Виды биологических объектов применяемых в биотехнологии их классификация и характеристика реферат

Обновлено: 04.07.2024

2. Классификация биообъектов как продуцентов лекарственных и диагностических препаратов и их функции.

3. Макромолекулы природного происхождения – промышленные биокатализаторы.

4. Совершенствование биообъектов методами мутагенеза и селекции.

6. Вариационный ряд.

7. Методы отбора.

9. Совершенствование биообъектов методами клеточной инженерии.

Самым главным элементом биотехнологического производства, определяющим его специфику, является биообъект.

Биообъектом может быть целостный, сохранивший жизнеспособность, многоклеточный или одноклеточный организм. Им могут являться изолированные клетки многоклеточного организма, а также вирусы и выделенные из клеток мультиферментные комплексы, включенные в определенный метаболический процесс. Наконец, биообъектом может быть индивидуальный изолированный фермент.

Функция биообъекта – полный биосинтез целевого продукта, включающий обычно ряд этапов, то есть последовательных ферментативных реакций или, в крайнем случае, катализ лишь одной ферментативной реакции, которая имеет ключевое значение для получения целевого продукта.

Биообъект, осуществляющий полный биосинтез целевого продукта принято именовать продуцентом. Иммобилизированный биообъект, являющийся индивидуальным ферментом или выполняющий функцию одной ферментативной реакции используемой биотехнологом – именуют промышленным биокатализатором.

Таким образом, к биообъектам могут быть отнесены как макромолекулы, так микро- и макроорганизмы, то есть от вирусов до человека. В качестве макромолекул в промышленном производстве используются все известные классы ферментов, но наиболее часто - гидролазы и трансферазы.

Наиболее широко в качестве биообъектов используются микроорганизмы. Как биообъекты, микробные клетки прокариот и эукариот в современном биотехнологическом производстве являются продуцентами первичных метаболитов, используемых в качестве лекарственных средств: аминокислот, азотистых оснований, липидных структур, коферментов, моно- и дисахаров, ферментов медицинского назначения, применяемых в заместительной терапии и т.д.

Микроорганизмы образуют также огромное количество вторичных метаболитов, многие из которых также нашли применение в клинике. Например, гормоны, антибиотики, витамины и другие перспективные корректоры гомеостаза клеток млекопитающих.

Итак, что же мы подразумеваем под термином "совершенствование биообъекта"? - Прежде всего – это повышение продуктивности биообъекта. Далее, какие же изменения нужны при совершенствовании биообъекта? - только наследственные. Это изменения, локализованные в ДНК, передающиеся при репликации ДНК и, соответственно, при размножении биообъекта (наследственные изменения). Только это, собственно, и интересует биотехнологов. То есть, наследственные изменения фенотипа - это изменения, которые реализуются, при изменении ДНК.

По выраженности почти любого признака в микробной популяции составляют вариационный ряд. Большинство клеток имеют среднюю выраженность признака.

Итак, по каким же специфическим свойствам мы совершенствуем биообъект?

2. Экономичность (микроорганизм использует более дешевую и питательную среду).

3. Дефицитность (микроорганизм использует более доступную питательную среду).

4. Вязкость (в случае жидкой культуральной среды).

Поскольку из цеха ферментации культуральная среда (жидкость) идет в цех выделения и очистки, то там сотрудники часто жалуются на высокую вязкость культуральной жидкости, в результате чего мицелий невозможно ни отцентрифугировать, ни отфильтровать. Значит, задача селекционеров - улучшение свойств культуральной жидкости.

5. Промышленная гигиена.

Например, когда нарабатывается антибиотик цефалоспорин, очень трудно находиться в помещении (запах тухлой капусты). Значит, в идеале штамм должен выделять как можно меньше летучих веществ.

6. Устойчивость к заболеваниям.

Вы знаете, что если у вас биообъект – растение, то он может быть поражен бактериями, грибами и т.д. А если у вас биообъектом является микробный гриб или актиномицет, то он может быть поражен фагами (т.е. микробными вирусами).

Если рассмотреть цели клеточной инженерии, то можно сказать, что в идеале с ее помощью мы можем получать межвидовые и межродовые гибриды микроорганизмов, а также – можем получать гибриды клеток между отдаленными в эволюционном отношении многоклеточными организмами. Новое направление в биотехнологии – сочетание клеточной инженерии с инженерной энзимологией непосредственно в производстве.

Лекция №3

Совершенствование продуцентов (биообъектов) методами генетической инженерии.

План лекции

1. Понятие генетической инженерии.

2. Схема этапов работы генного инженера.

3. Факторы, определяющие выбор микроорганизма-продуцента.

4. Понятие и функции плазмидного вектора.

5. Функции рестриктаз и лигаз.

7. Явление сплайсинга

Наибольшие практические успехи генетической инженерии применительно к биотехнологии лекарств достигнуты в настоящее время в области создания штаммов микроорганизмов-продуцентов видоспецифичных для человека белков. Такие белки для микробной клетки являются чуждыми, в организме же человека одни из них играют роль биорегуляторов (белковые гормоны), другие – факторов врожденного иммунитета (интерфероны) и т. д.

Технология рекомбинантных ДНК (её называют также молекулярным клонированием или генной инженерией) – это совокупность экспериментальных процедур, позволяющая осуществить перенос генетического материала из одного организма в другой. Никакого единого универсального набора методик здесь не существует, но чаще всего эксперименты проводятся по строго определенной схеме. Генетическая инженерии – это соединение фрагментов ДНК (природного происхождения, синтетических или тех и других) в пробирке, т. е. in vitro и последующее введение новых (рекомбинантных) структур в живую клетку с тем условием, чтобы введенный, точно охарактеризованный фрагмент ДНК реплицировался после включения в хромосому или автономно экспрессировался.

Схему этапов работы генного инженера.

1. Соединение фрагментов ДНК, т.е. нуклеотидных последовательностей в пробирке (могут быть и синтетические последовательности или смесь природных и синтетических последовательностей).

2. Далее, к гену, кодирующему целевой белок присоединяется нуклеотидная последовательность, кодирующая так называемую лидерную последовательность аминокислот (преимущественно гидрофобных). Синтезированный в клетке целевой продукт с такой лидерной последовательностью аминокислот проходит с их помощью через липидные слои цитоплазматической мембраны из клетки наружу.

При выборе микроорганизма учитывается ряд обстоятельств.

1. Поскольку микроорганизм будет выращиваться в производственных условиях в большом количестве и с ним будут контактировать многие работники предприятия (биологи, химики и т.д.), поэтому желательно, чтобы он не был патогенным. Также необходимо, чтобы в целевом генно-инженерном продукте не было присутствия даже следов микробных токсинов.

2. Как чужеродная для клетки структура, проникший в клетку вектор не должен расщепляться нуклеазами клетки. Генетический материал должен сохраняться.

3. У будущего продуцента целевого продукта необходимо ослабить те системы репарации на уровне ДНК, которые могут уничтожить вектор. То есть рибосомы потенциального продуцента должны воспринимать информационную РНК, соответствующую чужеродному материалу.

4. Образовавшийся чужеродный для клетки белок (для биотехнолога - целевой продукт) не должен расщепляться ее протеазами, т.е. он не должен подвергаться воздействию систем, гидролизующих чужеродные белки.

5. Наконец, желательно, чтобы у потенциального продуцента чужеродного белка, последний выводился из клетки в среду. Этим облегчается его последующее выделение и очистка.

Таким образом, нужно иметь ген, подходящую клетку и транспортное устройство, которое получило название вектор. Вектор конструируется на основе плазмид. Плазмида состоит из 2-х спиральной ДНК (замкнутая кольцевая молекула), в принципе тоже самое, как и у бактериальной хромосомы. Отличие заключается в том, что плазмида раз в 100 меньше хромосомы. Например, если в бактериальной хромосоме содержится примерно 3000 генов (от 1 тысячи до 6-7 тысяч), то в плазмиде - примерно 30 генов.

Так вот, надо. Что используется для этого? Для того чтобы ввести ген в вектор используются ферменты рестриктазы (от слова restrict - разрезание), которые по биохимической классификации относятся к нуклеазам (к эндонуклеазам). Затем, чтобы ген закрепить прочно в векторе (транспортном устройстве) вступают в действие другие ферменты - это лигазы (от слова "лигатура" - сшивание), которые "сшивают" ген и вектор ковалентной связью.

Лекция №4

Геномика и протеомика

План лекции

1. Периоды развития генетики.

2. Секвенирование генома.

3. Цель и классификация геномики.

4. Модельные микроорганизмы.

5. Существенность гена.

6. Философские проблемы геномики.

Что собственно значит геномика? Чем она отличается от генетики? Геномика во главу угла ставит уже не ген, а полный геном микробной, растительной и животной клеток. Геном - это уже качественный скачок вперед, демонстрирующий преодоление массы трудностей как технических и теоретических. Итак, геном прокариот, как вы знаете, в наследственном, т.е. генетически рассматриваемом отношении - это одна хромосома, т.е. кольцевая, замкнутая ДНК. Что касается генома эукариот (помните, там оформленное ядро, мембрана), то он, как правило, сложнее, так как клетки эукариот имеют несколько хромосом. У прокариот геном - гораздо проще, чем у эукариот, количество генов у них гораздо меньше, чем у эукариот. И мы с вами будем рассматривать некоторые примеры, используя клетки именно прокариот, геном которых является более простым.

Несмотря на то, что геномика как наука, возникла относительно недавно, условно можно выделить определенные направления. Ну сама по себе геномика - это структурная оценка генома в целом: вы определяете путем секвенирования последовательность пар нуклеотидов, то есть сначала структуру отдельного гена, а затем и структуру всего генома.

Однако по ряду отдельных вопросов вы ведете исследования в направлении, так называемой сравнительной геномики. Значит, секвенируете геномы и гены в разных организмах и сопоставляете их друг с другом и решаете определенные теоретические и практические вопросы.

Еще одно очень важное направление, оказавшееся в дальнейшем ещё и очень трудоемким - это геномика функциональная или метаболическая. Идентификация генов проводится с помощью специальных компьютерных программ, в которых описаны геномы так называемых модельных микроорганизмов.

Теперь следующий очень важный момент - у каждого гена есть стартовая часть, есть детерминирующая часть и есть рамка считывания, т.е. структурный ген, которой индивидуален для каждого гена. А вот стартовая и детерминирующая части, как правило, стандартны (за редким исключением).

Итак, важнейшая проблема заключается в том, - каким образом от шифра перейти к функции.

Объекты, используемые в биотехнологии (они включают представителей, как прокариот, так и эукариот), чрезвычай­но разнообразны по своей структурной организации и био­логическим характеристикам. К объектам биотехнологии относятся:

— бактерии и цианобактерии;

— клетки растений и животных.

В группу низших растений входят и микроскопически малые организмы (одноклеточные и многоклеточные), и очень крупные по размерам. Но все они объединены таки­ми общими признаками, как отсутствие расчленения тела на вегетативные органы и разнообразие способов размноже­ния.

К низшим относят следующие отделы: Вирусы, Бакте­рии, группа отделов Водоросли (Сине-зеленые, Зеленые, Ди­атомовые, Бурые, Красные и др.), Миксомицеты, Грибы, Лишайники. По способу питания их подразделяют на две группы: автотрофы (водоросли и лишайники), способные к фотосинтезу, и гетеротрофы (вирусы, бактерии — за не­большим исключением, — миксомицеты, грибы), исполь­зующие для питания готовые органические вещества.

Низшие растения прошли длинный исторический путь развития, но многие их представители до сих пор сохрани­ли черты примитивной организации. На определенном эта­пе развития они дали начало высшим растениям, венцом которых являются покрытосеменные.

Вирусы (от лат. virus — яд) — это мельчайшие организ­мы (не более 200-300 нм), невидимые в световой микроскоп, не имеющие клеточного строения, лишенные собственных систем энергообеспечения, отличающиеся паразитическим способом существования, т. е. являющиеся внутриклеточ­ными паразитами. Детальное изучение вирусов стало воз­можным с развитием электронной микроскопии, биохимии, молекулярной биологии.

Механизм инфицирования. Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на следующие этапы.

Присоединение к клеточной мембране — так назы­ваемая адсорбция. Обычно, для того чтобы вирус адсорби­ровался на поверхности клетки, она должна иметь в соста­ве своей плазматической мембраны специфический белок (часто гликопротеин) — рецептор, специфичный для данно­го вируса. Наличие рецептора нередко определяет круг хо­зяев данного вируса, а также его тканеспецифичность.

Проникновение в клетку. На этом этапе вирусу необ­ходимо доставить внутрь клетки свою генетическую инфор­мацию. Некоторые вирусы привносят также собственные белки, необходимые для ее реализации. Различные вирусы для проникновения в клетку используют разные стратегии. Вирусы также различаются по локализации их реплика­ции: часть вирусов размножается в цитоплазме клетки, а часть — в ее ядре.

Создание новых вирусных компонентов. Размноже­ние вирусов в самом общем случае предусматривает три процесса:

— транскрипцию вирусного генома, т. е. синтез вирус­ной мРНК;

— трансляцию мРНК, т. е. синтез вирусных белков;

— репликацию вирусного генома.

У многих вирусов существуют системы контроля, обес­печивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной мРНК накопле­но достаточно, транскрипция вирусного генома подавляет­ся, а репликация, напротив, активируется.

Классификация вирусов. Систематику и таксономию вирусов кодифицирует и поддерживает Международный комитет по таксономии вирусов (International Committee on Taxonomy of Viruses, ICTV), поддерживающий также и так­сономическую базу The Universal Virus Database ICTVdB.

Форма представления генетической информации лежит в основе современной классификации вирусов. В настоящее время их подразделяют на ДНК- и РНК-содержащие вирусы.

К вирусам относятся бактериофаги — паразиты микро­организмов. Они состоят из двух частей: призматической головки и хвостового отростка. Если добавить к микробам бактериофаг, действующий именно на данный вид микро­бов, через несколько минут его можно обнаружить на по­верхности микробной клетки, к которой он прикрепляется отростком. Затем бактериофаг выделяет фермент, раство­ряющий оболочку бактерии в месте прикрепления отрост­ка. Сквозь это отверстие ДНК, находящаяся в головке, по­падает в клетку. Капсид остается снаружи. Под влиянием ДНК фага обмен веществ бактерии перестраивается, белок синтезирующие системы бактерии образуют белки фага, происходит репликация фаговой ДНК. Через 15-30 мин оболочка клетки разрывается, и огромное количество фагов выходит в окружающую среду. Фаги заражают новые клет­ки, вызывая их лизис.

Значение вирусов. Вирусы вызывают ряд опасных забо­леваний человека (оспу, гепатит, грипп, корь, полиомие­лит, СПИД, рак и т. д.), растений (мозаичную болезнь таба­ка, томата, огурца, карликовость, увядание земляники), животных (чуму свиней, ящур). Однако препараты соответ­ствующих бактериофагов применяют для лечения бактери­альных заболеваний — дизентерии и холеры.

Получение интерферона — особого клеточного белка, препятствующего размножению вирусов, — широко ис­пользуют в медицине, особенно во время вспышек эпидемий гриппа. Это вещество универсального действия, активное по отношению ко многим вирусам, хотя чувствительность разных вирусов к нему неодинакова. Будучи продуктом са­мой клетки, интерферон полностью лишен токсического воздействия на нее. Сейчас применяют готовый интерфе­рон, его можно синтезировать в клетках, культивируемых вне организма.

Строение бактерий. Подавляющее большинство бакте­рий (за исключением актиномицетов и нитчатых цианобак­терий) одноклеточны. По форме клеток они могут быть шаровидными (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже — звездчатыми, тетраэдрическими, куби­ческими, С- или О-образными. Обязательными клеточными структурами бактерий являются:

— цитоплазматическая мембрана (ЦПМ).

Прокариоты, в отличие от эукариот, не имеют в цито­плазме обособленного ядра. Вся необходимая для жизнеде­ятельности бактерий генетическая информация содержится и одной двухцепочечной ДНК (бактериальная хромосома), имеющей форму замкнутого кольца. Она в одной точке прикреплена к ЦПМ. ДНК в развернутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, т. е. практически все прокариоты гаплоидны, хотя в отдельных случаях одна клетка может содержать несколько копий своей хромосо­мы. Деление хромосомы сопровождается делением клетки. Область клетки, в которой локализована хромосома, называется нуклеоидом; она не окружена ядерной мембраной. 1$ связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, т. е. процессы транскрип­ции и трансляции могут протекать одновременно. Ядрыш­ка нет.

Помимо хромосомы, в клетках бактерий часто находят­ся плазмиды — замкнутые в кольцо небольшие молекулы ДНК, способные к независимой репликации. Они содержат дополнительные гены, необходимые лишь в специфических условиях. В них кодируются механизмы устойчивости к от­дельным лекарственным препаратам, способности к перено­су генов при конъюгации, синтеза веществ антибиотиче­ской природы, способности использовать некоторые сахара или обеспечивать деградацию ряда веществ. То есть плаз­миды действуют как факторы адаптации. В некоторых слу­чаях гены плазмиды могут интегрировать в хромосому бак­терии.

Рибосомы прокариот отличаются от таковых у эукариот и имеют константу седиментации 70 S (у эукариот — 80 S).

У разных групп прокариот имеются локальные впячива- ния ЦПМ — мезосомы, выполняющие в клетке разнообраз­ные функции и разделяющие ее на функционально различ­ные части. Считается, что мезосомы принимают участие в делении бактерий. Когда на мембранах мезосом располага­ются окислительно-восстановительные ферменты, они явля­ются эквивалентами митохондрий клеток растений и живот­ных. У фотосинтезирующих бактерий во впячивания мембран вмонтирован пигмент — бактериохлорофилл. С его помощью и осуществляется бактериальный фотосинтез.

С внешней стороны от ЦПМ находятся несколько слоев (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки, пили).

У бактерий существует два основных типа строения кле­точной стенки, свойственных грамположительным и грамотрицательным видам. Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщи­ной 20-80 нм, построенный в основном из пептидогликана муреина с большим количеством тейхоевых кислот и не­большим количеством полисахаридов, белков и липидов. У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружен наружной мембраной, имеющей, как правило, неровную, искривленную форму.

С внешней стороны от клеточной стенки может нахо­диться капсула — аморфный слой гидратированных поли­сахаридов, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру.

Многие бактерии способны к активному движению с по­мощью жгутиков — выростов цитоплазмы.

Размножение бактерий. Бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием. Для одной группы одноклеточных цианобактерий описано множественное де­ление (ряд быстрых последовательных бинарных делений, приводящих к образованию от 4 до 1000 новых клеток под оболочкой материнской клетки).

У прокариот может происходить горизонтальный пере­нос генов. При конъюгации клетка-донор в ходе непосред­ственного контакта передает клетке-реципиенту часть свое­го генома (в некоторых случаях — весь геном). Участки ДНК донорной клетки могут обмениваться на гомологич­ные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.

Бактериальная клетка может поглощать и свободно на­ходящуюся в среде ДНК, включая ее в свой геном. Данный процесс носит название трансформации. В природных усло­виях обмен генетической информацией протекает с по­мощью бактериофагов (трансдукция). При горизонтальном переносе новых генов не образуется, однако осуществляется создание разных генных сочетаний. Эти свойства бактерий очень важны для генетической инженерии.

Спорообразование у бактерий. Некоторые бактерии об­разуют споры. Их формирование характерно для особо ус­тойчивых форм с замедленным метаболизмом и служит для сохранения в неблагоприятных условиях, а также для рас­пространения. Споры могут сохраняться продолжительное время, не теряя жизнеспособности. Так, эндоспоры многих бактерий способны выдерживать 10-минутное кипячение при 100 °С, высушивание в течение тысячи лет и, по неко­торым данным, сохраняются в жизнеспособном состоянии в почвах и горных породах миллионы лет.

Метаболизм бактерий. За исключением некоторых спе­цифических моментов, биохимические пути, по которым осуществляется синтез белков, жиров, углеводов и нуклео­тидов, у бактерий схожи с таковыми у других организмов. Однако по числу возможных биохимических путей и, соот­ветственно, по степени зависимости от поступления органи­ческих веществ извне бактерии различаются. Часть бакте­рий может синтезировать все необходимые им органиче­ские молекулы из неорганических соединений (автотрофы), другие же требуют готовых органических соединений, ко­торые они способны лишь трансформировать (гетеротрофы).

Значение бактерий. Бактерии-сапрофиты играют боль­шую роль в круговороте веществ в природе, разрушая в экосистемах мертвый органический материал. Хорошо из­вестна их роль во всех биогеохимических циклах на нашей планете. Бактерии принимают участие в круговоротах хи­мических элементов (углерода, железа, серы, азота, фосфо­ра и др.), в процессах почвообразования, определяют пло­дородие почв.

Биотехнологические функции, выполняемые бактериями, разнообразны. Их применяют при производстве различных веществ: уксуса (Gluconobacter suboxidans), молочнокислых напитков и продуктов (Lactobacillus, Leuconostoc), а также микробных инсектицидов (Bacillus thuringiensis) и герби­цидов, белков (Methylomonas), витаминов (Clostridium — рибофлавин); при переработке отходов, получении бактери­альных удобрений, растворителей и органических кислот, биогаза и фотоводорода. Широко используется такое свой­ство некоторых бактерий, как диазотрофность, т. е. способ­ность к фиксации атмосферного азота.

Благодаря быстрому росту и размножению, а также простоте строения, бактерии активно применяют в научных исследованиях по молекулярной биологии, генетике и био­химии, в генно-инженерных работах при создании геном­ных клонотек и введении генов в растительные клетки (агробактерии). Информация о метаболических процессах бактерий позволила производить бактериальный синтез ви­таминов, гормонов, ферментов, антибиотиков и др.

Перспективными направлениями являются очистка с использованием бактерий почв и водоемов, загрязненных нефтепродуктами или ксенобиотиками, а также обогащение руд с помощью сероокисляющих бактерий.

Нельзя забывать о том, что отдельные виды бактерий вызывают опасные заболевания у человека (чуму, холеру, туберкулез, брюшной тиф, сибирскую язву, ботулизм и др.), животных и растений (бактериозы). Некоторые виды бактерий могут разрушать металл, стекло, резину, хлопок, древесину, масла, лаки, краски.

Микроорганизмов, синтезирующих продукты или осуществляющих реакции, полезные для человека, несколько сотен видов. Биотехнологические функции бактерий разнообразны. Бактерии используются при производстве: - пищевых продуктов, например, уксуса (Gluconobacter suboxidans), молочнокислых напитков (Lactobacillus, Leuconostoc) и др.; - микробных инсектицидов (Bacillus thuringiensis); - белка (Methylomonas); - витаминов (Clostridium - рибофлавин); - растворителей и органических кислот; - биогаза и фотоводорода.

Содержание

Бактерии и цианобактерии
Использование грибов в биотехнологии
Простейшие в биотехнологии
Водоросли
Растения в биотехнологии
Список литературы

Работа содержит 1 файл

Объекты биотехнологии.docx

  1. Бактерии и цианобактерии
  2. Использование грибов в биотехнологии
  3. Простейшие в биотехнологии
  4. Водоросли
  5. Растения в биотехнологии
  6. Список литературы

Объекты биотехнологии и их биотехнологические функции.

Биотехнологические объекты находятся на разных ступенях организации:

а) субклеточные структуры (вирусы, плазмиды, ДНК митохондрий и хлоропластов, ядерная ДНК);

б) бактерии и цианобактерии;

е) культуры клеток растений и животных;

ж) растения – низшие (анабена-азолла) и высшие – рясковые.

Бактерии и цианобактерии

Микроорганизмов, синтезирующих продукты или осуществляющих реакции, полезные для человека, несколько сотен видов. Биотехнологические функции бактерий разнообразны. Бактерии используются при производстве: - пищевых продуктов, например, уксуса (Gluconobacter suboxidans), молочнокислых напитков (Lactobacillus, Leuconostoc) и др.; - микробных инсектицидов (Bacillus thuringiensis); - белка (Methylomonas); - витаминов (Clostridium - рибофлавин); - растворителей и органических кислот; - биогаза и фотоводорода.

Полезные бактерии относятся к эубактериям. Уксуснокислые бактерии, представленные родами Gluconobacter и Acetobacter, - это грамотрицательные бактерии, превращающие этанол в уксусную кислоту, а уксусную кислоту в углекислый газ и воду. Род Bacillus относится к грамположительным бактериям, которые способны образовывать эндоспоры и имеют перитрихиальное жгутикование. B.subtilis - строгий аэроб, а B.thuringiensis может жить и в анаэробных условиях. Анаэробные, образующие споры бактерии представлены родом Clostridium. C.acetobutylicum сбраживает сахара в ацетон, этанол, изопропанол и n-бутанол (ацетобутаноловое брожение), другие виды могут также сбраживать крахмал, пектин и различные азотсодержащие соединения.

К молочнокислым бактериям относятся представители родов Lactobacillus, Leuconostoc и Streptococcus, которые не образуют спор, грамположительны и нечувствительны к кислороду. Гетероферментативные молочнокислые бактерии рода Leuconostoc превращают углеводы в молочную кислоту, этанол и углекислый газ. Гомоферментативные молочнокислые бактерии рода Streptococcus продуцируют только молочную кислоту, а брожение, осуществляемое представителями рода Lactobacillus, позволяет получить наряду с молочной кислотой ряд разнообразных продуктов.

К бактериям рода Corynebacterium, неподвижные грамположительные клетки которых не образуют эндоспор, относятся патогенные (C.diphtheriae, C.tuberculosis) и непатогенные почвенные виды, имеющие промышленное значение. С.glutamicum служит источником лизина и улучшающих вкус нуклеотидов. Коринебактерии хотя и считаются факультативными анаэробами, лучше растут аэробно. Бактерии используются для микробного выщелачивания руд и утилизации горнорудных отходов.

Широко используется такое свойство некоторых бактерий, как диазотрофность, то есть способность к фиксации атмосферного азота.

Выделяют 2 большие группы диазотрофов:

- симбионты: без корневых клубеньков (азотобактер - лишайники, азоспириллум - лишайники, анабена – лишайники, азолла), с корневым клубеньками (бобовые – ризобии, ольха, лох, облепиха – актиномицеты);

- свободноживущие: гетеротрофы ( азотобактер, клостридиум, метилобактер), автотрофы (хлоробиум, родоспириллум и амебобактер).

Микробные клетки используют для трансформации веществ.

Бактерии также широко используются в генноинженерных манипуляциях при создании геномных клонотек, введении генов в растительные клетки (агробактерии).

Производственные штаммы микроорганизмов должны соответствовать определенным требованиям: способность к росту на дешевых питательных средах, высокая скорость роста и образования целевого продукта, минимальное образование побочных продуктов, стабильность продуцента в отношении производственных свойств, безвредность продуцента и целевого продукта для человека и окружающей среды. В связи с этим все микроорганизмы, используемые в промышленности проходят длительные испытания на безвредность для людей, животных и окружающей среды. Важным свойством продуцента является устойчивость к инфекции, что важно для поддержания стерильности, и фагоустойчивость.

Все цианобактерии обладают способностью к азотфиксации, что делает их весьма перспективными продуцентами белка. Анабена (Anabaena) - нитчатая сине-зеленая водоросль. Нити из более или менее округлых клеток, содержат гетероцисты и иногда крупные споры, по всей длине нить одинаковой толщины. В цитоплазме клеток откладывается близкий к гликогену запасной продукт - анабенин. Такие представители цианобактерий, как носток, спирулина, триходесмиум съедобны и непосредственно употребляются в пищу. Носток образует на бесплодных землях корочки, которые разбухают при увлажнении. В Японии местное население использует в пищу пласты ностока, образующиеся на склонах вулкана и называет их ячменным хлебом Тенгу (Тенгу - добрый горный дух).

Использование грибов в биотехнологии

Биотехнологические функции грибов разнообразны. Их используют для получения таких продуктов, как:

    • антибиотики (пенициллы, цефалоспорины);
    • гиббереллины и цитокинины (фузариум и ботритис);
    • каротиноиды (н-р, астаксантин, придающий мякоти лососевых рыб красно-оранжевый оттенок вырабатывают Rhaffia rhodozima, которых добавляют в корм на рыбозаводах);
    • белок (Candida, Saccharomyces lipolitica);
    • сыры типа рокфор и камамбер (пенициллы);
    • соевый соус (Aspergillus oryzae).

    К грибам относятся дрожжи и плесени.

    Из 500 известных видов дрожжей первым люди научились использовать Saccharomyces cerevisiae, этот вид наиболее интенсивно культивируется. К дрожжам, сбраживающим лактозу, относится Kluyveromyces fragilis, который используют для получения спирта из сыворотки. Saccharomycopsis lipolytica деградирует углеводороды и употребляется для получения белковой массы. Все три вида принадлежат к классу аскомицетов. Другие полезные виды относятся к классу дейтеромицетов (несовершенных грибов), так как они размножаются не половым путем, а почкованием. Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности). Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков. Phaffia rhodozyma синтезирует астаксантин - каротиноид, который придает мякоти форели и лосося, выращиваемых на фермах, характерный оранжевый или розоватый цвет. Промышленные дрожжи обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность адаптироваться к изменениям среды культивирования (в норме ядро клетки S.cerevisiae содержит 17 или 34 хромосомы, т.е. клетки либо гаплоидны, либо диплоидны).

    Плесени вызывают многочисленные превращения в твердых средах, которые происходят пред брожением. Их наличием объясняется гидролиз рисового крахмала при производстве сакэ и гидролиз соевых бобов, риса и солода при получении пищи, употребляемой в азиатских странах. Пищевые продукты на основе сброженных плесневыми грибами Rhizopus oligosporus соевых бобов или пшеницы содержат в 5 - 7 раз больше таких витаминов, как рибофлавин, никотиновая кислота) и отличаются повышенным в несколько раз содержанием белка. Плесени также продуцируют ферменты, используемые в промышленности (амилазы, пектиназы и т.д.), органические кислоты и антибиотики. Их применяют и в производстве сыров, например, камамбера и рокфора.

    Искусственное выращивание грибов способно внести и иной, не менее важный вклад в дело обеспечения продовольствием возрастающего населения земного шара. Люди употребляют грибы в пищу с глубокой древности. Поэтому сделать грибы такой же управляемой сельскохозяйственной культурой, как зерновые злаки, овощи, фрукты, давно уже стало актуальной задачей. Наиболее легко поддаются искусственному выращиванию древоразрушающие грибы. Это связано с особенностями их биологии, которые стали нам известны и понятны только сейчас. Их способность легко расти и плодоносить использовали с древнейших времен.

    Искусственное разведение древоразрушающих грибов получило довольно широкое распространение. Мицелий съедобных грибов можно выращивают на жидких средах, например на молочной сыворотке и др., в специальных ферментерах, в так называемой глубинной культуре. Это полностью механизированный и автоматизированный процесс. Так, в Институте микробиологии Академии наук БССР разработаны и апробированы в опытном производстве способы получения белковых грибных препаратов даедалина и пантегрина из мицелия древоразрушающих грибов дедалеопсиса бугристого и пилолистника тигрового, с высоким содержанием белка и биологически активных веществ. По содержанию белка 1 кг этих препаратов эквивалентен 2 кг мяса. По биологической ценности белок этих препаратов не уступает растительным и приближается к животным белкам. Перевариваемость белков данных препаратов составляет свыше 80 %. В основе этого способа получения пищевого белка лежат полученные микологами данные о том, что плодовые тела грибов и их грибница близки по своему химическому составу и пищевой ценности. Грибные белковые препараты даедалин и пантегрин рекомендованы в качестве пищевых добавок после соответствующего медицинского контроля. Исследования в этом направлении продолжаются.

    они включают представителей как прокариот, так и эукариот), чрезвычайно разнообразны по своей структурной организации и биологическим характеристикам. К объектам биотехнологии относятся:

    — вирусы- препараты соответ­ствующих бактериофагов применяют для лечения бактери­альных заболеваний — дизентерии и холеры;

    — бактерии и цианобактерии- их применяют при производстве различных веществ: уксуса (Gluconobactersuboxidans),молочнокислых напитков и продуктов (Lactobacillus, Leuconostoc), а также микробных инсектицидов (Bacillusthuringiensis) и герби­цидов, белков (Methylomonas),витаминов (Clostridium— рибофлавин); при переработке отходов, получении бактери­альных удобрений, растворителей и органических кислот, биогаза и фотоводорода. Широко используется такое свой­ство некоторых бактерий, как диазотрофность, т. е. способ­ность к фиксации атмосферного азота, очистка с использованием бактерий почв и водоемов, загрязненных нефтепродуктами или ксенобиотиками, а также обогащение руд с помощью сероокисляющих бактерий;

    — водоросли- использовании их в качестве пищевых про­дуктов или как сырья для получения различных веществ, ценных для человека, съедоб­ные водоросли богаты минеральными веществами, особенно йодом, их используют как витаминную добавку к кормам для сельскохозяйственных животных,Красные водоросли служат источником получения агар-агара;

    — лишайники-выделяемые из них лишайниковые кислоты используют в качестве компонента лекарст­венных средств от ряда заболеваний, например кожных,получают душистые вещества, применяе­мые в парфюмерии;

    — грибы-их используют для получения таких продуктов, как:лимонная кислота (аспергиллус); гиббереллины и цитокинины (физариум и ботритис); каротиноиды (пстаксантин, придающий мякоти лосо-севых рыб красно-оранжевый оттенок, вырабатывают грибы Rhaffiarhodozima); белок (Candida, Saccharomyceslipolitica); Trichonporoncutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков.;

    — водные растения-водный папоротник азолла ценится как органическое азотное удобрение, поскольку растет в тесном симбиозе с синезеленой водорослью анабена, рясковыевысокопро­дуктивны, неприхотливы в культуре, хорошо очищают во­ду и обогащают ее кислородом;

    — клетки растений и животных

    Преимущества использования микроорганизмов в качестве объектов биотехнологии.

    Микроорганизмы как основные объекты биотехнологии.

    Бактерии, грибы, водоросли, лишайники, вирусы, простейшие в жизни людей играют значительную роль. С давних времен люди использовали их в процессах хлебопечения, приготовления вина и пива, в различных производствах. В настоящее время в связи с проблемами получения ценных белковых веществ, увеличения плодородия почв, очищения окружающей среды от загрязнителей, получения биопрепаратов и другими целями и задачами диапазон изучения и использования микроорганизмов значительно расширился. Микроорганизмы помогают людям в производстве эффективных питательных белковых веществ и биологического газа. Их используют при применении биотехнических методов очистки воздуха и сточных вод, при использовании биологических методов уничтожения сельскохозяйственных вредителей, при получении лечебных препаратов, при уничтожении утильсырья. Некоторые виды бактерий используются для регенерации ценных метаболитов и лекарств, их используют с целью решения проблем биологического саморегулирования и биосинтеза, очищения водоемов. Создана биотехнологическая промышленность для получения антибиотиков, ферментов, интерферона, органических кислот и других метаболитов, продуцентами которых являются многие микроорганизмы.

    Простейшие являются продуцентами не только ферментов, но и гистонов, серотонина, липополисахаридов, липополипептидоглюканов, аминокислот, метаболитов, применяемых в медицине и ветеринарии, пищевой и текстильной промышленностях. Они являются одним из объектов, применяемых в биотехнологии. Возбудитель южноамериканского трипаносомоза Trypanosomacruzi является продуцентом противоопухолевого препарата круцина и его аналога – трипанозы. Эти препараты оказывают цитотоксическое действие на клетки злокачественных образований. Поскольку биомасса простейших содержит до 50% белка, свободноживущие простейшие используются в качестве источника кормового белка для животных. Бактериальные ферменты (Bac.subtilis) используются для сохранения свежести кондитерских изделий и там, где нежелателен глубокий распад белковых веществ. Использование ферментных препаратов из Bac.subtilis в кондитерском и хлебобулочном производстве способствует улучшению качества и замедлению процесса червстления изделий. Ферменты Bac. mesentericus активизируют депелирование кожевенного сырья. Микроорганизмы широко используются в пищевой и бродильной промышленности, микроорганизмы широко используются при очистке биологическим методом вод морей от нефтепродуктовизготавливают микробиологические препараты, уничтожающие многих вредных насекомых

    Объектами молекулярной биотехнологии являются самые разнообразные биологические системы: микроорганизмы, клеточные линии насекомых, растений и млекопитающих, вирусы насекомых, растений и млекопитающих, многоклеточные организмы (растения, мыши, домашние животные и т. д.) – выбор системы зависит от целей эксперимента. Характер биологической системы исключительно важен для биотехнологического процесса. Во многих случаях именно генетически модифицированная самовоспроизводящая биологическая единица – микроорганизм, вирус, растение или животное – является конечным коммерческим продуктом. Среди множества биологических объектов, использующихся в молекулярной биотехнологии, основными являются бактерии Escherichia coli, одноклеточные дрожжи Saccharomyces cerevisiae и различные клеточные линии животного происхождения. Все они играют важную роль в получении белков, кодируемых клонированными генами.

    Цель занятия – изучить основные биологические объекты и их использование в биотехнологии

    При изучении данного материала студенту необходимо:

    2. Классификацию биологических объектов

    3. Характеристику основных видов биологических объектов

    4. Требования, предъявляющиеся к биологическим объектам, использующимся в биотехнологии

    5. Основные методы, применяющиеся в биотехнологии и краткую их характеристику

    Информационный материал

    Общие сведения о биологических объектах

    Объектами биотехнологии являются вирусы, бактерии, грибы – микромицеты и макромицеты, протозоиные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционально сходные с ними вещества (например, ферменты, простагландины, лектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, саморегулируемого и, следовательно, целенаправленного биохимического производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.

    Как видно из приводимой схемы, объекты биотехнологии исключительно разнообразны, диапазон их распространяется от организованных частиц (вирусов) до человека (рис. 1) .


    Рис. 1. Объекты биотехнологии

    Вирусы занимают положение между живой и неживой природой, у них нет ядра, хотя имеется наследственный ядерный материал – рибонуклеиновая кислота (РНК) или дезоксирибонуклеиновая кислота (ДНК).

    В отличие от микробов клеточной организации РНК и ДНК в вирусных частицах вместе никогда не обнаруживаются.

    В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов, тогда как третье — преимущественно из растений и животных.

    Несмотря на то, что представители всех надцарств содержат генетический материал, различные акариоты лишены какого-либо одного типа нуклеиновой кислоты РНК или ДНК. Они не способны функционировать (в том числе – реплицироваться) вне живой клетки, и, следовательно, правомочно именовать их безъядерными.

    Бактерии имеют клеточную организацию и у них имеются нуклеиновые кислоты обоих типов – РНК и ДНК, из которых ДНК представлена в виде одиночной (кольцевидной) хромосомы. Большинство из них размножается на питательных средах (вне организма), а если среди бактерий и есть безусловные (облигатные) паразиты, приближающиеся по данному признаку к вирусам (хламидии, спироплазмы, риккетсии), то паразитизм их отличается по своему механизму – его можно назвать клеточным.Паразитизм вирусов развивается на генетическом уровне.Таким образом, бактерии – это организмы, состоящие из функционально связанных структур, в том числе, генетических. Несмотря на то, что генетические структуры бактериальной клетки функционируют полноценно, они не сгруппированы в форме отграниченного ядра, и поэтому бактерии отнесены к предъядерным (прокариотическим) организмам.

    Клетки грибов, водорослей, растений и животных имеют настоящее, отграниченное от цитоплазмы, ядро и поэтому их относят к эукариотам.

    В основе классификации прокариот и эукариот лежат многочисленные структурные различия, основные из них следующие: 1) наличие или отсутствие ядра, содержащего хромосомную ДНК; 2) строение и химический состав клеточной стенки и 3) наличие или отсутствие субклеточных цитоплазматиче-ских органелл. В прокариотической клетке, например бактериальной, хромосомная ДНК находится непосредственно в цитоплазме, клетка окружена ригидной клеточной стенкой, в состав которой часто входит пептидогликан, но не хитин или целлюлоза; в клетке нет субклеточных цитоплазматических органелл. В эукариотической клетке имеется ядро, отделенное от цитоплазмы ядерной мембраной, хромосомная ДНК находится в ядре; клеточная стенка, если она есть, может содержать хитин или целлюлозу, но не пептидогликан; в цитоплазме содержатся различные субклеточные органеллы (митохондрии, аппарат Гольджи, хлоропласт в клетках растений) (рис. 2).



    Рис. 2. Схема прокариотической бактериальной клетки (А) и эукариотической животной клетки (Б)

    Читайте также: