они возникли чуть более, чем за 100 лет.

Подобные документы

Основные понятия и терминология. Детекция и количественные измерения радионуклидов. Авторадиография. Сцинтилляционные счетчики. Иммиджеры. Основные радионуклиды в life science. Технические характеристики меченых соединений. Радионуклид 3Н (тритий).

реферат [47,4 K], добавлен 18.09.2007

Изотопы в медицине. Основные характеристики радионуклидов для использования в диагностических целях. Современная маммографическая система, с низкой дозой облучения и высокой разрешающей способностью. Изотопы в промышленности и сельском хозяйстве.

презентация [1,3 M], добавлен 08.06.2012

Физические основы ядерной реакции: энергия связи нуклонов и деление ядер. Высвобождение ядерной энергии. Особенности применениея энергии, выделяющейся при делении тяжёлых ядер, на атомных электростанциях, атомных ледоколах, авианосцах и подводных лодках.

презентация [1,0 M], добавлен 05.04.2015

Изотопы – разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Строение атома, описание протонно-нейтронной модели ядра. Открытие и применение изотопов, их радиоактивность.

презентация [216,5 K], добавлен 27.12.2010

Взаимодействие между нуклонами. Особенности ядерных сил. Способы освобождения ядерной энергии: деление тяжёлых ядер и синтез лёгких ядер. Устройство, в котором поддерживается реакция их деления. Накопление радиоактивных элементов в организме человека.

презентация [8,5 M], добавлен 16.12.2014

История развития метода меченых атомов. Изотопные индикаторы, стабильные и радиоактивные изотопы. Изотопные индикаторы в медицине, биологии и сельском хозяйстве. Сцентиллярные счетчики излучения. Введение радиоактивной метки в биологические препараты.

реферат [69,8 K], добавлен 14.12.2013

Основные источники радиоактивных загрязнений: производственная дезактивация, вызванные взрывом ядерных боеприпасов, аварийные объекты. Виды дезактивационных работ на атомных электростанциях, порядок их проведения и оценка практической эффективности.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




РАДИОИЗОТОПЫ НА СЛУЖБЕ У ЧЕЛОВЕКА


Автор работы награжден дипломом победителя II степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Актуальность исследования. Я считаю, что моя исследовательская работа актуальна именно сегодня. Появившаяся в конце XIX века ядерная физика, бурное развитие которой привело к созданию атомного и водородного оружия, уже в середине XX века заставила общественность во весь голос заговорить об угрозе самого существования человечества. Но ведь энергию деления ядра и радиоактивность можно использовать и для созидания. Например, радиоизотопы используются в различных производствах, при научных исследованиях и в медицине.

Промышленное использование включает дефектоскопию и процессы контроля в металлургической (литейной), бумажной, химической промышленности и в дорожном строительстве.

В современной медицине получило развитие новое направление – ядерная медицина, использующее радиоактивные вещества и свойства атомного ядра для диагностики и терапии в различных областях научной и практической медицины. Ядерная медицина обогатилась новыми методами изучения жизненных процессов, диагностики и лечения болезней. На ее нужды расходуется более 50% годового производства радионуклидов во всем мире. Радионуклиды применяются в ядерной медицине в основном в виде радиофармацевтических препаратов (РФП).

Люди должны понимать, что радиоактивное излучение – это не есть что-то невероятно опасное и непостижимое, а наоборот, чем больше ведется изучения радиоактивных явлений, тем более осознанно с ними можно обращаться, используя их свойства на благо человека.

Проблема исследования. Обучающиеся старших классов имеют недостаточные знания о радиоизотопах, их применении в различных областях жизнедеятельности человека.

Предмет исследования. Радиоактивные изотопы и область их применения.

Цель исследования. Выяснить, что представляют собой радиоактивные изотопы, какими свойствами они обладают и как можно их использовать на благо человека.

В связи с поставленной целью предстояло решить следующие задачи:

Расширить знания о строении ядра атома, явлении радиоактивности, радиоактивных изотопах.

Узнать в специальной литературе и интернет-ресурсах современное состояние дел, успехов и проблем в производстве изотопов.

Показать необходимость использования радиоизотопов в различных отраслях деятельности человека.

Структура и объем работы. Исследовательский проект состоит из введения, 7 глав, заключения, списка используемых источников, приложений № 1,2,3,4,5. В тексте проекта содержится 3 рисунка.

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12 C, 222 Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например,дейтерий,актинон).На март 2017 года известно 3437 изотопов всех элементов.

По количеству открытых изотопов первое место занимают США (1237), затем идут Германия (558), Великобритания (299), СССР/Россия (247) и Франция (217). За 10 лет (2006—2015 годы включительно) в среднем физики открывали в год 27 изотопов. Общее количество учёных, являвшихся авторами или соавторами открытия какого-либо изотопа, составляет 3598 человек.

Нуклиды, ядра которых нестабильны и испытывают радиоактивный распад. Большинство известных нуклидов радиоактивны (стабильными являются лишь около 300 из более чем 3000 нуклидов, известных науке). Все нуклиды, имеющие зарядовое число, равное 43 или 61 или большее 82, радиоактивны; соответствующие элементы называются радиоактивными элементами. Существуют радионуклиды и с другими зарядовыми числами (от 1 до 42, от 44 до 60 и от 62 до 82). Радионуклиды отличаются между собой энергией излучения, периодом полураспада.

Радиоактивные изотопы, встречающиеся в природе, называются естественными, например, 40 K. В 1934 году французские ученые Ирен и Фредерик Жолио–Кюри обнаружили, что радиоактивные изотопы могут быть созданы искусственным путем в результате ядерных реакций. Такие изотопы назвали искусственными.

Для получения искусственных радиоактивных изотопов обычно используют ядерные реакторы и ускорители элементарных частиц. Впоследствии был получены искусственные изотопы всех химических элементов. Всего в настоящее время известно примерно 3000 радиоактивных изотопов, причем 300 из них – естественные.

3. Торговля радиоактивными изотопами.

Не менее половины изотопов имеют медицинское назначение (остальное — промышленность и научные исследования).

Мировой экспорт и импорт искусственными радиоактивными изотопами (ИРИ) составлял последние 3 года чуть более 1 млрд долларов в год. Список экспортеров возглавляют Канада, США, Нидерланды, Бельгия и Германия. В списке импортеров лидируют США, Япония, Германия, Англия и Китай.

России сегодня принадлежит 6% мирового экспорта и 1% импорта. Динамика международной торговли ИРИ России показана на рисунке (приложение № 1). Хорошо виден рост экспорта за 15 лет — более чем втрое! Импорт же в последние годы стабилен.

Главное направление российского экспорта ИРИ — Запад, с большим отрывом лидирует Великобритания: около 50%. На втором месте — США, на третьем — Германия, четвертый Китай.

Россия закупает за рубежом главным образом радиофармацевтические препараты и источники излучения для медтехники; основные поставщики — Германия и США.

4. Применение радиоактивных изотопов.

В настоящее время радиоактивные изотопы широко применяют в различных сферах научной и практической деятельности: технике, медицине, сельском хозяйстве, средствах связи, военной области и в некоторых других. При этом часто используют так называемый метод меченых атомов.

4.1. Применение радиоизотопов в медицине.

Изотопы, в первую очередь радиоактивные, широко применяются в современной медицинской практике.

В изотопной диагностике в мире и в России все большее значение имеет позитронно-эмиссионная томография (ПЭТ).

Рис. 4.1.1.Оборудование для позитронной эмиссионной томографии

Поэтому растет потребность не только в традиционных радиоизотопах, таких как 11 С, 13 N, 15 O, 18 F, но и генераторных изотопах 68 Ga и 82 Rb, а также перспективных для новейшей диагностической технологии, совмещающей позитронно-эмиссионную и компьютерную томографию, изотопах 38 K, 45 Ti, 62 Cu, 64 Cu, 75 Br, 76 Br, 94m Tc и 124 I.

Развитие получают и терапевтические методы на основе радиоактивных изотопов, например, лучевая терапия открытыми источниками радионуклидов, особенно эффективная при борьбе со злокачественными лимфомами, раком щитовидной железы и др.

131 I был и продолжает оставаться наиболее широко используемым терапевтическим изотопом (ежегодно в Европе — более 90000 ГБк (один беккерель определяется как активность источника, в котором за одну секунду происходит в среднем один радиоактивный распад), в России — около 2000 ГБк). Йодотерапия не имеет альтернативы при тяжелых формах рака щитовидной железы.

Радиоиммунотерапия на начальных этапах своего становления и развития также проводилась с использованием препаратов 131 I, но в последнее десятилетие резко возрос интерес к 90 Y.

Одним из направлений применения микроисточников (брахитерапия) с 103 Pd или 125 I в последние 10-15 лет стало лечение рака предстательной железы и некоторых других онкопатологий. В настоящее время перспективным изотопом для брахитерапии является 131 Cs.

В радиофармацевтике диагностического и терапевтического назначения наметился сдвиг в сторону короткоживущих радиоизотопов. Наряду с применением стандартных медицинских изотопов 198 Au, 131 I, 125 I, 203 Hg, 197 Hg и др. все чаще применяют их заменители с меньшим периодом полураспада. Все большее признание в исследовательской деятельности и клинической практике получает фармацевтика на основе короткоживущих 99m Tc, 123 I, 13 N, 15 O, 11 C, 18 F, 77 Br, 68 Ga, 81m Kr и др.

4.2. Применение радиоизотопов в промышленности.

Не менее обширны применения радиоактивных изотопов в промышленности и промышленных исследованиях. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.

Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

4.3. Применение радиоизотопов в сельском хозяйстве.

4.4. Применение радиоизотопов в археологии и геологии.

Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом. Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели.

40 Ca + 1 n = 37 Ar + 4 He

В ИРМ была разработана, изготовлена и смонтирована установка растворения облучённой окиси кальция и экстракции 37 Ar с его последующей очисткой. Была также разработана конструкция газового источника, технология его заполнения и измерение его активности.

Рис. 5.1. Галлий-германиевый нейтринный телескоп ИЯИ РАН.

Фрагмент Баксанской Нейтринной обсерватории находящейся в горном массиве на глубине более 2 км.

14 N + 1 n = 14 C + 1 p

131 Cs образуется при распаде 131 Ba, получаемого нейтронным облучением соединений бария:

130 Ba + 1 n = 131 Ba + γ

131 Ba →ЭЗ 11.5 дн. 131 Cs

Оптимальное сочетание периода полураспада и энергии излучения делают 131 Cs перспективным радиоизотопом для брахитерапии злокачественных заболеваний предстательной железы, легкого, молочной железы и т.д. Введение его в клиническую практику рассматривается как одно из наиболее значимых достижений в брахитерапии.

На предприятии организована наработка 192 Ir из природного и изотопно-обогащённого иридия.

191 Ir+ 1 n = 192 Ir + γ

В качестве материала мишени используется металлический иридий в виде дисков различного типоразмера. Применяемая схема облучения и конструкция облучательного устройства позволяет нарабатывать на среднепоточном ядерном реакторе 192 Ir с удельной активностью достаточной для использования в дефектоскопах при неразрушающих методах контроля в науке и технике, а также в ядерной медицине для высокодозовой брахитерапии.

Наработка 177 Lu проходит по реакции:

176 Lu+ 1 n = 177 Lu + γ

Привлекательность радионуклида 177 Lu для современной ядерной медицины определяется относительно низкой энергией бета-излучения и, соответственно, невысокой проникающей способностью в мягких тканях что позволяет использовать 177 Lu в терапии опухолей небольшого размера, а также при лечении паталогических изменений костных тканей.

Период полураспада Lu (6,65 сут.) позволяет осуществлять доставку данного радионуклида на достаточно большие расстояния от места его производства.

7. Социологический опрос.

95% обучающихся считают, что радиация – главный источник большинства онкологических заболеваний. В связи с этим необходимо вести разъяснительную работу о значении радиации в жизни человека и ее последствиях, объяснять обучающимся, что не только радиация является причиной онкологических заболеваний, но и последствия неправильного образа жизни, вредных привычек, а также вредные условия труда.

93% обучающихся не имели представления о радионуклидной продукции, выпускаемой в Институте реакторных материалов ГО Заречный. Тем более обучающиеся не знали, для каких целей их производят, и кто является покупателем радиоизотопов ИРМ.

ЗАКЛЮЧЕНИЕ

Радиоактивные изотопы служат человеку во многих сферах его жизнедеятельности. Это еще раз доказывает, что радиацию можно использовать во благо человечества, помогая людям.

За ядерной медициной стоит будущее. Знание законов физики и химии двигает науку вперед. Люди должны знать о радиоактивных изотопах, радионуклидной продукции, о той пользе, которую они приносят.

Катастрофа на Чернобыльской АЭС, а затем распад СССР привели к негативным последствиям, закрывались научно-исследовательские институты, уезжали за границу лучшие умы России. В настоящее время производство радиоактивных изотопов - одно из важнейших направлений развития отрасли атомной энергетики.

Проанализировав большое количество материалов научной литературы и Интернет-ресурсов, на основе проведенного исследования можно сделать выводы:

1.Доказано, что радиоактивные изотопы служат человеку в медицине, сельском хозяйстве, науке, промышленности, археологии и геологии.

Поставленные передо мной задачи были решены, цель достигнута.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

Давыдов А.С., Теория атомного ядра. - М., 1958.

Маргулова Т.Х. Атомная энергетика сегодня и завтра. – М.: Высшая школа, 2016.

Мурин А.Н., Введение в радиоактивность. - Л., 1955.

Современная медицинская энциклопедия/Русское издание под общей ред. Г.Б.Федосеева. – СПб.:Норинт, 2014.

Учение о радиоактивности. История и современность. М. Наука, 2003.

Фурман В.И. Ядерные излучения в науке и технике. М. Наука, 1984.

Холл Э.Дж. Радиация и жизнь/Пер.с англ. – М.: Медицина, 2012.

Энциклопедия для детей. Физика. Т.16/ Под ред. В.А. Володина. – М.: Аванта+, 2000.

Интернет-ресурсы:

Приложение №1

Приложение№2

Приложение №3

Анкета Приложение № 4

Дорогой друг! Мы предлагаем тебе заполнить данную анкету для выявления отношения к радионуклидной продукции (изотопам):

1. Много ли вы знаете о радиоактивных изотопах (нуклидах)?

4. Считаете ли вы, что большинство онкологических заболеваний и генетических изменений связаны с радиацией?

5. Знаете ли Вы о том, что на основе радиоактивных изотопов производятся радиофармпрепараты, которые сегодня активно используют при лечении онкологических заболеваний?

6. Знаете ли Вы, что на территории ГО Заречный в институте реакторных материалов производят радионуклидную продукцию и успешно реализуют ее на мировом рынке?

Приложение № 5

Социологическое исследование учащихся МКОУ «Средняя

Радиоактивность является естественным свойством многих веществ, атомы которых находятся в нестабильном состоянии. Хотя атом каждого химического элемента характеризуется строго определенным количеством входящих в него протонов и электронов, количество нейтронов в атомном ядре может варьировать, так что атомный вес (определяемый как сумма входящих в ядро протонов и нейтронов) может быть различным у атомов одного и того же элемента.

Смесь таких атомов, получившие название изотопов, в определенной пропорции присутствует в любом чистом веществе (особенно в металлах типа железа, марганца или кобальта). Радиоактивное излучение является результатом распада нестабильных атомных ядер на более стабильные элементы. Каждый химический элемент характеризуется вполне определенным уровнем естественной радиоактивности.

Существует множество естественных радиоактивных материалов, которые излучают в диапазоне, способном вызывать ионизацию в живых тканях. Исторически принято подразделять все радиоактивные излучения на а-, b- и у-излучения, в зависимости от их характеристик. Альфа-частицы по сути являются ядрами атомов гелия, испускаемыми при распаде нестабильных радионуклидов.

Следует помнить, что, хотя многие характеристики радиоактивных излучений описываются исходя из волновой концепции излучения, каждое излучение одновременно является также потоком частиц. С этой точки зрения легче понять природу а- и b-излучений. Так, а-излучение представляет собой поток тяжелых положительно заряженных атомов гелия, а b-излучение является потоком отрицательно заряженных электронов с исчезающе малой массой. Гамма-лучи в отличие от предыдущих типов излучения не несут никакого заряда.

Хотя все эти три типа излучения способны вызывать ионизацию в живых тканях, наибольшее распространение в радиационной терапии получило именно у-излучение. В медицине очень широко используется нестабильный изотоп кобальта с атомным весом 60, который теряет один из нейтронов с испусканием у-излучения и превращается в стабильный изотоп с атомным весом 59.

Характеристики излучения при этой реакции очень стабильны, а количество распадов остается неизменным, так что за 5,33 года половина массы этого радиоактивного элемента переходит в стабильную форму, что определяет период полураспада для 60 Со. Знание времени полураспада того или иного элемента очень важно для планирования теоретических и клинических задач.

Для различных элементов этот период колеблется от нескольких секунд до сотен и тысяч лет. Радий, который интенсивно использовался в медицинской практике до нахождения более подходящих элементов, имеет период полураспада в 1620 лет, т. е. такой источник излучения практически не требует замены при его использовании. Тем не менее в настоящее время в медицине все более широко применяются бета-частицы или электроны, так как характеристики этого излучения более подходят для медицинских целей.

В настоящее время происходит изучение и других атомных частиц, так как теоретически они могут оказывать интересные биологические эффекты. Речь идет о нейтронах, протонах и пи-мезонах.

Хотя с момента открытия радия супругами Кюри медики пользовались в основном радиоактивными источниками естественного происхождения, современная физика высоких энергий позволяет производить целый ряд искусственных источников и изотопов. Эти радионуклиды обычно получают путем бомбардировки в атомных реакторах природных материалов тяжелыми частицами.

Радиоактивные изотопы в терапии

Преимущество искусственных источников излучения состоит в том, что так можно получать материалы с наиболее приемлемыми для поставленных задач характеристиками у-излучения и периода полураспада.

Разработка новых диагностических методов, например радиоизотопного сканирования, и внедрение новых подходов в терапии требуют создания искусственных источников излучения с заданными свойствами. Применительно к терапии требуется создание новых типов закрытых и открытых источников. Использование закрытых источников состоит в том, что радиоактивный материал помещается в изолирующий контейнер (например, платиновые иглы с радиоактивным цезием или радием).

В этом случае возможно введение радиоактивного материала именно в те ткани, которые требуется облучить, а по прошествии заданного времени удалить его из организма.

Открытые радиоактивные источники, такие как I, вводятся в организм перорально или в виде инъекции. Они проникают в кровяное русло и аккумулируются в органе-мишени (в случае с йодом — в щитовидной железе, где радиоактивное излучение действует как на опухолевую ткань, так и на нормальные ткани железы). Понятно, что в последнем случае изотопы невозможно использовать повторно.

Терапия с использованием радионуклидов характеризуется избирательностью, эффективностью и относительно малой токсичностью, что допускает многократное использование, в том числе в качестве паллиативного лечения. Ограничения, накладываемые на эти виды терапии, связаны с необходимостью содержать пациентов в изолированных помещениях, и трудностями с хранением радиоактивных отходов. Кроме того, многие современные методы радиотерапии довольно дорогостоящи. Тем не менее в последнее время в клинической практике год от года растет количество показаний к применению открытых радиоактивных источников в лечении онкологических заболеваний.

В клинической практике выбор естественных или искусственных радиоактивных изотопов зависит от поставленной задачи. Например, при интерстициальной имплантации, когда содержащие радиоактивный материал иглы помещаются в непосредственной близости или вообще внутри опухолевой ткани, все более широко используется радиоактивный цезий вместо ранее применяемого радия.

Дело в том, что радий характеризуется очень высокой радиационной активностью (количество радиоактивных распадов в секунду), и при работе с ним требуется уделять большое внимание защите медицинского персонала, проводящего данное лечение. Радиационная активность цезия значительно ниже, поэтому затраты времени и средств на защиту от излучения при работе с ним будут также значительно ниже.

Радиоактивные изотопы также используются в источниках внешнего облучения (дистанционная лучевая терапия). Почти все крупные онкологические центры укомплектованы установками для дистанционной гамматерапии, так как множество опухолей залегает достаточно глубоко и не может быть подвергнуто облучению с использованием прямой имплантации (брахитерапии). В настоящее время в качестве внешнего источника излучения наиболее широко применяется 60Со, радиоактивный изотоп, который излучает высокоэнергетические у-лучи (с энергией порядка 1,2 МэВ), обладающие достаточной проникающей способностью, чтобы достигать глубоко залегающие опухоли.

Период полураспада кобальта-60 составляет 5,3 года, поэтому источник на его основе может работать без замены изотопа в течение 3-4 лет.

Традиционная кобальтовая пушка представляет собой цилиндрический источник 60 Со, получаемый в атомных реакторах, помещенный в защитную оболочку. С помощью простого механизма источник выдвигается в рабочее положение на требуемое для проведения лечения время, а затем вновь убирается внутрь защитного кожуха.

В настоящее время такое оборудование все чаще признается устаревшим и по возможности заменяется линейными ускорителями, которые более надежны, долговечны, относительно недороги и более просты в эксплуатации. К недостаткам кобальтового излучателя следует также отнести рассеивание радиации на границах пучка и старение изотопного источника, так как по мере снижения его радиоактивности в результате атомного распада со временем требуется увеличивать время экспозиции.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Радиоактивные изотопы – это разновидности определенного химического элемента с разной относительной массой, обладающие способностью испускать различные частицы и электромагнитное излучение.

Содержание статьи

радиоактивные изотопы

  • Как применяют радиоактивные изотопы
  • Что такое радионуклиды
  • Какое применение физики в медицине

Применение в медицине

Данные вещества на сегодня нашли большое применение в различных прикладных областях, в частности, в медицине. Они используются как для лечения, так и для диагностики заболеваний.

Например, в качестве терапии Базедовой болезни щитовидной железы используется радиоактивный йод-131. В данном случае рекомендуется вводить большие дозы этого элементы, так как они способствуют разрушению аномальных тканей, вследствие чего структура органа восстанавливается, а с ним и функция. Йод широко применяется и для диагностики состояния щитовидной железы. При введении его в организм на экране монитора оценивается скорость отложения в клетках, на основании чего ставится диагноз.

Для диагностики нарушений кровообращения большую роль играют изотопы натрия.

Наиболее часто в повседневной жизни для лечения опухолевых заболеваний применяются изотопы кобальта, в частности кобальт-60. Он нашел применение в радиохирургии при создании“кобальтовых пушек, в дезинфектологии для стерилизации медицинского инструментария, материалов.

В целом все методы исследования внутренних органов с помощью подобных элементов принято называть радиоизотопными. Изотопы могут применяться и для получения полезных микроорганизмов. А те являются основой синтезирования антибактериальных средств.

Использование в промышленности и сельском хозяйстве

Большое значение имеют радиоактивные изотопы и в других сферах деятельности человека. В машиностроительной отрасли с их помощью определяют степень износа различных деталей в двигателях.

По ним можно определять скорость диффузии металлов в доменных печах.

Важное направление – это дефектоскопия. При помощи подобных химических элементов можно исследовать структуру деталей, в том числе металлических.

При помощи радиоактивных изотопов создают новые сорта сельскохозяйственных растений. Кроме того, научно доказано, что гамма-облучение способствует повышению урожайности культур, повышает их устойчивость к неблагоприятным факторам. Широкое применение эти вещества нашли в селекции. При удобрении растений используют способ, при котором их помечают радиоактивным фосфором и оценивают эффективность удобрений. В силу всего можно сделать вывод о том, что радиоактивные изотопы применяются вот многих сферах деятельности. Они обладают свойствами, которых нет у тех же элементов с нормальной атомной массой.

Читайте также: