Водоподготовка на тэц реферат

Обновлено: 02.07.2024

Водоподготовка обязательный процесс в промышленном производстве. Для ТЭЦ такой процесс является одним из важных этапов работы. Теплоэлектроцентраль предназначена для подачи горячей воды в дома и на предприятия. Преимущество ТЭЦ в совмещении нескольких функций производство тепловой и электрической энергии. Котельные и турбины – главное и основное оборудование. В котлах происходит нагрев воды, а в турбинах образовывается пар. В обоих случаях для работы нужна вода и обязательно очищенная. Сырая жёсткая вода не пройдет по параметрам. Первичный источник воды зачастую густо населён микроорганизмами и соединениями примесей. Такая вода не годится для использования ни то что в питьевых целях, но и в технических. На производстве к качеству воды предъявляются определённые требования. Поэтому перед применением обязательно проводят водоочистку. Водоподготовка представляет собой процесс, на котором происходит выявление состава воды при помощи химического анализа и её очистка. Так как для работы электростанции необходим нагрев воды, то её состав должен быть преобразован для использования. При наличии примесей в процессе нагревания может выпасть осадок, появится накипь, образоваться другие соединения. Всё это влияет на корректную работу станции и годность оборудования. Одна из самых частых проблем – образование накипи. Это не только даёт осадок и снижает качество воды, но и портит оборудование. Как известно, накипь плохой проводник и блокирует элементы нагрева. Вследствие чего происходит увеличение потребляемых ресурсов и нагревательные элементы выходят из строя. При этом отложения могут оседать на трубах, что также приводит к их непригодности. В итоге система просто перестаёт работать и её останавливают для физического очищения. На это тратиться много сил и времени, средств. Чтобы продлить работу установок и скорректировать состав воды для использования на ТЭЦ обязательно проводят водоподготовку. Механической очистки стараются избегать, как и остановки производства. Для очищения от накипи придется разбирать некоторые части оборудования. Если загрязнения не так много, то можно промыть с помощью химических средств. Но, как правило, необходимость очистки замечают уже поздно, когда применение химии не поможет. На ТЭЦ водоподготовка обязательный процесс. В домашних условиях можно не всегда торопиться с установкой фильтра. Но в промышленном производстве использование некачественной воды очень опасно.


Рис. 1 Схема очистки воды для удаления бора

2. Этапы водоподготовки.

Весь процесс разделён на этапы. В каждом из них происходит очистка от определённых видов загрязнений. Как правило устанавливают несколько систем фильтрации. Водоочистка проводится в специальном предварительном блоке. Сначала проводят механическую фильтрацию, далее очищают от солей жесткости и обезжелезивают. Очищают от остальных примесей и убирают излишнюю загазованность. Все этапы проводятся в определённом порядке. Для каждого этапа подбирается свой метод очистки. Более удобный в применении и выгодный с экономической точки зрения. Каждый этап контролируется автоматически. Контроллер устанавливается на блок или на фильтр, зависит от настроек. Перед первым применением, после всех расчётов, необходимые настройки забиваются в систему.

2.1 Первый этап.

Вода для ТЭЦ может быть из самых разных источников. Поэтому в ней зачастую присутствует много механических загрязнений. Их присутствие в воде недопустимо по нескольким причинам. Во-первых, это загрязнение, которое не должно находится в очищенной воде. Во-вторых, наличие механических примесей значительно сокращает срок службы элементов фильтрации. Все фильтры в последующих этапах очистки предназначены для удаления мелких примесей. И являются тонкой очисткой. Поэтому при первом этапе очищения используются фильтры грубой очистки. Они представляют собой очистительный элемент с крупной сеткой, способной задерживать большую грязь.


2.2 Второй этап.

В следующем этапе очистки избавляются от солей жёсткости. Именно молекулы кальция и магния выпадают в осадок при кипячении в виде накипи. Умягчение воды является важным процессом. Здесь могут применяться несколько методов. Зависит от качества исходной воды, расхода и других факторов. Обычно умягчение происходит посредством ионных установок или с помощью электромагнита. Суть в ионозамещении молекул кальция, магния, железа или других примесей на ионы натрия.


2.3 Третий этап.

Третий этап водоподготовки заключается в осветлении воды. Используются несколько видов фильтров. Преимущественно применяется химический метод очищения. В итоге вода должна содержать не более 10 мкг примесей на один литр. На этом же этапе происходит предочистка сточных вод. Так как в системах используют метод с добавлением химических веществ, сбрасываемая вода имеет свои нормативы по составу и концентрации реагентов. На этом этапе корректируется состав воды под необходимый.

2.4 Четвертый этап.

Последний этап очистки – удаление растворённых газов. Обычно это кислород, углекислый газ и другие. Они либо изначально присутствуют в воде, либо появляются в процессе очищения. Для этого устанавливают системы декарбонации. После дегазирования воду можно использовать.

Кроме основных этапов существует предочистка воды. Исходная вода для станций, как правило, не отличается особой чистотой. Даже наоборот. В неё могут содержаться механические загрязнения. Особенно это касается если воду берут из открытых водоёмов. Чтобы не допустить попадания грязи в фильтрующие элементы воду пропускают через механические фильтры. Их называют грязевики или фильтры грубой очистки. Говоря более просто их суть в задержании большой грязи. После прохождения этапов обессоливания и осветления наступает очередь деаэрации. Это процесс удаления из воды остаточных газов. При использовании химических веществ образуются лишние молекулы газа. Их присутствие нежелательно для системы. Поэтому на последних этапах обработки стоят деаэраторы. Они могут быть различны как по конструкции, так и по используемому методу. Правильный расчёт и подобранный метод помогут минимизировать затраты при высокой производительности системы, не утратив качества воды.


Рис. 4 Схема реагентной напорной деэрации окислением

3. Основные методы.

Для умягчения воды на разных станциях используют разные методы. Это может быть реагентный способ, ионозамещение или магнитное очищение. Реагентный способ предполагает использование химикатов. Вещества добавляют в водный поток, происходит реакция и соли жесткости выпадают в осадок. Это один из самых быстрых методов смягчить жёсткую воду, но не самый безопасный. Использование реагентов должно строго дозироваться, иначе в воде появятся вредные элементы. Некоторые виды химикатов в больших количествах могут испортить оборудование, вызывая коррозию. К тому же после химии остаётся агрессивный осадок, который подлежит правильной утилизации. Электромагнитное очищение представляет собой систему на основе магнита. При помощи магнитного поля соли жёсткости теряют прежнюю форму и вытягиваются. С увеличением мощности поля защитные свойства метода от накипи возрастают. Такой способ эффективнее работает в замкнутых циклах. Уникальность метода в его неприхотливости и простоте эксплуатации. Получается, что соли кальция и магния не просто удаляются, а еще и помогают в механическом очищении. Работать без замены магниты могут довольно долго. Правда и минусы у метода есть. Для правильной работы магнитов необходим постоянный поток воды с одной скоростью и в одном направлении. Воду, находящуюся в ёмкости, магнит не очистит. То же самое касается нескольких разносторонних потоках. Температура воды должна быть в определенном диапазоне. Слишком холодную или горячую воду электромагнитное поле не умягчит. И последний, но самый удобный способ – ионозамещение. Суть метода в использовании ионной смолы. Это может быть, как картридж, наполненный синтетическим веществом, так и колба. Ионная смола состоит из маленьких гранул с ионами натрия. Их соединение очень хрупкое. При взаимодействии с водой происходит распад смолы. Соли жёсткости прилипают к ней, а освободившиеся ионы натрия безвредны. Таким способом очищается вода не только от минералов кальция и магния, но и от всех других примесей. Со временем ионная смола забивается молекулами примесей. Для возобновления работы фильтра его необходимо регенерировать. Для этого промывают солевым раствором. После промывки фильтр снова в рабочем состоянии. Оставшийся солевой раствор, уже с различными загрязнениями, повторно очищают и утилизируют. Сразу сливать в дренаж нельзя, из-за его максимальной концентрации соли. Несмотря на то что метод гибок и уникален, его использование обходится недешево. Это касается как расходов на соль для регенерации, так и для повторного очищения остатков промывки. На этапах обессоливания, кроме реагентного очищения могут применяться установки обратного осмоса. Здесь главную роль играет мембранный фильтр, который задерживает все ненужные молекулы. Фильтров может быть несколько, исходя из производительности системы. Очистка фильтра проходит при промывании элемента водой. Но мембранный метод редко используют по причине его ультраочищении. Если на предприятии очищают воду для промывки, где нужна дистиллированная вода, то метод основного осмоса самый оптимальный. Так же подходит для технической воды. Вместо обратного осмоса могут устанавливаться системы нанофильтрации. Суть такая же, как и у мембранных систем. Разница только в более медленном потоке. Чаще всего используют первичный механический фильтр и реагентное очищение.

Водоочистка ТЭЦ является комплексом систем, которые направлены на полное уничтожение примесей. Для данного направления обязательна комбинация нескольких способов. Потому что вода должна содержать определённую концентрацию примесей и для этого нужно точно скорректировать её состав. От потребляемой воды зависит скорость и производительность системы. К тому же употребление непригодной воды старит оборудование и приводит к его поломкам. Поэтому качество воды играет большую роль при эксплуатации теплоэнергоцентралях. Экономить на очистке нельзя, чтобы не доводить до износа оборудования.

Вода - ценнейший природный ресурс. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Для удовлетворения разнообразных требований к качеству воды, потребляемой при выработке электрической и тепловой энергии, возникает необходимость специальной физико-химической обработки её. Качественная водоподготовка, рациональный водно-химический режим – это:
1. Гарант надёжности, экономичности, безаварийности теплоэнергетического оборудования и тепловых сетей.
2. Обеспеченность предупреждения образования всех видов отложений и коррозионных повреждений на внутренних поверхностях теплоэнергетического оборудования, элементах трассы сетевой воды, включая отопительные приборы;

Содержание

Введение 2
1.Выбор источника и производительности водоподготовки 3
2 Показатели качества воды 4
3 Методы очистки воды 6
3.1 Предочистка 7
3.2 Коагуляция коллоидных примесей воды 8
3.3 Осаждение методами известкования и содоизвесткования 9
3.4 Фильтрование воды на механических фильтрах 12
3.5 Очистка конденсатов на намывных фильтрах 15
4 Обессоливание воды 16
4.1 Умягчение воды методом ионного обмена 17
4.2.Na-катионирование. 18
4.3.Н-катионирование. 19
4.4.Анионирование воды 21
5 Термический метод очистки воды 22
5.1Метод дистилляции 22
6 Безреагентные методы. 24
6.1 Магнитная обработка 24
6.2 Ультразвуковая обработка 25
6.3 Обратный осмос. 26
6.4 Электродиализ – 28
7 Очистка воды от растворенных газов. 29
8 Удаление свободной углекислоты 30
9 Деаэрация в деаэраторах атмосферного и пониженного давления 31
10 Химические методы удаления газов из воды. 33
11 Методы обеззараживания воды. 35
11.1 Хлорирование 35
11.2 Гипохлорит натрия. 36
11.3 Озонирование. 37
11.4 Дезодорация воды. 38
11.5 Обработка воды активным углем. 39
12 Заключение. 40
12 Список литературы 41

Вложенные файлы: 1 файл

Моя водоподготовка.docx

1.Выбор источника и производительности водоподготовки 3

2 Показатели качества воды 4

3 Методы очистки воды 6

3.1 Предочистка 7

3.2 Коагуляция коллоидных примесей воды 8

3.3 Осаждение методами известкования и содоизвесткования 9

3.4 Фильтрование воды на механических фильтрах 12

3.5 Очистка конденсатов на намывных фильтрах 15

4 Обессоливание воды 16

4.1 Умягчение воды методом ионного обмена 17

4.4.Анионирование воды 21

5 Термический метод очистки воды 22

5.1Метод дистилляции 22

6 Безреагентные методы. 24

6.1 Магнитная обработка 24

6.2 Ультразвуковая обработка 25

6.3 Обратный осмос. 26

6.4 Электродиализ – 28

7 Очистка воды от растворенных газов. 29

8 Удаление свободной углекислоты 30

9 Деаэрация в деаэраторах атмосферного и пониженного давления 31

10 Химические методы удаления газов из воды. 33

11 Методы обеззараживания воды. 35

11.1 Хлорирование 35

11.2 Гипохлорит натрия. 36

11.3 Озонирование. 37

11.4 Дезодорация воды. 38

11.5 Обработка воды активным углем. 39

12 Заключение. 40

12 Список литературы 41

Введение

Вода - ценнейший природный ресурс. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Для удовлетворения разнообразных требований к качеству воды, потребляемой при выработке электрической и тепловой энергии, возникает необходимость специальной физико-химической обработки её. Качественная водоподготовка, рациональный водно-химический режим – это:

1. Гарант надёжности, экономичности, безаварийности теплоэнергетического оборудования и тепловых сетей.

2. Обеспеченность предупреждения образования всех видов отложений и коррозионных повреждений на внутренних поверхностях теплоэнергетического оборудования, элементах трассы сетевой воды, включая отопительные приборы;

3. Экономия сжигаемого топлива, так как образующиеся отложения на поверхности нагрева обладают высоким термическим сопротивлением, что вызывает большие потери топлива.

4. Уменьшение сбрасываемых экологических загрязнителей от теплоэнергетических объектов в биосферу, отрицательно влияющих на здоровье населения (экологическая безопасность).

Одновременно с очисткой природной воды на электростанциях необходимо решать комплексно вопросы, связанные с утилизацией различными методами образующихся при этом сточных вод. Такое решение является мерой защиты от загрязнения природных источников питьевого и промышленного водоснабжения.

Выбор метода обработки воды, составление общей схемы технологического процесса при применении различных методов, определение требований, предъявляемых к качеству её, существенно зависят от состава исходных вод, типа электростанции, применяемого основного оборудования.

На тепловых электростанциях применяются различные методы обработки воды, однако в основном их можно разделить на безреагентные, или физические методы и методы в которых используются различные препараты (химические реагенты). Безреагентные (физические) методы применяются как отдельные этапы в общем технологическом процессе обработки воды, и как самостоятельные методы, обеспечивающие получение воды требуемого качества. Применяя химическую обработку (включая также методы ионного обмена), можно получить как умягчённую, так и глубокообессоленную воду.

1.Выбор источника и производительности водоподготовки

На ТЭС с производственными отборами наряду с внутренними потерями существуют потери пара и конденсата в технологических процессах у потребителей теплоты. Эти потери должны восполняться добавочной водой, подготавливаемой на ВПУ, по качеству сопоставляемой с качеством питательной воды котлов. ВПУ для подпитки тепловых сетей. Для приготовления добавочной и подпиточной вод на электростанциях применяют:

  • Воды поверхностных источников
  • Воды артезианских скважин
  • Воды прямоточных и циркуляционных систем охлаждения конденсаторов турбин;

Так, если водоисточником является артезианская вода, в которой практически отсутствуют ГДП и органические вещества, то отпадает необходимость в предварительной ее коагуляции. Однако такая вода обычно содержит большое количество ионов двухвалентного железа, что приводит к необходимости применять методы предварительного его удаления из воды перед последующей обработкой. Преимуществом артезианской воды перед поверхностной является ее стабильный состав во все времена года, что в значительной степени облегчает эксплуатацию водоподготовительной установки. При заборе воды из поверхностного источника следует учитывать, что качество воды в нем меняется не только по сезонам, но и по годам. Так, весной и осенью в такой воде возрастают

концентрации ГДП и органических веществ и уменьшается

солесодержание, в летние и зимние месяцы — наоборот. Эти обстоятельства следует учитывать при проектировании схемы обработки воды из поверхностных источников, так как водоподготовительная установка (ВПУ) рассчитывается применительно к максимальным концентрациям того или иного вещества в природной воде. В некоторых случаях при соответствующем технико-экономическом обосновании возможно использование в качестве исходной для ВПУ воды из прямоточных или оборотных систем водоснабжения, а также очищенных сточных вод ТЭС . Место забора воды следует располагать по возможности дальше от места сброса сточных вод соседних предприятий. Производительность ВПУ должна быть достаточной для покрытия потерь воды и пара в схеме ТЭС, а также для расхода воды и пара на различные технологические нужды

2 Показатели качества воды

Качество воды характеризуется прозрачностью (содержанием взвешенных веществ), сухим остатком, жесткостью, щелочностью, окисляемостью.

Сухой остаток содержит общее количество растворенных в воде веществ: кальция, магния, натрия, аммония, железа, алюминия и др., которые остаются после выпаривания воды и высушивания остатка при 110°С. Сухой остаток выражают в миллиграммах на килограмм или в микрограммах на килограмм.

Жесткость воды характеризуется суммарным содержанием в воде солей кальция и магния, являющихся накипеобразователями. Различают жесткость общую, временную (карбонатную) и постоянную (некарбонатную).

Общая жесткость представляет собой сумму величин временной и постоянной жесткости и характеризуется суммой содержания в воде кальциевых и магниевых солей: сернокислых (СаSО4 и МgSО4), хлористых (СаС12 и МgС12), азотнокислых (Са(NО3)2 и Мg(NО3)2), кремнекислых (СаSiO3 и МgSiO3), фосфорнокислых (Са3(РО4)2 и Мg(РО4)2), двууглекислых (Са(НСО3)2 и Мg(НСО3)2).

Временная жесткость характеризуется содержанием в воде бикарбонатов кальция и магния Са(НСО3)2 и Мg(НСО3)2. Постоянная жесткость обусловливается содержанием указанных выше солей кальция и магния, за исключением двууглекислых.

Для определения величины жесткости в настоящее время установлена единица показателя жесткости — миллиграмм-эквивалент на 1 кг раствора (мг-экв/кг) или микрограмм-эквивалент на 1 кг раствора (мкг-экв/кг); 1 мг-экв/кг жесткости соответствует содержанию 20,04 мг/кг иона кальция Са + или 12,16 мг/кг иона магния Мg 2 + .

Щелочность воды характеризуется содержанием в ней щелочных соединений. Сюда относят гидраты, например NаОН — едкий натр, карбонаты Nа2СО3 — кальцинированная сода, бикарбонаты NаНСО3, Na3РО4 и др. Величина щелочности воды равна суммарной концентрации в ней гидроксильных, карбонатных, бикарбонатных, фосфатных и других анионов слабых кислот, выраженной в эквивалентных единицах (мг-экв/кг или мкг-экв/кг). В зависимости от преобладающего наличия в воде анионов тех или иных солей различают щелочность: гидратную (концентрация в воде гидроксильных анионов ОН), карбонатную (концентрация карбонатных анионов CO3²¯) и бикарбонатную (концентрация бикарбонатных анионов НСОз³¯.).

Окисляемость воды характеризуется наличием в воде кислорода и двуокиси углерода, выраженных в миллиграммах или микрограммах на килограмм.

В зависимости от характера использования воды различными потребителями определяются и показатели, необходимые для качественной и количественной характеристики воды.

Важнейшими показателями качества воды для использования ее в теплоэнергетике являются;

– концентрация грубодисперсных веществ (ГДП);

– концентрация истинно-растворимых примесей (ионный состав);

– концентрация коррозионно-активных газов;

– концентрация ионов водорода;

– технологические показатели, в которые входят сухой и прокаленный остаток, окисляемость, жесткость, щелочность, кремнесодержание, удельная электропроводность и т.д.

Рассмотрим воду реки Шексна г.Череповец со следующими показателями

Содержание ионов: Na + +K + = 9.2мг/дм 3 ,=97.62мг/дм 3 , =2 мг/дм 3

=0 мг/дм 3 , SiO2 +=6.9 мг/дм 3

Сухой остаток 288 мг/дм 3

Щёлочность 2мг-экв/дм 3

Жёсткость Ж0=3,9мг-экв/дм 3 , ЖСа=2,7мг-экв/дм 3

Если очистка воды от тяжёлых ГДП может быть принципиально осуществлена обычным отслаиванием, время которого определяется размером и удельной массой частиц, то коллоидные примеси за счёт их особого свойства(агрегативной устойчивости) могут быть выделены из воды только методом коагуляции.

3 Методы очистки воды

Разнообразие примесей, которые должны быть удалены из воды, а также методов, применяемых при ее обработке на котельных и ТЭС, усложняют поиск оптимальных решений при выборе схем и аппаратов в каждом конкретном случае.

Поэтому очевидна необходимость классификации методов очистки и удаляемых примесей. Наиболее известны классификации Л.А. Кульского и М.И. Лапшина. В основе классификации Л.А. Кульского лежит различие характера удаляемых примесей. Загрязненные воды представляют собой гомогенные или гетерогенные системы, которые соответственно подразделяются на ионные, молекулярные, коллоидные растворы и взвеси. К каждой из четырех групп вод (систем) подобраны соответствующие наиболее эффективные методы очистки воды, области их применения, состав очистных сооружений и т.д. Однако в этой классификации не учитывается характер отдельных примесей.

В классификации М.И. Лапшина, наоборот, основным классификационным признаком является характер и состояние удаляемых при очистке примесей; при этом методы очистки подразделяются на следующие группы:

  • методы непосредственного выделения примесей, например отстаивание;
  • методы выделения примесей с изменением фазового состояния воды или примеси, например деаэрация;
  • методы превращения примесей, например образование труднорастворимых соединений (известкование);
  • биохимические методы.

Обе классификации имеют достоинства и недостатки, но дополняя друг друга, помогают выбору оптимального решения схем ВПУ на котельных и ТЭС с точки зрения как повышения эффективности очистки воды, так и возможности утилизации извлеченных из нее при очистке примесей для предотвращения загрязнений окружающей среды. Многообразие примесей в природной воде служит причиной того, что очистка добавочной воды для подпитки котлов организуется в несколько стадий на ВПУ.

На начальном этапе из воды выделяются грубодисперсные и коллоидные вещества, а также снижается бикарбонатная щелочность этой воды. На дальнейших этапах производится очистка воды от истинно-растворимых примесей.

Начальный этап очистки воды.

3.1 Предочистка

Необходима для улучшения технико-экономических показателей последующих этапов очистки воды, а также потому, что при отсутствии предочистки применение многих методов на последующих ступенях очистки встречает значительные затруднения. Так, наличие в воде органических веществ приводит к изменению технологических свойств анионитов, способствует их старению, а следовательно, к резкому (в 4–8 раз) снижению срока службы. Присутствие в воде ионов железа в концентрации свыше 50 мкг/дм 3 вызывает отравление мембран при очистке воды электролизом. Неудовлетворительная очистка воды от грубодисперсных и коллоидных примесей является одной из причин образования накипей на поверхностях нагрева и ухудшению качества пара. Поэтому в настоящее время предочистке воды в схемах подготовки добавочной и подпиточной воды придается важное значение.

Предочистка-воды может быть осуществлена в основном методами осаждения, при применении которых примеси выделяются из воды в виде осадка. Эти методы называются также реагентными, так как для выделения примесей в воду дозируются специальные реагенты. К процессам осаждения, применяемым в настоящее время при предочистке воды, относятся; коагуляция, известкование, магнезиальное обескремнивание. Как правило, эти процессы совмещаются и проводятся одновременно в одном аппарате – осветлителе, что целесообразно как для улучшения суммарного технологического эффекта процесса очистки воды, так и для снижения капитальных и эксплуатационных затрат.

Первичное осветление воды производится в осветлителях, а окончательно очистка от осадка осуществляется при помощи процесса фильтрования, который также относится к предочистке воды, но является безреагентным методом.

3.2 Коагуляция коллоидных примесей воды

Коагуляция – это физико-химический процесс слипания коллоидных частиц под действием сил молекулярного притяжения с образованием грубодисперстной макрофазы(флоккул) и с последующим выделением её из воды. В практике водоподготовки под коагуляцией понимают очистку воды от коллоидных веществ с одновременной очисткой от грубодисперстных примесей и обесцвечивание воды путём дозировки в обрабатываемую воду специального реагента – коагулянта. Который образует новую дисперстную систему со знаком заряда частиц, противоположным знаку заряда каллоидов природных вод (обычно зараженных отрицательно). При этом происходит взаимная коагуляция разноимённых заряженных коллоидов при их взаимодействии с дестабилизированными участками поверхности, называемая гетерокоагуляцией. В дальнейшем микрохлопья сцепляются, захватывая грубодисперстные примеси и воду, и образуют коагуляционную структуру в виде хлопьев (флоккул) размером 0,5-3мм. Макрофаза затем выделяется из воды в аппаратах для коагуляции- осветлителях и далее в пористой загрузке осветлительных фильтров. В качестве коагулянтов применяют ; сульфат алюминия AL2(SO4)2 *18H2O или сульфат двухвалентного железа FeSO4*7H2O , причём последний используют при совмещении процессов коагуляции и известкования в осветлителях. Процесс коагуляции требует для своего завершения время (4-5минут). Хлопья, вначале невидимые, постепенно соединяются в крупные комплексы, вызывая помутнение воды. Затем образуются более крупные рыхлые хлопья, захватывающие ГДП и воду. Режим потока воды влияет на формирование хлопьев. Скорость воды в зоне формирования не должна превышать 1,5мм /сек. Температура 30-40 и перемешивание вызывает более частые и сильные столкновения коагулируемых частиц, приводящие к их слипанию. Дозировка коагулянта определяется составом коллоидных примесей и солесодержанием обрабатываемой воды. Обычно 0,3-0,8мг-экв/дм 3 . Значение рН среды оказывает влияние на скорость гидролиза коагулянта,а также на состояние удаляемых из воды примесей. При коагуляции сернокислым алюминием оптимальное значение рН, устанавливаемое экспериментально находится в пределах 5,5-7,5.

Вопросы водоподготовки и организации водно-химичского режима электростанции имеют большое значение для обеспечения работы электростанции и предприятий тепловых сетей без повреждений и снижения экономичности, вызываемых коррозией внутренних поверхностей водоподготовительного, теплоэнергетического и сетевого оборудования, а также без образования накипи и отложений на теплопередающих поверхностях, отложений в проточной части турбин, шлама в оборудовании и трубопроводах электростанций и тепловых сетей.

Тепловые электростанции потребляют большое количество воды. Основными потребителями являются конденсаторы турбин где вода (циркуляционная) используется для конденсации отработавшего пара и поддержания вакуума. Кроме того, вода расходуется для охлаждения водорода генераторов и охлаждающего воздуха крупных электродвигателей, для охлаждения масла турбогенераторов и питательных турбонасосов , для охлаждения подшипников вспомогательных механизмов -техническая вода, для гидрощлакозолоудаления, для восполнения потерь пара и конденсата в цикле станции.

Использование воды в теплоэнергетике

Оборудование современных электростанций эксплуатируется при высоких тепловых нагрузках, что требует жесткого ограничения толщины отложений на поверхностях нагрева по условиям температурного режима их металла в течение рабочей компании. Такие отложения образуются из примесей, поступающих в циклы электростанций, в том числе и с добавочной водой, поэтому обеспечение высокого качества водных теплоносителей электростанции является важнейшей задачей. Использование водного теплоносителя высокого качества упрощает также решение задач получения чистого пара, минимизации скоростей коррозии конструктивных материалов котлов, турбин и оборудования конденсатно-питательного тракта.

Химически подготовленная вода является, по существу, исходным сырьем, которое после надлежащей обработки (отчистки) используется для следующих целей: а) в качестве исходного вещества для получения пара в котлах, парогенераторах, испарителях, паропреобразователях; б) для конденсации отработавшего в паровых турбинах пара; в) для охлаждения различных аппаратов и агрегатов станции; г) в качестве теплоносителя в тепловых сетях и системах горячего водоснабжения.

Одновременно с отчисткой природной воды на электростанциях необходимо решать комплексно вопросы, связанные с утилизацией различными методами образующихся при этом сточных вод. Такое решение является мерой защиты от загрязнения природных источников питьевого и промышленного водоснабжения [1].

Выбор метода обработки воды, составление общей схемы технологического процесса при применении различных методов, определение требований, предъявляемых к качеству ее, существенно зависят от состава исходных вод, типа электростанции, параметров ее, применяемого основного оборудования (паровых котлов, турбин), система теплофикации и горячего водоснабжения. При применении термических методов обработки воды экономичность их зависит также от того, как включена обессоливающая установка в схему станции, и от характеристик и параметров оборудования. Поэтому до того как перейти к рассмотрению методов обработки воды необходимо хотя бы в самом общем виде познакомиться с типами и схемами тепловых электростанций.

Типичные схемы обращения воды в циклах электростанций и теплоэлектростанций



Рис.1. Питательная схема обращения Рис. 2. Питательная схема обращения

воды в тракте КЭС: воды в цикле ТЭЦ:

1 – котел, реактор кипящего типа, 1 – котел; 2 – турбина с отборами пара для парогенератор; 2 – конденсационная нужд производства и теплофикации; 3 - турбина; 3 – электрогенератор; 4 – электрогенератор; 4 – конденсатор; 5 – конводоподготовительная установка (ВПУ); денсатный насос; 6 – установка очистки 5 – конденсатор турбины; 6 – конденсат- возвратного загрязненного производственноный насос; 7 – блочная обессоливающая го конденсата; 7– деаэратор; 8 - питательный установка (БОУ); 8 – ПНД; 9 – деаэратор; насос; 9 – подогреватель добавочной воды;

10 – питательный насос; 11 – ПВД 10 – ВПУ; 11 – насос возвратного конденсата; 12 – баки возвратного конденсата; 13 –

теплофикационный потребитель пара; 14 –

производственный потребитель пара

Природная (техническая) вода используется в качестве исходного сырья на водоподготовительной установке, а также для других целей на станциях.

Добавочная вода направляется на контур для восполнения потерь пара и конденсата после обработки с применением физико-химических методов отчистки.

Турбинный конденсат содержащий незначительное количество растворенных и взвешенных примесей, - основная составляющая питательной воды.

Возвратный конденсат от внешних потребителей пара используется после очистки от внесенных загрязнений. Он является основной частью питательной воды.

Питательная вода, подаваемая в котлы, парогенераторы или реакторы для замещения испарившейся воды в этих агрегатах, представляет собой главным образом смесь турбинного и возвратного конденсата, добавочной воды, а также конденсата регенеративных подогревателей.

Котловая вода, вода парогенератора, реактора - вода, находящаяся в элементах указанных агрегатов.

Продувочная вода – выводимая из котла, парогенератора ил и реактора вода на отчистку или в дренаж для поддержания в испаряемой (котловой) воде заданной концентрации примесей. Состав и концентрация примесей в котловой и продувочной водах одинаковы.

Охлаждающая или циркуляционная вода используется в конденсаторах паровых турбин для конденсации отработавшего пара.

Подпиточная вода подается в тепловые сети для восполнения потерь циркулирующей в них воды [2].

Методы обработки воды

На тепловых электростанциях применяются различные методы обработки воды, однако в основном их можно разделить на безреагентные, или физические методы и методы, в которых используются различные препараты (химические реагенты). Безреагентные (физические) методы применяются и как отдельные этапы в общем технологическом процессе обработки воды, и как самостоятельные методы, обеспечивающие получение воды требуемого качества. Применяя химическую обработку (включая также методы ионного обмена), можно получить как умягченную, так и глубокообессоленную воду; при одном из наиболее распространенных на станции физических методов – термической обработке воды – всегда получают дистиллят, т.е. воду с очень небольшим содержанием примесей. Однако в ряде случаев при термической обработке, проводимой в целях глубокого обессоливания, применяется умягченная вода, т.е. вода, уже прошедшая химическую обработку или ионирование.

Для заполнения контура паротурбинной установки восполнения потерь в нем на современных крупных станций может применяться только глубокообессоленная вода. В настоящее время такую воду получают почти всегда химическим и термическим методами обессоливания. Заполнение тепловых сетей и компенсация потерь в них проводятся обычно водой, умягченной ионированием [2].

Теперь рассмотрим то, что поступает на станцию вместе с водой и каким обработкам подвергается вода.

Добавочная вода, несмотря на то, что она предварительно очищается, вносит в цикл электростанции соли и другие химические соединения. Значительная доля солей поступает также через неплотности конденсаторов с присасываемой циркуляционной водой, не проходящей очистки, кроме грубо механической и иногда хлорирования.

Доля присасываемой охлаждающей воды в конденсаторах паровых турбин не должна превышать 0,015% количества основного конденсата. Для уменьшения присосов конденсаторы турбин оборудуют двойными трубными досками с отводом просачивающейся воды.

На промышленных станциях обратный конденсат с производства в ряде случаев имеет повышенную жесткость и загрязнен продуктами коррозии металлов или производственными примесями. Это вносит в цикл станции дополнительные загрязнения. С течением времени вносимые соли будут накапливаться, если их не отводить, что может привести к отложениям солей в трубах котла, к ухудшению качества вырабатываемого пара и к заносу солями проточной части турбин. Во избежание этого необходимо выводить загрязнения из пароводяного цикла электростанции [3].

Помимо отчистки добавочной воды требуется еще дополнительная внутрикотловая обработка воды. Котловая и питательна вода барабанных котлов подвергается различной коррекционной обработке реагентами (фосфатами, комплексонами и др.), обеспечивающими выпадение накипеобразователей в форме легкоподвижного неприкипающего шлама, выводимого с периодической продувкой.

Методы организации водного режима подразделяются на физико-химические и физико-механические. К первым относится коррекционная обработка питательной и котловой воды реагентами, ко вторым - ступенчатое испарение и промывка пара. Физические методы удаления растворенных О2 и СО2 (деаэрация, отсос газов из теплообменников) сочетаются с коррекционной обработкой питательной воды аммиаком, нейтрализующими аминами и гидразином.

Для поддержания водно-химического режима барабанных котлов в целях предотвращения кальциевого и магниевого накипобразования повсеместное применение получил коррекционный фосфатный режим котловой воды. С его помощью можно предотвратить образование кальциевой накипи на поверхностях нагрева: дозированное введение раствора фосфорнокислых солей натрия в котловую воду переводит остатки ионов, накипеобразователей в шлам, удаляемый с продувкой. Недостатком фосфатного режима обработки котловой воды является неспособност предотвращать образование сложных бескальциевых ферро- и алюмосиликатных накипей в барабанных котлах высокого давления. Чтобы избежать этих отложений, надо снизить концентрацию соединений железа, алюминия и кремния в питательной и котловой воде.

В последние годы в связи с усовершенствованием технологии умягчения воды и пароведением работ по уплотнению конденсаторов соли кальция и магния в котлы практически не попадают и в составе накипи и шлама соединения Са и Мg содержаться в ничтожном количестве. В то же время при создании фосфатного режима иногда наблюдается образование феррофосфатных отложений, подшламовая коррозия парогенерирующих труб. В связи с этим потери на станциях восполняются химобессоленной водой или дистиллятом, а конденсаторы надежно уплотнены.

В прямоточных котлах все примеси, поступающие с питательной водой и образующиеся в котле за счет коррозии, уносятся с паром и образуют отложения в турбинах или проходят транзитом через турбину и загрязняют конденсат. Поэтому такие котлы должны работать на питательной воде с минимальным содержанием примесей, могущих давать отложения в котле и в турбине [1].

При эксплуатации водоподготовительных установок образуются сточные воды в количестве 5-20% расхода обрабатываемой воды, которые обычно содержат шлам, состоящий из карбонатов кальция и магния, гидроксида магния, железа и алюминия, органических веществ, песка, а так же различные соли серной и соляной кислот с концентрацией, достигающей десятков грамм на кубический дециметр, переходящие в стоки при регенерации фильтров. С учетом известных предельно допустимых концентраций вредных веществ в водоемах стоки водоподготовительных установок перед их сбросом должны соответствующим образом очищаться, причем затраты на обезвреживание стоков обычно сопоставимы с затратами на приготовление воды требуемого качества, поэтому задача создания малосточных водоподготовительных установок является актуальной [2].

В данном реферате рассмотрены вопросы водоподготовки на теплоэлектростанции (ТЭС). Отмечены особенности работы собственно ТЭС и их оборудования, организации и контроля водного режима. Представлены методы и выбор обработки воды.

1. Елизаров Д.П. Теплоэнергетические установки электростанций: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Энергоиздат, 1982.

2. Копылов А.С., Лавыгин В.М., Очков В.Ф. Водоподготовка в энергетике: Учебное пособие для вузов.- М.: Издательство МЭИ, 2003.

3. Рыжкин В.Я. Тепловые электрические станции. Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Энергия, 1976.

Водоподготовительная установка (ВПУ) на ТЭС призвана восполнять потери водного теплоносителя в основном контуре. Существует большое количество возможных вариантов схем водоподготовки для получения обессоленной воды на ТЭС.

Наибольшее распространение в нашей стране получила технология химического обессоливания на базе прямоточных ионитных фильтров. Эта технология применяется уже несколько десятилетий и показала себя вполне надежной для вод малой и средней минерализации ([SO4 - ]+[Cl - ] 3 ). Для вод с высокой минерализацией ([SO4 - ]+[Cl - ]>5 мг- экв/дм 3 ) или при повышенном содержании органических соединений (Ок>20 мгО/дм 3 ) используют термическое обессоливание [1].

В природной воде постоянно отмечается рост загрязненности техногенными органическими соединениями: удобрениями, ядохимикатами, нефтепродуктами и т.д. Традиционные химические технологии водоподготовки удаляют эти загрязнения недостаточно эффективно, что приводит к образованию в конденсатно-питательном тракте потенциально кислых веществ, и, как следствие, к многочисленным фактам нарушения ВХР [2].

Ужесточение экологических требований к сточным водам водоподготовительных установок, с одной стороны, ухудшение качества обрабатываемой воды, с другой, удорожание реагентов, ионитов, а также высокие эксплуатационные затраты привели к необходимости совершенствования традиционных технологий и созданию новых схем обессоливания.

Наиболее перспективными технологиями обработки вод невысокой минерализации с повышенным содержанием органических примесей, что характерно для поверхностных вод центра и севера России, являются: противоточное ионирование и обессоливание на основе мембранных методов.

По результатам лабораторных исследований и промышленных испытаний было установлено, что данный катионит устойчиво работает с рабочей обменной емкостью Ер=1200÷1400 г-экв/м 3 при удельном расходе соли на регенерацию 100 г/г экв. При нагрузке в диапазоне 170÷500 м 3 /ч на один фильтр (скорость фильтрации до 50 м/ч, диаметр 3,8 м) жесткость умягченной воды держится на уровне 2 мкг-экв/дм 3 . Первые фильтроциклы составили 25000 м 3 , через год фильтроцикл снизился до 18000-20000 м 3 .

Высокое качество химочищенной воды при большой единичной производительности ионитных фильтров обеспечивается глубокой автоматизацией управления, как отдельными фильтрами, так и всей установки в целом. Установка может работать и периодически работает в полностью автоматическом режиме. При этом оперативный персонал контролирует состояние технологического процесса по компьютерным экранным формам визуализации и в любой момент может переключить управление установкой на ручной режим.

Данная установка отработала под контролем сотрудников кафедры ХХТЭ ИГЭУ почти год большей частью в автоматическом режиме [3]. Выработка умягченной воды за фильтроцикл составила 20000 м 3 , против 6000-8000 м 3 на традиционных прямоточных фильтрах в равных условиях. Удельные расходы соли снижены на 20%, расход воды на собственные нужды Nа-катионитного фильтра составил 1% по сравнению с 35% по традиционной технологии.

Однако, из-за отсутствия второй (барьерной) ступени и трудности определения момента вывода на регенерацию отключение противоточного фильтра часто проводится по количеству пропущенной воды со значительным запасом, что ведет к недовыработке обессоленной воды. При противоточной регенерации увеличивается интенсивность регенерации и, как следствие, количество переключений, что требует высокой культуры обслуживания таких установок, надежной арматуры, средств автоматизации и контроля. Все они требуют применения осветленной воды, глубоко очищенной от взвешенных, органических веществ, а также соединений железа. Эффективность применения противотока тем выше, чем качественнее поступающая на фильтры вода.

В последнее время большое внимание уделяется малореагентным методам и прежде всего мембранным технологиям.


Система доочистки пермеата может состоять из ступени ионного обмена с раздельным Н- и ОН-ионированием (прямоточным или противоточным), и (или) с фильтром смешанного действия. Поскольку на такую установку поступает частично обессоленная вода, ресурс фильтров значителен и достигает десятков и сотен тысяч кубических метров.

Сравнение экономической эффективности обессоливания воды ионным обменом и обратным осмосом показало, что при солесодержании более 150-300 мг/л обратный осмос экономичнее даже противоточного ионирования [4].

Имеющийся опыт эксплуатации установок обратного осмоса (УОО) свидетельствует о том, что основным фактором, от которого зависит работа мембран, является соблюдение норм качества воды, подаваемой на обработку. Производителями мембран к питательной воде, идущей на УОО, предъявляют требования, представленные в табл. 1 [4].

Таблица 1. Требования к воде, поступающей на УОО.

Показатель Значение
Температура, °С до 45
Концентрация свободного хлора, мг/л до 0,1
Показатель pH во время работы 2-11
Показатель pH во время промывки 1-12
Концентрация железа, мг/л до 0,1
Содержание органических веществ по общему органическому углероду (ТОС), мг/л до 3
Концентрация марганца, мг/л до 0,1
Мутность, NTH до 0,1
Концентрация масел и нефтепродуктов, мг/л до 0,1
Коллоидный индекс SDI до 5

Внедрение УФ на стадии предочистки значительно увеличило производительность обратноосмотических мембран, в несколько раз сократило частоту химических промывок, высвободило производственные площади, уменьшило расход коагулянта, обеспечило возможность отказа от извести.

Совместное использование ультрафильтрации и обратного осмоса дает возможность создать малореагентную систему водоподготовки для получения фильтрата с удельной электропроводностью на уровне 1-5 мкСм/см. В таких схемах дальнейшее доведение качества воды до нормативных значений обычно производится ионообменным (рис. 2) методом.

Надежность комбинированной мембранноионообменной установки (рис. 2) большая, поскольку даже при возможных нарушениях работы системы обратного осмоса, узел доочистки обеспечит заданное качество воды. Вместе с тем, сохраняется необходимость в использовании кислоты и щелочи, поэтому данная технология, хоть и в меньшей степени, имеет те же недостатки, что и традиционная. Такая технология применяется на Новочеркасской ГРЭС, Заинской ГРЭС, Орловской ТЭЦ и т.д.

Основным недостатком всех мембранных систем является достаточно низкий коэффициент использования исходной воды. Если в традиционной ионообменной схеме с коагуляцией и механической фильтрацией собственные нужды составляют 10-20%, то для типичного сочетания ультрафильтрации и обратного осмоса этот показатель 40-50%. Однако следует учитывать, что концентраты от установок ультрафильтрации и обратного осмоса по солесодержанию часто находятся в пределах нормируемых значений и могут быть беспрепятственно сброшены.

Комбинированные мембранно-ионообменные схемы, имеющие высокую степень экономической эффективности и надежности, являются оптимальным и рекомендуемым методом при реконструкции существующих ВПУ, где уже имеются ионообменные фильтры, реагентное хозяйство и системы сбора и нейтрализации стоков. Количество концентрированных сточных вод и расход реагентов в этом случае в десятки раз меньше, чем при чисто ионообменной схеме. Полученные сточные воды могут быть разбавлены до допустимых норм концентратом мембранных установок.

С точки зрения обеспечения минимального расхода реагентов и наивысшей экологичности при высоком качестве обессоленной воды наибольшую эффективность имеют комплексные ВПУ, состоящие исключительно из мембранных модулей различного назначения: ультра- и нанофильтрации, обратного осмоса, мембранной дегазации и электродеионизации, называемых в целом - интегрированные мембранные технологии (ИМТ) [4, 5].

В комплексной мембранной установке (рис. 3) вода доочищается на узле электродеионизации. Электродеионизация (ЭДИ, EDI) - это процесс непрерывного обессоливания воды с использованием ионообменных смол, ионоселективных мембран и постоянного электрического поля.


При степени использования исходной воды 90-95% очищенная вода имеет удельную электропроводность на уровне 0,1 мкСм/см (табл. 3), а также минимальное кремнесодержание и общий органический углерод. При этом солесодержание концентрата обычно ниже, чем солесодержание воды, подаваемой на установку обратного осмоса, поэтому он весь возвращается на вход этой установки на повторное использование.

Таблица 3. Характеристики работы установок электродеионизации.

Показатель ЭДИ1 ЭДИ2 ЭДИЗ
Удельная электропроводность обрабатываемой воды, мкСм/см 2,5 2,5 2,5
Удельная электропроводность фильтра, мкСм/см 0,11 0,15 0,09
Производительность по фильтру, м 3 /ч 10 10 10
Расход концентрата, м 3 /ч 1,05 1,0 1,05
Перепад давления на входе и выходе, ата 1,9 1,3 0,7
Перепад давления фильтра и концентрата, ата 0,4 0,3 0,3
Напряжение, В 614 614 614
Сила тока, А 3 3 3

Все производители установок электродеионизации предъявляют очень высокие требования к воде, подаваемой на установку ЭДИ вне зависимости от ее конструкции (табл. 4).

Таблица 4. Типичные требования производителей к питающей воде установок ЭДИ.

Характеристика исходной воды Значения
pH 5-9
Удельная электропроводность, мкСм/см 3 /ч 18 18 18
Суммарный часовой расход воды, поступающей на УОО, м 3 /ч 22,06 21,96 21,96
Производительность осветлителя ВТИ-100, м 3 /ч 30,2 28,65 30,03
Фильтроцикл ФСД, м 3 21240 63720 63720
Расход кислоты на регенерацию, т/год 0,54 0,16 0,16
Расход щелочи на регенерацию, т/год 0,54 0,16 0,16


Полученные данные доказывают повышение качества обессоленной воды после второй ступени обработки на УОО. Содержание ионов натрия, кремнекислоты и электропроводность снижаются более чем в 3 раза, также снижается содержание соединений железа и хлоридов.

Прослеживая динамику изменения качества обессоленной воды, можно отметить, что двухступенчатое обессоливание на УОО не позволяет достаточно снизить значение электропроводности, однако, позволяет получить требуемые параметры качества воды по содержанию соединений кремнекислоты и натрия для добавочной воды для подпитки котлов-утилизаторов. Повышение качества исходной воды для ФСД позволяет снизить ионную нагрузку на них более, чем в 3 раза, что приводит к значительному увеличению фильтроцикла, уменьшению количества воды, используемой на собственные нужды ВПУ, снижению потребности в кислоте и щелочи для регенерации. Следовательно, снижается экологический ущерб, наносимый окружающее среде.

Испытания с коагулянтом - сульфатом алюминия при двухступенчатой схеме работы установок обратного осмоса показали, что существует возможность улучшить качество воды, идущей на УОО, и повысить ресурс работы патронных фильтрующих элементов для УОО.

Таким образом, на отечественном энергетическом рынке появилось большое количество нового водоподготовительного оборудования с высокими экологическими характеристиками. Широкому внедрению их в производство мешает отсутствие нормативной базы на их использование и противоречивый опыт эксплуатации головных установок на отечественных ТЭС, особенно для вод с повышенным содержанием органических веществ.

Литература

1. СО 153-34.20.501-2003 (РД 34.20.501-95). Правила технической эксплуатации электрических станций и сетей Российской Федерации. Утв. Приказом Министерства энергетики Российской Федерации от 19 июня 2003 г. № 229. - М.: СПО ОРГРЭС, 2003.

2. Ходырев Б.Н., Кривчевцов А.Л., Соколюк А.А. Исследование процессов окисления органических веществ в теплоносителе ТЭС и АЭС // Теплоэнергетика. 2010. С. 11-16.

4. Проектные решения водоподготовительных установок на основе мембранных технологий / А.А. Пантелеев, Б.Е. Рябчиков, А.В.Жадан и др. // Теплоэнергетика. 2012. № 7. С. 30-36.

5. Пуск системы водоподготовки ПГУ-410 на Краснодарской ТЭЦ / А.А. Пантелеев, А.В.Жадан, С.Л. Громов и др. // Теплоэнергетика. 2012. № 7.

Читайте также: