Выветривание горных пород реферат

Обновлено: 08.07.2024

Процессы в зоне гипергенеза

В зоне гипергенеза, соответствующей приповерхностной биокостной части литосферы, выведенные на поверхность либо на дно морского бассейна горные породы стремятся прийти в равновесие с окружающей средой. Основными источниками энергии здесь являются солнечное тепло и в значительно меньшей степени внутренне тепло Земли. Важнейшую роль в гипергенных процессах играют органическое вещество и вода.

Верхней границей служит земная поверхность. Нижняя граница соответствует уровню затухания воздействия на горные породы фотосинтезирующей жизни, что сопровождается резким сокращением содержания кислорода и соответственно изменением химических условий среды (Eh, pH, угнетение процессов окисления, гидролиза, коллоидообразования). Обычная мощность зоны гипергенеза не превышает десятков метров, но иногда гипергенные процессы проявляются на глубинах в сотни и даже первые тысячи метров. Их проявление в глубинных зонах приурочено к зонам трещиноватости, карстовым полостям, поверхностям контактов пород, подземным горным выработкам, сохраняющим связь с земной поверхностью и служащим путями проникновения гипергенных агентов.

В зоне гипергенеза всегда присутствуют два принципиально различных комплекса минеральных образований: 1) материнские породы (субстрат) и 2) продукты гипергенеза.

В зависимости от условий процессы гипергенеза можно разделить на три группы:

поверхностный (или наземный) гипергенез – комплекс явлений и процессов, происходящих непосредственно на поверхности суши или связанных с проникающими в толщи пород инфильтрационными водами;

глубинный (или подземный) гипергенез - комплекс явлений и процессов, происходящих ниже земной поверхности и связанных с воздействием подземных вод, движущихся по водоносным горизонтам или восходящих по проницаемым зонам (заметим, что эти воды также имеют поверхностное происхождение);

подводный гипергенез (или гальмиролиз) - комплекс явлений и процессов, происходящих на дне морей и океанов при взаимодействии морских вод с горными породами.

Формирование продуктов поверхностного гипергенеза связано с процессами выветривания.

Выветривание – это процесс изменения и разрушения минералов и горных пород на земной поверхности под воздействием физических, химических и органических факторов.

В зависимости от того, какие факторы обуславливают процессы преобразования пород, выветривание можно подразделить на физическое (или механическое) и на химическое. Биогенные процессы, очень широко проявленные в процессах выветривания, проявляются как в механическом, так и в химическом воздействии на минеральный субстрат. Механическое разрушение пород при биогенном выветривании осуществляется, например, корнями растений, расширяющими трещины, или роющими организмами (черви, муравьи, термины, суслики, кроты и др.). Биохимические процессы активно воздействуют на минеральное вещество как в процессе жизнедеятельности (например, лишайники извлекают минеральные вещества из минералов, что приводит к разрушению последних), так и поставляя химически активные соединения в процессе разложения (органические кислоты, возникающие при разложении опавшей листвы и пр.).


Взаимодействие минерального и органического вещества приводит к возникновению почвы.

Физическое выветривание

Физическое выветривание подразделяется на температурное и морозное.

Температурное выветривание – разрушение горных пород и минералов на поверхности Земли под влиянием колебаний температуры. Известно, что при нагревании и охлаждении твёрдые тела изменяют свой объём. Не являются исключением горные породы и минералы. В результате суточных колебаний температуры в массиве горных пород возникают напряжения двух типов.

Напряжения первого типа (называемые объёмно-градиентными) связаны с неравномерным нагреванием поверхностной и более глубоких частей массива; различие температур (и, соответственно, различное расширение) в этих частях массива приводят к образованию трещин, направленных параллельно его поверхности. Вследствие этого происходит шелушение и отслаивание пород, называемое десквамацией.


Десквамация в слоистой карбонатной породе (плато Лаго-Наки, Большой Кавказ)


Десквамация вулканических пород ( вулканический массив Карад-Даг, Крым)

Второй тип напряжений в пределах объёма породы и минерала связан с различием коэффициентов теплового расширения-сжатия минералов. Напряжения этого типа приводят к раскалыванию до уровня минеральных зёрен и далее, по трещинам спайности, до образования частиц размером до сотых долей мм. Быстрее разрушаются темноокрашенные минералы и породы, а также крупнокристаллические полиминеральные породы с большими различиями коэффициентов расширения составляющих их минералов.

Так в процессе температурного выветривания массив пород разрушается с образованием обломочных пород различного размера – от щебня до алевритового материала. Суточные колебания температуры проявляются до глубины 1 м, что определяет максимальную мощность возникающих таким путём обломочных отложений.

Наиболее активно температурное выветривание протекает в пустынях и, в несколько меньшей степени, в нивальных областях и в высокогорных районах, не покрытых снегом. Этому способствует сочетание двух факторов: 1) резкие суточные колебания температуры, достигающие 50 о С и 2) обнажённость горных пород ввиду отсутствия растительного покрова и почвенного слоя.

Морозное выветривание – разрушение горных пород в результате периодического замерзания попадающей в трещины воды.

Попадая в трещины, в холодное время суток вода замерзает – превращается в лёд, объём которого, как известно, значительно выше, чем исходный объём воды. Кристаллизующийся лёд оказывает на стенки трещин весьма существенно давление, достигающее 1000 кг/см 3 и более, что значительно выше прочности большинства горных пород. Давление льда приводит к расширению трещин и раскалыванию пород на крупные обломки размером от десятков сантиметров до метров в диаметре. Отсутствие более мелкого материала обусловлено тем, что свободная вода не способна проникать в микротрещины.

Наиболее активно морозное выветривание протекает в холодных и умеренных областях с резкими суточными колебаниями температуры, а также в области развития вечной мерзлоты и в зоне деятельности ледников.

Образующиеся в ходе физического и химического выветривания продукты разрушения могут быть перемещены с места своего образования под действием водных потоков, ветра, движущихся ледников и других экзогенных факторов (процесс перемещения продуктов разрушения горных пород называется денудация) или остаться на месте своего образования. Продукты выветривания, залегающие на месте своего образования, называются элювий. К элювию относят продукты выветривания, не смещённые за пределы площади развития материнских пород (субстата за счёт которого они образовались).

Характерным ландшафтом зон физического выветривания являются каменистые пустыни, или, как их называют в Сахаре, гаммады. Гаммады представляют собой нагромождения глыб и щебня, образующиеся за счёт выветривания горизонтально лежащих платов горных пород и выноса ветром пылеватых и песчаных продуктов их разрушения. Краю пластов часто расчленены на останцы конусовидной формы, понижения между которыми заполнены россыпями каменных глыб и щебнем.

Говоря о физическом выветривании необходимо подчеркнуть, что оно приводит к механической дезинтеграции пород и минералов, но не приводит к их химическому преобразованию.

Химическое выветривание

Химическое выветривание представляет собой процесс химического преобразования минералов и горных пород под воздействием воды, кислорода, углекислого газа, органических кислот, а также вследствие биогеохимических процессов.

Преобразование происходит вследствие реакций окисления и гидратации (например, преобразование пирита по схеме FeS2 + mH2O + nO2 – FeSO4 - Fe2SO4 – Fe(OH)3 – Fe2O3 . nH2O), растворения и гидролиза. Особое место занимают реакции гидролиза - ионного обмена между веществами и водой, приводящие к разрушению даже весьма устойчивых структур силикатов, сопровождающемуся их гидратацией и выносом элементов из кристаллической решётки. Примером такой реакции, может служить разрушение каркасной структуры полевых шпатов (самых распространённых в земной коре минералов) с образованием глинистых минералов и, далее, гиббсита:

Транспортировка веществ происходит почвенно-грунтовыми водами в виде истинных и коллоидных растворов.

Важное значение в процессах химического выветривания имеют органические кислоты, активно способствующие разложению минералов. Процессы химического выветривания протекают ниже почвенного слоя, просачиваясь через который воды обогащаются органическими соединениями.

Необходимыми условиями глубоко химического выветривания являются:

  • климат, при котором достигается сочетание высоких температур и влажности (гумидный тропический);
  • обилие и характер растительности (при её разложении образуются органические кислоты, активно разрушающие минералы);
  • выровненный рельеф, обеспечивающий неподвижность продуктов разрушения;
  • продолжительность выветривания.

Важно подчеркнуть роль ландшафтных условий. В гумидных ландшафтах развита лесная растительность, обладающая огромной биомассой и разлагающаяся почве микроорганизмами с образованием органических кислот, поэтому почвенные воды гумидных ландшафтов обладают кислой реакцией и активно воздействует на минералы исходных горных пород; в таких условиях выветривание протекает под воздействием постоянного промывания горных пород кислыми растворами.

В аридных ландшафтах, отличающихся недостаточной увлажнённостью, распространена травянистая растительность. Её биомасса в десятки раз меньше биомассы лесов. Кроме того, почвенная микрофлора перерабатывает растительные остатки с образованием высокополимеризованных органических соединений, которые не обладают агрессивными свойствами по отношению к минералам. Почвенные воды имеют нейтральную или слабощелочную реакцию, поэтому интенсивного промывания выветривающейся толщи агрессивными возами не происходит, и в ней постепенно сохраняются относительно легкорастворимые соединения.

Процессы химического разложения приводят к разрушению кристаллических решёток минералов, даже весьма устойчивых, высвобождению из них химических элементов. Так выветривание гранитов может завершиться формированием за сёт слагающих их минералов толщи глин, обогащённых водными окислами алюминия.

Коры выветривания

Геологические тела, сложенные элювием, то есть продуктами глубокого поверхностного физического, химического, биохимического преобразования горных пород, оставшихся на месте своего образования, объединяют понятием кора выветривания.

Кору выветривания магматических и метаморфических горных пород называют ортоэлювием. Эти породы формировались в условиях, резко отличных от земной поверхности, и поэтому они изменяются наиболее сильно. Соответственно, развивающиеся по ним коры выветривания резко отличаются от материнской породы.

Кора выветривания морских осадочных пород называется параэлювием. Изменение таких пород, по сравнению с магматическими и метаморфическими, часто менее значительно. Поэтому кора выветривания не всегда резко отличается от материнских пород (например, при выветривании глин).

Элювий континентальных отложений обозначается термином неоэлювий. Материнские породы, за счёт которых происходит формирование такого элювия, сами являются переотложенными продуктами выветривания, и в поверхностных условиях уже слабо изменяются; в силу этого неоэлювий часто выражен неотчётливо. Нередко выветривание захватывает только почвенную толщу и коры выветривания не образуется.

Типичным компонентами кор выветривания служат продукты дезинтеграции субстрата, глинистый элювий и латериты.

Продукты дезинтеграции представляют собой подвергшиеся физическому выветриванию (растрескиванию, дроблению) породы субстрата, практически не изменившие химического состава. Примером могут служить глыбовый и щебнистый элювий на гранитных породах в аридных и субаридных областях, доломитовая мука на доломитах и пр. Иногда, в условиях жаркого влажного климата, поверхностная дезинтеграция сопровождается начальным химическим выветриванием – гидролизом, частичным выщелачиванием наиболее подвижных компонентов (например, щебнистые элювиальные суглинки в Центральном Казахстане, образованные за счёт гранитов).

Глинистый элювий – глины, сохранившие реликтовую структуру материнских пород. Глинистый элювий обычно слагает основную массу коры выветривания и подразделяется по минеральному составу (гидрослюдистый, монтмориллонитовый, каолинитовый). Характерен для областей с гумидным климатом.

Разновидностью коры выветривания являются рудные шляпы, формирующиеся при химическом выветривании пород, богатых рудными минералами, обычно сульфидами или другими легкоокисляющимися соединениями. На поверхности рудные шляпы обычно сложены кавернозными железняками, образующими глыбовые и щебневые развалы, выделяющиеся темно- и светло-красной, охристой и буровато-красной окраской, связанной с окислами и гидроокислами железа (гётит, гидрогётит, гидрогематит и др.).

Формирование шляп связано с воздействием воды на рудные минералы: происходит вынос грунтовыми водами легкорастворимых соединений, а в остатке накапливается нерастворимая минеральная масса, образующая шляпу. Так при разложении железосодержащих сульфидных руд часть железа выносится в виде сульфатов, но большая его доля, пройдя через сульфатную стадию, окисляется до гидроксидов и накапливается близ выхода рудных тел на земную поверхность, формируя железную шляпу.

По составу конечных продуктов рудные шляпы подразделяются на оксидные и сульфатные. Первые характерны для жарких и умеренных гумидных областей; вторые – широко развиты в аридных и зонах и зоне вечной мерзлоты.

Оксидные шляпы характеризуются резким преобладанием среди новообразованных рудных минералов гидроокислов железа, а в глинистых фракциях галлуазит-каолинитовой ассоциации; они имеют относительно большую мощность, как правило, многие десятки метров. Сульфатные шляпы отличаются присутствием зоны сульфатов железа и обладают обычно небольшой мощностью (метры, до первых десятков метров).

Поверхностному выветриванию могут подвергаться и залежи нерудных полезных ископаемых. В частности, при поверхностном растворении соляных толщ возникает гипсовая шляпа, или кепрок, представляющая покрышку на залежах солей и состоящая из смеси гипса с глиной, песком и карбонатами. При разложении гипсов формируется шляпа, в состав которой входят вторичный гипс в смеси с песчано-глинистым материалом.

Глубина распространения рудных шляп ниже земной поверхности обычно ограничивается уровнем грунтовых вод и достигает десятков и сотен метров.

Процессы химического выветривания протекают стадийно, что наглядно демонстрируется приведённой выше последовательностью преобразования пирита и полевого шпата. Эта стадийность отчётливо проявляется в развитии и строении и развитии кор выветривания.

Б.Б. Полыновым были выделены стадии развития коры выветривания, наиболее проявленные в ортоэлювии.

Профиль коры выветривания

Первая стадия – обломочная – характеризуется физическим выветриванием материнских пород, химических преобразований в пределах коры не происходит. Дезинтеграция горных пород, образование в них трещин обуславливает, с одной стороны, их хорошую водопроницаемость, а с другой – резко увеличивает реакционную поверхность выветривающихся пород. Это создаёт условия для активизации разнообразных физико-химических, химических и биогеохимических процессов, сопутствующих химическому выветриванию.

Приведённая выше последовательность преобразования исходных пород является. Конечно, обобщённой идеальной схемой, иллюстрирующей общую направленность процесса выветривания.

Процесс выветривания может прерваться на любой стадии в связи с неблагоприятным изменением физико-географических условий (например, в связи с аридизацией климата) или под воздействием геологических событий (например, воздымание территории, проводящее к эрозии коры выветривания, либо наоборот, опусканием и захоронения коры выветривания под осадками). Следовательно, очень древняя кора выветривания может быть неполно развитой, а геологически более молодая кора, развивавшаяся на протяжении более длительного времени, может оказаться более хорошо сформированной.

Состав конечных продуктов химического выветривания определяется как степенью эволюции коры, так и составом материнских пород. Для кор, развивающихся по ультраосновным породам, характерно обогащение железом, содержащимся в большом количестве в материнских породах. Иногда такие коры используются в качестве железной руды (например, месторождения на о. Куба, где мощность коры достигает 25 м). Другим элементом, способным образовывать промышленные концентрации является никель, накапливающийся в нижних частях коры выветривания за счёт осаждения из фильтрующихся водных растров (обогащённых в верхних горизонтах коры довольно подвижным никелем).

При этом, вне зависимости от различий состава субстрата, существует определённая закономерность в подвижности элементов (следовательно, и последовательности их выноса из коры), позволившая выделить ряды миграции элементов в корах выветривания.

Ряды миграции химических элементов коре выветривания силикатных пород (по Б.Б. Полынову с упрощениями)

В строении развитых кор выветривания выделяются ряд горизонтов, состав которых соответствует разным последовательным стадиям выветривания субстата. В совокупности эти горизонты образуют профиль коры выветривания. Нижние горизонты, залегающие непосредственно на материнских породах, соответствуют обломочной стадии, вверх степень выветренности повышается.

Например, кора выветривания на гранитах имеет следующее строение профиля (снизу вверх):

1 - горизонт щебенчатой, или обломочной, коры выветривания, образованный дезинтегрированным в ходе физического выветривания гранитом;

2 - гидрослюдистый горизонт, в породах которого, представляющих собой слабосцементированную массу, прослеживается структура исходного граниты, но значительная часть щелочей и щелочноземельных элементов из минералов вынесена, и большая часть полевых шпатов замещена агрегатом тонкочешуйчатых гидрослюд;

3 - коалинитовый горизонт, представляющий собой светлую глинистую массу с отдельными участками рыхлого щебнистого материала и красно-бурые пятна от скопления гидрооксидов железа из этого горизонта полностью удалены все одно и двухвалентные катионы, гидрослюды здесь замещены коалинитом.

При выветривании горных пород иного состава горизонты профиля слагаются другими минералами. Каждый тип горных пород характеризуется своими особенностями состава и строения коры выветривания.

Экзогенные процессы начинаются с подготовки горных пород к переносу, с их разрушения. Горные породы, залегающие на поверхности или близ нее, подвергаются воздействию солнечных лучей, воды, воздуха, организмов. Из-за неравномерного нагревания порода растрескивается; особенно способствует этому замерзание воды, попавшей в трещины. Вода — хороший растворитель для многих веществ, и в верхних слоях горных пород, особенно при высокой температуре, происходят, обычно с участием атмосферного воздуха, химические реакции окисления, замещения, реже — восстановления.

Содержание
Работа содержит 1 файл

Оригинальчик геология.doc

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Контрольная работа по курсу “Инженерная геология”

“ Процессы выветривания горных пород”

Выполнил студ.гр. БМТЗ-10-01 Р.Х.Гизатов

1. Геологическая работа ветра……………………………………………………5

2. Физическое выветривание……………………………………………… ……11

3. Химическое выветривание……………………………………………… …. 14

4. Биогенное выветривание……………………………………………… ……..19

5. Продукты выветривания……………………………………………… ……. 21

Список использованной литературы…………………………………………. 26

Экзогенные процессы начинаются с подготовки горных пород к переносу, с их разрушения. Горные породы, залегающие на поверхности или близ нее, подвергаются воздействию солнечных лучей, воды, воздуха, организмов. Из-за неравномерного нагревания порода растрескивается; особенно способствует этому замерзание воды, попавшей в трещины. Вода — хороший растворитель для многих веществ, и в верхних слоях горных пород, особенно при высокой температуре, происходят, обычно с участием атмосферного воздуха, химические реакции окисления, замещения, реже — восстановления. Корни растений способствуют расширению щелей между частицами породы и проникновению туда воды и воздуха, а вещества, выделяемые животными и растениями, участвуют в химических реакциях. Все эти процессы разрушения и изменения приповерхностных пород называются выветриванием. Выветривание можно охарактеризовать двумя способами:

1) выветривание — это совокупность сложных процессов качественного и количественного преобразования горных пород и слагающих их минералов, приводящий к образованию почвы;

2) выветривание — это разрушение пород на земной поверхности и их превращение в продукты, которые являются более устойчивыми в новых физико-химических условиях.

Рассмотрим второй вариант:

Горные породы, слагающие земную кору, подвергаются денудации в результате их предварительного выветривания. Этот процесс приводит к появлению рыхлых (дисперсных) новообразований зоны гипергенеза, существенно отличных по своим физическим свойствам от исходных коренных пород.

Многие породы первоначально образовывались при высоких давлениях и температурах и при отсутствии воды и воздуха. Продукты выветривания могут сильно различаться по составу, и даже те из них, которые при одних условиях являются устойчивыми, при изменении условий могут стать неустойчивыми.

Ученые выделили четыре стадии выветривания, характеризующие единый протекающий во времени непрерывный процесс гипергенеза. Гипергенез — это процесс химического и физического преобразования минерального вещества в верхней части земной коры и на ее поверхности под воздействием атмосферы, гидросферы и живых организмов при низких температурах. [1, стр.16]

Первая стадия выветривания характеризуется преобладающей ролью физических факторов выветривания с образованием крупнообломочных и мелкозернистых продуктов механического распада массивных горных пород. В условиях сурового климата и активной денудации современное выветривание нередко ограничивается этой первой стадией.

Вторая стадия характеризуется щелочной реакцией среды за счет извлечения в раствор оснований при гидролизе минералов. На этой стадии образуются вторичные минералы в результате окисления, гидратации, гидролиза и карбонатизации первичных минералов. Среди вторичных алюмосиликатов на этой стадии преобладают минералы группы монтмориллонита и нонтронита. При относительном избытке в породах кальция в продуктах выветривания происходит накопление карбоната кальция, нередко образующего корку на обломках массивных пород. Ученые именует эту стадию “обызвесткованной” или насыщенной сиаллитной корой выветривания”. Наибольшее распространение она имеет в условиях умеренного климата при выветривании изверженных и метаморфических пород. В горных районах современные рыхлые образования на склонах часто относятся именно к этому типу.

Третья стадия остаточной ненасыщенной сиаллитной коры выветривания. Она характеризуется дальнейшим выносом из продуктов выветривания щелочных и щелочноземельных элементов, вследствие чего реакция среды становится кислой. В этой обстановке среди вторичных алюмосиликатов преобладают галлуазит и каолинит. Развитие этой стадии выветривания имеет место в условиях замедленной денудации и относительно более обильного увлажнения.

В четвертой стадии образуется остаточная аллитная кора выветривания, характеризуемая накоплением окислов кремния, железа и алюминия. Развитие ее определяется сочетанием активного химического выветривания с замедленной денудацией в условиях жаркого и влажного климата.

В едином и сложном процессе выветривания условно выделяются две основные взаимосвязанные формы:

1) физическое выветривание;

2) химическое выветривание.

Иногда выделяют еще органическое выветривание или биогенное выветривание. Однако роль организмов и их воздействие на горные породы сводятся или к механическому разрушению, или химическому разложению. Следовательно, органическое выветривание включается в условно выделенные две формы единого процесса.

1. Геологическая работа ветра

Ветер может разрушать горные породы, переносить обломочный материал, отлагать его в определённых местах. Чем больше скорость ветра, тем сильнее производимая им работа. Благоприятные условия для проявления деятельности ветра:

1) резкие суточные изменения температуры;

2) незначительное количество осадков, выпадающих редко, нерегулярно;

3) превышение испарения над осадками (в5-15 раз);

4) разрежённость или отсутствие растительного покрова;

5) частые ветры большой силы;

6) наличие материала, способного перемещаться ветром.

Все геологические явления, связанные с деятельностью ветра, называются эоловыми процессами (Эол - бог ветра у древних греков), а образовавшиеся при помощи ветра отложения - эоловыми.

Разрушительная работа ветра производится путём воздействия на рыхлый материал воздушных струй (дефляция) и при помощи тех твёрдых частиц, которые он несёт (корразия).

Дефляция (лат. Deflare - выдувание, развевание) особенно сильно проявляется в районах, не защищённых растительностью, в узких горных долинах или котловинах, где от неравномерного нагрева возникают смерчи. Грандиозно воздействие ветра на незащищённую почву. Бедствием для земледельцев юга России были чёрные бури - суховеи. Они обрушивались на высушенный распаханный чернозём и уносили его на запад, оставляя бесплодную пустыню. Выдувание такого типа называется плоскостной дефляцией или эоловой абляцией.

Кроме плоскостной дефляции существует ещё и бороздовая дефляция. В узкой щели или борозде сила ветра больше и весь рыхлый материал развевается оттуда в первую очередь. Таким образом растут и углубляются колеи дорог, узкие расщелины, особенно в мягких породах. В Средней Азии в лёссах можно видеть выемки дорог глубиной до 6 м, а в лёссах Китая на месте дорог образуются узкие каньоны глубиной до 30 м.

Корразия (лат. Corrasus - обтачивать) - разрушение горных пород под действием переносимых ветром мелких песчинок (не путать с коррозией). Корразия может быть точечная, царапающая (бороздящая), плоскостная и сверлящая.

В результате корразии в породах возникают ниши, борозды, царапины. Максимальное насыщение ветрового потока песком наблюдается в нескольких сантиметрах (до 1-2 м) от земли. Поэтому именно на небольшой высоте в породах, однородных по составу, выбиваются ветром наиболее крупные ниши, скалы как бы подрезаются. В слоистых породах истираются и выдуваются в первую очередь более мягкие прослои, в которых образуются ниши, крепкие прослои создают карнизы. Корразия способствует расширению трещин, постепенно приводя к созданию характерных округлых и причудливых образований, подобных красноярским Столбам. При эоловой обработке слоистых пород создаются очень разнообразные формы: грибы, пирамиды, обелиски и т.д.

Эоловый перенос. Работа ветра особенно заметна при переносе мелкого обломочного материала. Ветер способен перенсить пылеватые частицы, песчинки и даже камешки. Материал переносится ветром порой на огромные расстояния (пыль и песок из Афганистана переносится в Каракумы, из Сахары пассатным ветром в Атлантический океан на расстояние 2-2,5 тыс. км. Особенно далеко может переноситься пыль, поднятая на большую высоту. Например, пепел вулкана Кракатау во время извержения 1883 года облетел земной шар и держался в воздухе около трёх лет, вызывая в ряде мест розовые зори, "кровавые" дожди.

Эоловая аккумуляция и эоловые отложения. В составе переносимых ветром частиц преобладает кварц, полевые шпаты, глинистые породы; могут быть частицы и органического происхождения - споры, пыльца, грибы, бактерии. Кроме продуктов разрушения горных пород, в небольших количествах встречается пепел вулканов и космические частицы (метеоритная пыль). Переносимые ветром частицы рано или поздно выпадают на землю и либо примешиваются к различным осадочным породам, либо дают начало особым эоловым отложениям. Среди этих отложений выделяются глинистые, пылеватые и песчаные.

Глинистые и пылеватые эоловые отложения возникают за счёт осаждения мелких частиц, переносимых во взвешенном состоянии, иногда очень высоко. Такие отложения могут отлагаться на значительном удалении от областей развевания. Песчаные эоловые отложения образуются из крупных частиц, перемещаемых или перекатываемых ветром у самой поверхности. Поэтому эоловые пески распространены в непосредственной близости от областей развевания.

Процесс цементации и уплотнения эоловых отложений происходит менее интенсивно, чем у водных осадков, поэтому первые из них преимущественно рыхлые. Сортировка эоловых отложений обычно хуже речных или морских. Равнозернистые пески среди эоловых отложений отсутствуют. Наиболее типичный цвет - жёлтый, серый, белый. Эоловые пески часто имеют косое напластование. По направлению наклона слоёв можно определить направление ветра, формировавшего эти слои. Максимальная площадь эоловых песков наблюдается в областях пустынь

По окраинам песчаных пустынь часто происходит накопление пылеватых частиц размером 0,05-0,01 мм. При уплотнении они образуют лёсс. Это очень пористая порода (пористость 42-50%). Многие поры появляются в результате разложения стеблей и корешков растений. В результате образуются вертикальные канальцы. Типичный лёсс не имеет слоистости. Характерна сильная карбонатность и присутствие известковых стяжений, называемых журавчиками. В отличие от песков лёсс мало сыпуч, в связи с чем при дефляции и размыве в нём образуются овраги с очень крутыми склонами. Мощность достигает 100 м. Встречается лёсс в Китае, Средней Азии и др.

Формы эоловой аккумуляции.

Дюна - удлинённый асимметричный холм с более-менее округлой вершиной. Склон холма, обращённый к ветру (наветренный) более полог (5-12о), противоположный (подветренный) соответствует углу естественного откоса, равному для песков 30-35о. Высота дюн различна: 5-30 м, но бывают и выше 100 м. В Сахаре даже до 500 м.

Во многих областях Европы с песчаным покровом широко распространены древние дюны, уже не перерабатываемые ветром и заросшие сосновыми лесами (Припятское Полесье, Мещерская низина к востоку от Москвы). Это свидетельство иного климата в недавнем геологическом прошлом.

Бархан - характерная эоловая форма пустыни - холм, имеющий в плане форму полумесяца, рога которого обращены по направлению движения ветра. Наветренный склон более пологий (10-15о) и длинный, подветренный крутой, гребень обычно острый. Между вершинами рогов происходит завихрение воздуха, способствующее образованию выемки и определяющее крутизну подветренного склона. Высота барханов обычно 1-15 м; в Ливийской пустыне до 30 м. Барханы бывают, как и дюны, одиночные и грядовые.

Грядообразные валы - длинные симметричные песчаные валы с пологими склонами, вытянутые в направлении движения ветра. Высота 15-30 м, в Сахаре до 200 м.

Эоловая рябь наблюдается на поверхности всех отмеченных форм, а часто и на выровненных участках песков. Это мелкие валики, образующие также серповидно изогнутые цепочки, напоминающие мелкую рябь на воде.

Под влиянием ветра эоловые формы способны перемещаться. Скорость перемещения дюн и барханов - несколько сантиметров и метров в год.

Экзогенные процессы, проявляющиеся на границе атмосферы и зем¬ной коры, приводят главным образом к разрушению горных пород и перемещению продуктов разрушения.
Процессы механического разрушения и химического изменения гор¬ных пород и минералов под влиянием колебаний температуры, воздей¬ствием воды, кислорода, углекислого газа, а также животных и расти¬тельных организмов при их жизни и отмирании принято называть выветриванием.

Содержание

1. Введение – понятие о выветриванием: 3
2. Химическое выветривание : 6
2.1. Окисление 7
2.2. Гидратация 8
2.3. Растворение и гидролиз 9
2.4. Гидролиз 10
2.5. Карбонатизация 12
2.6. Восстановление 13
3. Вывод: 14
4. Список литературы: 15

Прикрепленные файлы: 1 файл

Химическое выветривание горных пород.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет

СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ

Строительный факультет

Кафедра геотехники и подземных сооружений

Студент: Дыгало Р. А.

Руководитель: Бондаренко А. И.

Харьков 2014 г.
Оглавление

Экзогенные процессы, проявляющиеся на границе атмосферы и земной коры, приводят главным образом к разрушению горных пород и перемещению продуктов разрушения.

Процессы механического разрушения и химического изменения горных пород и минералов под влиянием колебаний температуры, воздействием воды, кислорода, углекислого газа, а также животных и растительных организмов при их жизни и отмирании принято называть выветриванием.

Процессы выветривания происходят главным образом на суше, но частично и на дне водных бассейнов.

Факторами выветривания являются нагревание пород и минералов солнечными лучами (инсоляция), кислород, углекислый газ и водяные пары атмосферы, вода, выпадающая на поверхность Земли и проникающая в ее верхние горизонты, органическое вещество и живые организмы

В понятие выветривания не входят разрушение горных пород под действием ветра, а также разрушительная работа текучих поверхностных и подземных вол, льда, вод озер и морей, относящихся к процессам денудации и рассматриваемых ниже в соответствующих главах.

Сложные процессы выветривания, в зависимости от преобладания тех или других факторов, могут приводить либо к механическому раздроблению горных пород без изменения их химического состава, либо к химическому разложению минеральных компонентов горных пород и превращению их в новые минералы, устойчивые в условиях земной поверхности. Биологическое воздействие на горные породы сводится в конечном счете к механическому раздроблению или химическому преобразованию горных пород.

В едином и сложном процессе выветривания принято выделять физическое (механическое) выветривание и химическое выветривание.

Процессы разрушения горных пород и минералов под воздействием жизнедеятельности организмов и органических веществ, образующихся при их отмирании, рассматривают как третью форму — органическое (биологическое) выветривание. Все типы выветривания проявляются одновременно и взаимосвязаны между собой, но преобладает тот или иной тип, и это определяется главным образом климатическими условиями данной местности.

В аридных, высокогорных и полярных областях с дефицитом жидкой воды преобладает физическое выветривание, в умеренно-влажной, влажной тропической или субтропической зонах - химическое выветривание.

На характер и интенсивность выветривания влияют также геологическое строение и рельеф местности, состав, структура, текстура и трещиноватость материнских пород и продолжительность процессов выветривания, а также животный и растительный мир

Виды выветривания горных пород

Следы химического выветривания

"Арка" в штате Юта (США), пример механического выветривания

Химическое выветривание — это процессы химического разложения минеральных компонентов породы и образование за их смет новых минералов устойчивых в физико-химических условиях земной поверхности.

Процессы физического и химического выветривания взаимосвязаны и происходят одновременно. Вместе с тем механическое разрушение пород опережает и подготавливает материал для химического выветривания. Химическое разложение минеральных компонентов наиболее интенсивно идет в мелко раздробленных и водопроницаемых породах.

Главные факторы химического выветривания — вода, кислород, углекислый газ а при органическом выветривании — продукты жизнедеятельности организмов. Особенно большое значение при химическом выветривании имеет вода, которая в той или другой степени диссоциирована на положительно заряженные ионы водорода Н+ и отрицательно заряженные гидроксильные ионы ОН-. Активность химических процессов увеличивается при повышении количества водородных ионов.

Степень диссоциации возрастает с повышением температуры и особенно увеличивается в присутствии углекислоты. Например, при повышении температуры от 0 до 30оС степень диссоциации возрастает в два раза, а в воде, насыщенной углекислотой, концентрация ионов водорода Н+ увеличивается в 300 раз и более.

Химическое воздействие на горные породы оказывает присутствие в воде ионов HCO3 -, SO2-, Cl-, Ca2+, Mg2+, Na+, K+.

Активность химического выветривания связана с разными причинами, однако определяющую роль играют климатические условия. Наиболее благоприятен для химического выветривания жаркий и влажный климат тропиков и субтропиков с высотой среднегодовой темпсратурой, обильными осадками и чередованием дождливых и засушливых сезонов. В этих условиях химические преобразование минералов достигает конечных стадий; в умеренном климате оно замедляется, а в холодном (при многолетней мерзлоте) химическое выветривание практически не происходит.

Типы реакций при химическом выветривании различны в зависимости от состава горных порол и условий. Главнейшими являются: окисление, гидратация, реже дегидратация, растворение, гидролиз, карбонатизация, восстановление.

Окисление горных пород происходит при наличии свободного кислорода в присутствии воды. Как известно, в атмосфере содержится около 21 % кислорода, а в воздухе, растворенном в воде, количество кислорода увеличивается до 30-35 %.

Окислению подвергаются минералы, содержащие железо, марганец, никель, кобальт, серу и другие элементы с разной валентностью. При окислении закисные соединения переходят в окисные. с этим связано изменение цвета породы с зеленовато- или синевато-серого на желтый, красный, бурый.

Наиболее активно окисление проявляется на сульфидных месторождениях. Примером может служить окисление пирита:

FeS2 + mO2 + nH2O -> FeSO4 -> Fe2(SO4)3 -> Fe2O3.nH2O

пирит сульфат сульфат лимонит

закиси окиси (бурный железняк)

Окислению в меньшей степени подвергаются железосодержащие силикаты, такие как оливин, амфиболы и пироксены, а также осадочные породы: пески, песчаники, глины, мергели, содержащие включения железистых минералов, что проявляется в появлении на их поверхности желто-бурой окраски.

При недостаточном количестве влаги образуются бедные водой гидраты окиси железа, такие как гидрогематит (Fe2O3.H2O) с характерной красной окраской. Закисные соединения марганца, кобальта и других элементов также переходят в окисные формы, устойчивые в поверхностных условиях.

Гидратация широко распространена в природе и выражается и поглощении существующими минералами воды и образовании в результате новых минералов. Примерами гидратации являются переход ангидрита в гипс:

CaSO4 + 2Н2О CaS04.2Н2О

и гематита в лимонит:

Fe2O3 + nН2O Fe2O3.nН2O.

Гидратация сопровождается увеличением объема и возникающими при этом деформациями пород. Это обратимый процесс, и при изменении условий он переходит в дегидратацию (потерю воды). В жарком климате благодаря интенсивному прогреванию солнечными лучами и испарению влаги, вода легко отнимается от гидроокислов железа.

Растворение и гидролиз происходят при совместном воздействии на горные породы воды и углекислоты. Однако это два существенно различных процесса.

Растворением называется способность молекул одного вещества распространяться вследствие диффузии в другом веществе без изменения их химического состава. Растворение в природных условиях развито довольно широко. Почти все горные породы растворяются в той или иной степени. Но наиболее интенсивно растворение проявляется в осадочных горных породах – хлоридных, сульфатных и карбонатных.

Наиболее легко растворяются хлориды (соли соляной кислоты), такие как галит NaCl, сильвин KCl и др. Они могут сохраняться в твердом состоянии только в случае, если будут защищены от воздействия воды, например перекрыты водонепроницаемыми породами. Значительно слабее растворяются сульфаты (соли серной кислоты), из которых наиболее распространены гипс CaSO4.2H2O и ангидрит CaSO4.

Карбонаты (известняки и доломиты) ещё менее растворимы, хотя и они хорошо растворяются в воде, содержащей углекислоты.

Силикаты растворяются в незначительной степени.

При растворении происходит выщелачивание горных пород, то есть вынос растворенного материала, а на их месте остаются различные по размерам и форме пустоты — поверхностные и подземные формы рельефа: борозды, углубления, воронки, горизонтальные и вертикальные каналы и др. Процессы растворения горных пород и образования различных форм рельефа называются карстом и подробно охарактеризованы ниже.

При достаточной концентрации раствора в благоприятных условиях растворенное вещество может выпадать в осадок в твердом кристаллическом состоянии, то есть превращаться снова в минерал.

Гидролиз — сложный процесс химического разложения минералов, сопровождающийся частичным или полным выносом щелочей, щелочных земель и кремнекислоты, с одной стороны, и присоединением элементов воды (Н+ и ОН-) — с другой. При гидролизе кристаллическая решетка минералов перестраивается и может быть полностью разрушена и преобразована в новую. Наиболее широко гидролизу подвергаются силикаты и алюмосиликаты, слагающие большую часть земной коры. В связи с этим гидролиз является одной из наиболее важных реакций химического выветривания. Каркасная критическая решетка силикатов и алюмосиликатов при гидролизе разрушается и превращается в слоевую решетку глинистых минералов или слюд, таких как каолинит – Al4OH8[Si4O10], монтмориллонит – (Al2,Mg3)(OH)2[Si4O10], нонтронит – (Fe,Al2)(OH)2[SiO10].nH2O, бейделлит – Al2(OH)2[Si4O10].nH2O и гидрослюды (гидробиотит, гидромусковит и др.).

При гидролизе железисто-магнезиальных силикатов образуются монтмориллонит, нонтронит и бейделлит, а при гидролизе полевых шпатов, характерных для кислых магматических пород, — каолинит и гидрослюды.

Преобразование силикатов и алюмосиликатов происходит стадийно. Примером может служить переход ортоклаза в каолинит с промежуточной стадией преобразования и гидрослюду

K[AlSi3O8] + mН20 + nСO2 -> промежуточные минералы (гидрослюда) ->

-> Al4(OH)8[Si4O10] + SiO2.nH20 + К2СО3

каолинит опал поташ

Так же протекает процесс химического разложения и других алюмосиликатов. Характерным при этом является полное вытеснение катионов К, Na, Са, которые при взаимодействии с углекислотой образуют истинные растворы карбонатов (К2СO3, Na2СО3, СаСО3) и бикарбонатов, в условиях влажного климата растворы выносятся с места их образования, а при недостатке влаги они остаются на месте и могут выпадать из раствора.


Введение
Экзогенные процессы начинаются с подготовки горных пород к переносу, с их разрушения. Горные породы, залегающие на поверхности или близ нее, подвергаются воздействию солнечных лучей, воды, воздуха,организмов. Из-за неравномерного нагревания порода растрескивается; особенно способствует этому замерзание воды, попавшей в трещины. Вода — хороший растворитель для многих веществ, и в верхних слоях горных пород, особенно при высокой температуре, происходят, обычно с участием атмосферного воздуха, химические реакции окисления, замещения, реже — восстановления. Корни растений способствуют расширению щелей междучастицами породы и проникновению туда воды и воздуха, а вещества, выделяемые животными и растениями, участвуют в химических реакциях. Все эти процессы разрушения и изменения приповерхностных пород называются выветриванием. Выветривание можно охарактеризовать двумя способами:
1) выветривание — это совокупность сложных процессов качественного и количественного преобразования горных пород и слагающих ихминералов, приводящий к образованию почвы;
2) выветривание — это разрушение пород на земной поверхности и их превращение в продукты, которые являются более устойчивыми в новых физико-химических условиях.
Я бы хотела рассмотреть второй вариант.
Горные породы, слагающие земную кору, подвергаются денудации в результате их предварительного выветривания. Этот процесс приводит к появлению рыхлых (дисперсных)новообразований зоны гипергенеза, существенно отличных по своим физическим свойствам от исходных коренных пород.
Многие породы первоначально образовывались при высоких давлениях и температурах и при отсутствии воды и воздуха. Продукты выветривания могут сильно различаться по составу, и даже те из них, которые при одних условиях являются устойчивыми, при изменении условий могут стать неустойчивыми.
Ученыевыделили четыре стадии выветривания, характеризующие единый протекающий во времени непрерывный процесс гипергенеза. Гипергенез — это процесс химического и физического преобразования минерального вещества в верхней части земной коры и на ее поверхности под воздействием атмосферы, гидросферы и живых организмов при низких температурах. [1, стр.16]
Первая стадия выветривания характеризуется преобладающей рольюфизических факторов выветривания с образованием крупнообломочных и мелкозернистых продуктов механического распада массивных горных пород. В условиях сурового климата и активной денудации современное выветривание нередко ограничивается этой первой стадией.
Вторая стадия характеризуется щелочной реакцией среды за счет извлечения в раствор оснований при гидролизе минералов. На этой стадии образуютсявторичные минералы в результате окисления, гидратации, гидролиза и карбонатизации первичных минералов. Среди вторичных алюмосиликатов на этой стадии преобладают минералы группы монтмориллонита и нонтронита. При относительном избытке в породах кальция в продуктах выветривания происходит накопление карбоната кальция, нередко образующего корку на обломках массивных пород. Ученые именует эту стадию “обызвесткованной”или насыщенной сиаллитной корой выветривания”. Наибольшее распространение она имеет в условиях умеренного климата при выветривании изверженных и метаморфических пород. В горных районах современные рыхлые образования на склонах часто относятся именно к этому типу.
Третья стадия остаточной ненасыщенной сиаллитной коры выветривания. Она характеризуется дальнейшим выносом из продуктов выветриваниящелочных и щелочноземельных элементов, вследствие чего реакция среды становится кислой. В этой обстановке среди вторичных алюмосиликатов преобладают галлуазит и каолинит. Развитие этой стадии выветривания имеет место в условиях замедленной денудации и относительно более обильного увлажнения.
В четвертой стадии образуется остаточная аллитная.

Чтобы читать весь документ, зарегистрируйся.

Связанные рефераты

Горные породы

. Общие сведения и классификация горных пород 3 1.1 Магматические.

Горные породы

. состав, химический состав | Применение | Магматические породы | Кислые; более 65% | Гранит.

10 Стр. 34 Просмотры

горные породы

. Содержание 2. Свойства горных пород, определяемые их строением. Понятие.

горные породы

. адочные породы в зависимости от условий их образования делят на три подгруппы: а) обломочные.

Горные породы

. осадочных горных пород в строении земной коры2. Породообразующие салические и.

Особенно возрастает интенсивность химического выветривания, когда в водном растворе присутствуют кислород, углекислота и органические кислоты, которые обладают большой активностью и во много раз повышают диссоциацию воды. В зависимости от реакции среды в процессе выветривания возникают те или иные характерные ассоциации минералов. Наиболее благоприятные условия для химического выветривания… Читать ещё >

Химическое выветривание. Выветривание горных пород ( реферат , курсовая , диплом , контрольная )

Химическое выветривание — это совокупность различных химических процессов, в результате которых происходит дальнейшее разрушение горных пород и качественного изменения их химического состава с образованием новых минералов и соединений.

Разрушению горных пород под влиянием физического выветривания всегда в той или иной степени сопутствует химическое выветривание, а в ряде случаев последнее играет решающую роль. Это отражает тесную взаимосвязь различных форм единого процесса выветривания. Физическая дезинтеграция резко увеличивает реакционную поверхность выветривающихся пород. Главными факторами химического выветривания являются вода, кислород, углекислота и органические кислоты, под влиянием которых существенно изменяются структура и состав минералов и образуются новые минералы, соответствующие определенным физико-химическим условиям. Важнейший фактор химического выветривания — вода, которая в той или иной степени диссоциирована на положительно заряженные водородные ионы (Н+) и отрицательно заряженные гидроксильные ионы (ОН-). Это определяет ее возможность вступать в реакцию с кристаллическим веществом. Высокая концентрация водородных ионов в растворах способствует ускорению процессов выветривания.

Особенно возрастает интенсивность химического выветривания, когда в водном растворе присутствуют кислород, углекислота и органические кислоты, которые обладают большой активностью и во много раз повышают диссоциацию воды. В зависимости от реакции среды в процессе выветривания возникают те или иные характерные ассоциации минералов. Наиболее благоприятные условия для химического выветривания существуют в гумидных областях и особенно в тропических и субтропических зонах, где имеет место сочетание большой влажности, высокой температуры, пышной растительности и огромного ежегодного отпада органической массы (в тропических лесах), в результате чего значительно возрастает концентрация углекислоты и органических кислот, а следовательно, возрастает и концентрация водородных ионов. Химическое воздействие на горные породы оказывают находящиеся в воде растворенные ионы, такие, как НСО3—. SO-4, С1-, Са+, Mg+, Na+, К+. Эти ионы также могут замещать заряженные атомы в кристаллах или взаимодействовать с ними, что может приводить к нарушению первичной кристаллической структуры минералов. Процессы, протекающие при химическом выветривании, заключаются в следующих основных химических реакциях: окислении, гидратации, растворении, гидролизе.

Читайте также: