Вещества облегчающие фильтрование реферат

Обновлено: 07.07.2024

Вещества, облегчающие фильтрование (адсорбенты, флокулянты и др.) – это инертные нерастворимые вещества, повышающие эффективность фильтрования, т. е. облегчающие и улучшающие отделение твердых частиц от жидкостей или газов при фильтровании, ускоряющие и дающие возможность удалять нежелательные замутняющие компоненты из жидкостей (преимущественно из напитков), которые длительное время должны оставаться прозрачными. Они не изменяют химический состав фильтруемого вещества. Вспомогательные фильтрующие материалы придают фильтрующему слою необходимую прочность и регулируют размер пор. Они способны также разрыхлять осадок, образующийся на фильтре, и уменьшать забивание пор фильтра.

Вспомогательные фильтрующие материалы добавляются к фильтруемой жидкости в виде суспензии или образуют вспомогательный слой на фильтре. Чаще всего используются целлюлоза, кизельгур и перлит. Целесообразно перед их применением провести очистку от растворимых оксидов железа и/или соединений микроэлементов.

Фильтрование может иметь целью не только очистку жидкости, но и получение твердых веществ, например, ультрафильтрация – метод фракционирования и концентрирования белков с помощью полимерных мембран.

В производстве осветленных натуральных соков пользуются фильтрацией и сепарацией. Для облегчения фильтрации, например пектинсодержащих фруктовых и ягодных соков, практикуют расщепление замутняющих целевой продукт пектинов и белков, а также снижение вязкости с помощью обработки ферментами. Возможные в дальнейшем белково-полифенольные помутнения предотвращают, удаляя полифенолы желатином, полиамидом или поливинилпирролидоном, а белки – бентонитом или танином.

Адсорбенты – это обычно твердые нерастворимые вещества, которые благодаря большой удельной поверхности могут селективно адсорбировать из жидкостей определенные вещества и вместе с ними выпадать в осадок.

Коагуляцией называют превращение золя (коллоидного раствора твердого вещества) в гель, сопровождающееся флокуляцией. Это превращение может быть вызвано добавкой коагулянтов (флокулянтов).

Осветлители

С помощью осветлителей удаляют мелкодисперсные и коллоидные компоненты, которые невозможно отфильтровать. Осветлители связывают мельчайшие частички мути и осаждаются вместе с ними. Принцип действия осветлителей может быть очень разным: адсорбция, коагуляция или образование с ионами металлов труднорастворимых соединений, которые выпадают в осадок и могут быть отфильтрованы от водных растворов.

Для осветления обычно используют агар, активированный уголь, каррагинан, целлюлозу, желатин, рыбий клей, древесный уголь, высушенный белок куриного яйца (10–20 г на 100 л), каолин, гексацианоферрат калия, кизельгур (300–400 г на 100 л), фитиновую кислоту, поли-винилполипирролидон, танин и другие вещества. Фруктовые соки, особенно яблочный, можно осветлять с помощью пектата натрия. В особых случаях для осветления вин применяют жидкий рыбий клей. Фурцеллеран облегчает осаждение белков в пиве.

Для эффективного использования осветлителей рекомендуется предварительно уточнить их дозировку в лабораторных условиях. Осветлители полностью удаляются фильтрацией или седиментацией из напитка, поэтому в готовом продукте они отсутствуют.

Экстрагенты

Экстрагенты – это жидкости или сжиженные газы, способные экстрагировать из растительного или животного сырья определенные его компоненты. При этом экстрагент и экстрагируемое вещество не вступают в химическое взаимодействие. По окончании процесса экстрагирования экстрагент обычно удаляют перегонкой.

Экстракция применяется в пищевой промышленности для выделения целевых веществ при получении сахара из сахарной свеклы, сока солодки, выделении жиров из жиросодержащего сырья, получении ароматических веществ и эфирных масел из растительного и животного сырья, получении экстрактов пряностей (олеорезинов), экстрактов хмеля, натуральных красителей, или для удаления нежелательных компонентов (спирт из напитков, никотин из табака, кофеин из кофе и чая).

Различают три вида экстракции: жидкостью из твердого вещества, жидкостью из жидкости и сжиженным газом из твердого вещества. Последний вид экстракции протекает под высоким давлением, достаточным для сжижения используемого газа. По окончании процесса экстрагирования давление снижают до атмосферного, газ полностью улетучивается и отпадает необходимость его дополнительного удаления. В качестве жидких экстрагентов чаще всего применяют воду, пищевые растительные масла, этиловый спирт и другие алифатические спирты, гексан и другие углеводороды, в том числе хлорированные.

Сжиженные газы – это обычно диоксид углерода, азот или пропан.

Экстракцию проводят в экстракторах различной конструкции непрерывного или периодического действия. Например, перфораторы применяют для экстрагирования жидкости жидкостью, а перколяторы – для экстрагирования из измельченных твердых веществ.

7.4. Осушители

Осушители – это вещества, удаляющие влагу из газов, жидкостей и твердых субстанций в закрытых емкостях. Осушители делят на две группы: химически и физически связывающие воду. Первые могут это делать путем образования новых соединений, например:

или путем образования гидратов, например:

Физическое связывание воды происходит путем растворения или адсорбции.

Сушка – один из древнейших методов обработки пищевых продуктов. Сушка их с помощью осушителей – очень мягкий, щадящий метод, при котором в продукте сохраняются даже легколетучие аро­матические вещества. Практическое его осуществление возможно разными способами. Обезвоживаемый продукт, например, можно поместить на определенное время в эксикатор, сушильный шкаф, башню, трубку или пистолет, заполненные осушителем. Газ обычно сушат, медленно пропуская его через емкость, заполненную хлори­дом кальция или силикагелем, адсорбирующим воду. Жидкости сушат, засыпая в них нерастворимые осушители, выдерживают их некоторое время и отфильтровывают или декантируют адсорбировав­ший воду осушитель.

Осушители, действие которых основано на образовании гидратов, можно регенерировать нагреванием. Это относится к оксиду кальция, солям кальция (карбонат, хлорид, сульфат) и другим сульфатам (медь, магний и натрий). Гидроксид калия и пятиокись фосфора не регенерируются.

Осушители используются не только для сушки пищевых продуктов и сырья, но также для установления и поддержания определенной влажности воздуха в закрытой емкости, например в упаковочном контейнере.

7.5. Средства для снятия кожицы

Удалять кожицу и кожуру с плодов и овощей можно механически, вакуумированием, обработкой паром или химическими средствами, обычно щелочами. Часто эти методы комбинируют.

Основные средства для снятия кожицы – это вещества, химическим путем удаляющие кожицу (кожуру, шкурку) с определенных видов фруктов и овощей: помидоров, огурцов, моркови, корней сельдерея, картофеля и других корнеплодов, груш, яблок, абрикосов, персиков и других косточковых плодов. Средства для снятия кожицы химическим путем размягчают оболочку растительных продуктов так, что после обработки ими она легко удаляется.

Химическая (щелочная) очистка проводится при различных концентрациях (от 0,5 до 20 %) щелочи и температуре ванны, с разной продолжительностью (в зависимости от вида растительного сырья): время обработки может колебаться от 2 (при 90–100 °С) до 15 мин (при 50–80 °С). Обработку можно повторять. Она проводится в специальных очистных машинах разной конструкции (например, во вращаю­щемся проволочном барабане). Отделение кожуры происходит во время вращения барабана – за счет трения овощей (фруктов, корнеплодов) друг о друга и о стенки барабана. Процесс можно вести сухим способом, а можно обрызгивать содержимое барабана водой. По окончании обработки щелочами проводят нейтрализацию очищенного сырья погружением его в раствор кислоты. Для фруктов используют 1–2 %-ный раствор лимонной кислоты.

7.6. Охлаждающие и замораживающие агенты

Охлаждающие агенты – это вещества, понижающие температуру пищевого продукта при прямом контакте с ним. Не следует путать охлаждающие агенты с хладоагентами, применяемыми в холодильной технике.

Охлаждающие и замораживающие агенты способны отнимать тепло у контактирующего с ними продукта благодаря очень низким собственным температурам плавления и кипения. Они могут применяться в форме газов, жидкостей или твердых тел. Замораживание можно проводить в одну или в две (т. е. через предварительное охлаждение) стадии.

Старейшим охлаждающим агентом является лед. Отнимая тепло у охлаждаемого пищевого продукта, лед превращается в воду. Это превращение во многих случаях нежелательно, но лед и сегодня сохраняет свое значение при охлаждении рыбы и морепродуктов. Кроме того, лед применяют, заменяя им часть вносимой по рецептуре воды, в производстве фаршевых мясопродуктов (колбаса, сосиски и т. п.), – чтобы предотвратить разогрев фаршевой массы.

Охлаждение воздухом подразделяют на медленное и быстрое. Медленное замораживание (более старый способ) осуществляют перемещающимся с небольшой скоростью воздухом (температурой до минус 25 °С). Быстрое замораживание заключается в обдувании замораживаемого продукта потоком воздуха высокой скорости и высокой влажности при температуре от минус 30 до минус 40 °С.

В хлебопечении охлаждение и замораживание диоксидом углерода и азотом используется для сохранения готовой продукции, прекращения процесса брожения в тесте, мгновенного охлаждения выпеченных изделий до температуры хранения, предварительного и промежуточного охлаждения на полностью автоматизированных линиях и отвода тепла при механической обработке тестовых масс.

Охлаждающие агенты необходимы при помоле – для охлаждения разогреваемого за счет силы трения продукта.

7.7. Вещества, способствующие жизнедеятельности

Полезных микроорганизмов

Целый ряд пищевых продуктов изготавливают в ходе биотехнологических процессов: хлеб и хлебобулочные изделия, вино, пиво, квас, спирт получают в результате дрожжевого брожения; сырокопченые колбасы, квашеные овощи, кисломолочные продукты образуются под действием бактерий, а отдельные виды сыров обязаны своим существованием плесневым грибам.

Обмен веществ и развитие клеток микроорганизмов невозможны без питания. Кроме воды им необходимы углерод, азот, минеральные вещества, микроэлементы, витамины, аминокислоты, пиримидины и пурины.

По способности использования источников углерода различают автотрофные и гетеротрофные микроорганизмы. Первые используют в качестве источника углерода углекислый газ и органические вещества, которые они могут получать, окисляя неорганические. Гетеротрофным микроорганизмам требуются органические источники углерода. В пищевой промышленности применяются гетеротрофы. Источниками углерода им служат моносахариды (глюкоза, фруктоза, галактоза и др.), дисахариды (сахароза, лактоза, мальтоза, целлобиоза), трисахариды (раффиноза), полисахариды, олиго- и полипептиды, аминокислоты, а также природное сырье и продукты его переработки (картофель, мука, свекла, целлюлоза, шрот и др.). В настоящее время в качестве источника углерода в биотехнологии используют гидролизаты крахмала и целлюлозы, сахарную мелассу, спирт и др.

В целом, плесневые грибы растут преимущественно на сахаросодержащих средах, а бактерии – на белоксодержащих.

Микроорганизмам, не способным усваивать азот из воздуха, нужны для развития азотсодержащие среды. Обычно в качестве таковых используют производные аммиака, сам аммиак, мочевину, аминокислоты (глицин, аланин, валин и др.), пептоны и белковые продукты (например, мясной экстракт).

Из минеральных веществ самым важным для микроорганизмов является фосфор, участвующий в переносе энергии и входящий в состав нуклеиновых кислот. Кроме того, им требуются сера, калий, кальций, магний и натрий, а также микроэлементы: кобальт, марга­нец, медь, цинк, молибден, хром, никель, ванадий, бор, селен, кремний, вольфрам, хлор и йод. Для удовлетворения потребности микроорганизмов в этих элементах их вносят в субстрат в виде неорганических солей.

Витамины являются необходимым условием развития различных микроорганизмов, так как они входят в состав коферментов (например, никотинамид в НАД + и НАДФ + ). Наиболее важными для микроорганизмов витаминами являются тиамин (В1), рибофлавин (В2), пиридоксин (В6), биотин, пантотеновая кислота, фолиевая кислота и цианокобаламин (В12).

Пиримидины и пурины необходимы живой клетке для синтеза нуклеиновых кислот.

Вспомогательные материалы не вступают в химические реакции с продуктом и после выполнения своих технологических функций полностью удаляются из него. В готовом пищевом продукте вспомогательные материалы должны отсутствовать (их неудаляемые остатки регламентируются в составе примесей). К вспомогательным материалам относятся осветлители, осушители, катализаторы, средства для снятия кожицы с плодов, экстрагенты.

Вещества, облегчающие фильтрование Вещества, облегчающие фильтрование (адсорбенты, флокулянты и др.), — это инертные нерастворимые вещества, повышающие эффективность фильтрования, то есть облегчающие и улучшающие отделение твердых частиц от жидкостей или газов при фильтровании, ускоряющие и дающие возможность удалять нежелательные замутняющие компоненты из жидкостей (преимущественно из напитков), которые длительное время должны оставаться прозрачными. Они не изменяют химический состав фильтруемого вещества. Вспомогательные фильтрующие материалы придают фильтрующему слою необходимую прочность и регулируют размер пор. Они способны также разрыхлять осадок, образующийся на фильтре, и уменьшать забивание пор фильтра. Вспомогательные фильтрующие материалы добавляются к фильтруемой жидкости в виде суспензии или образуют вспомогательный слой на фильтре. Чаще всего используются целлюлоза, кизельгур и перлит. Целесообразно перед их применением провести очистку от растворимых оксидов железа и/или соединений микроэлементов. Фильтрование может иметь целью не только очистку жидкости, но и получение твердых веществ, например, ультрафильтрация — метод фракционирования и концентрирования белков с помощью полимерных мембран. В производстве прозрачных натуральных соков пользуются фильтрацией и сепарацией. Для облегчения фильтрации, например пектинсодержащих фруктовых и ягодных соков, практикуют расщепление замутняющих пектинов и белков и снижение вязкости с помощью обработки ферментами. Возможные в дальнейшем белково-полифенольные помутнения предотвращают, удаляя полифенолы желатином, полиамидом или поливинилпирролидоном, а белки — бентонитом или танином. Адсорбенты — это обычно твердые нерастворимые вещества, которые благодаря большой удельной поверхности могут селективно адсорбировать из жидкостей определенные вещества и вместе с ними выпадать в осадок. Коагуляцией называют превращение золя (коллоидного раствора твердого вещества) в гель, сопровождающееся флокуляцией. Это превращение может быть вызвано добавкой коагулянтов (флокулянтов).

Осветлители С помощью осветлителей удаляют мелкодисперсные и коллоидные компоненты, которые невозможно отфильтровать. Осветлители связывают мельчайшие частички мути и осаждаются вместе с ними. Принцип действия осветлителей может быть очень разным: адсорбция, коагуляция или образование с ионами металлов труднорастворимых соединений, которые выпадают в осадок и могут быть отфильтрованы от водных растворов. Для осветления обычно используют агар, активированный уголь, каррагинан, целлюлозу, желатин, рыбий клей, древесный уголь, высушенный белок куриного яйца (10. 20 г на 100 л), каолин, гексацианоферрат калия, кизельгур (300. 400 г/100 л), фитиновую кислоту, поливинилполипирролидон, танин и другие вещества. Фруктовые соки, особенно яблочный, можно осветлять с помощью пектата натрия. В особых случаях для осветления вин применяют жидкий рыбий клей. Фурцеллеран облегчает осаждение белков в пиве. Для эффективного использования осветлителей рекомендуется предварительно уточнить их дозировку в лабораторных условиях. Осветлители полностью удаляются фильтрацией или седиментацией из напитка, поэтому в готовом продукте они отсутствуют.

Экстрагекты Экстрагенты — это жидкости или сжиженные газы, способные экстрагировать из растительного или животного сырья определенные его компоненты. При этом экстрагент и экстрагируемое вещество не вступают в химическое взаимодействие. По окончании процесса экстрагирования экстрагент обычно удаляют перегонкой. Экстракция применяется в пищевой промышленности для выделения нужных веществ при получении сахара из сахарной свеклы, сока солодки, выделении жиров из жиросодержашего сырья, получении ароматических веществ и эфирных масел из растительного и животного сырья, получении экстрактов пряностей (олеорезинов), экстрактов хмеля, натуральных красителей, или для удаления нежелательных компонентов (спирта из напитков, никотина из табака, кофеина из кофе и чая). Различают три вида экстракции: жидкостью из твердого вещества, жидкостью из жидкости и сжиженным газом из твердого вещества. Последний вид экстракции протекает под высоким давлением, достаточным для сжижения используемого газа. По окончании процесса экстрагирования давление снижают до атмосферного, газ полностью улетучивается и отпадает необходимость его дополнительного удаления. В качестве жидких экстрагентов чаше всего применяют воду, пищевые растительные масла, этиловый спирт и другие алифатические спирты, гексан и другие углеводороды, в том числе хлорированные. Сжиженные газы — это обычно диоксид углерода, азот или пропан. Экстракцию проводят в экстракторах различной конструкции непрерывного или периодического действия. Например, перфораторы применяют для экстрагирования жидкости жидкостью, а перколяторы — для экстрагирования из измельченных твердых веществ.

Л. А. Сарафанова Применение пищевых добавок Технические рекомендации 6-е издание, исправленное и дополненное Санкт-Петербург ГИОРД 2005

Понятие и физическое обоснование фильтрования как одного из способов разделения неоднородных смесей. Типы фильтровальных перегородок и оценка их влияния на эффективность всего технологического процесса. Используемое оборудование и инструментарий.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 21.10.2014
Размер файла 17,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Фильтрование очень часто применяется в повседневной жизни. Например, наливая чай из заварника, обычно используют специальное сито, которое задерживает частицы заварки. Схожим образом отфильтровывают, например, мякоть сухофруктов из компота. Подобных примеров много. Фильтрование можно применять также для разделения неоднородных смесей, состоящих из твердых веществ. Так, для выделения, например, поваренной соли из ее смеси с песком смесь взбалтывают в воде. Поваренная соль прекрасно растворяется, а песок остается на дне в качестве осадка. Чтобы отделить песок от воды, применяют метод фильтрования. Смесь наливают на специальный бумажный фильтр, который легко пропускает мелкие частицы раствора, но в то же время не пропускает гораздо большие по размеру частицы песка. Таким образом, песок остается на фильтровальной бумаге, а прозрачный раствор из поваренной соли проходит через фильтр.

1. Общие сведения

Фильтрованием называется процесс разделения суспензий, пылей и туманов через пористую, так называемую фильтровальную перегородку, способную пропускать жидкость или газ, но задерживать взвешенные в них частицы. Фильтрование осуществляется под действием разности давлений перед фильтрующей перегородкой и после нее или в поле центробежных сил.

От правильного выбора фильтровальной перегородки во многом зависят производительность фильтра, чистота получаемого фильтрата.

В качестве пористых перегородок используются:

- зернистые материалы: песок, уголь, асбест и др.;

- ткани: шерстяные (в основном грубошерстные), хлопчатобумажные (бязь, фланель), минеральные (асбестовая ткань), металлотканые (металлические сетки);

- жесткие пористые перегородки (в основном керамические).

По целевому назначению процесс фильтрования может быть очистным или продуктовым. Очистное фильтрование применяют для разделения суспензий, очистки растворов от включений. В этом случае целевым продуктом является фильтрат. В пищевой промышленности очистное фильтрование используют при осветлении вина, виноматериалов, молока, пива и других продуктов.

Цель продуктового фильтрования - выделение из суспензии диспергированных в них продуктов в виде осадка. Примером фильтрования такого вида может быть разделение дрожжевых суспензий, в которых целевым продуктом является осадок.

Интенсивность фильтрования зависит от качества суспензий, полученных на предыдущих стадиях технологического процесса: дисперсной системы с пониженным сопротивлением осадка, без смолистых, слизистых и коллоидных веществ.

Процесс фильтрования в промышленных условиях проводится на фильтрах периодического и непрерывного действия. Фильтры периодического действия позволяют проводить фильтрование в любом режиме. Непрерывно действующие фильтры работают только при постоянной разности давления, обеспечивая непрерывное удаление осадка, что является их существенным преимуществом.

По способу создания разности давления (движущей силы) различают фильтры, работающие под давлением, и фильтры, работающие под вакуумом.

Давление над фильтрующей перегородкой вызывает уплотнение осадка, в результате чего создается добавочное сопротивление, снижающее скорость фильтрования. Кроме того, создание герметичной конструкции над фильтрующей перегородкой осложняет процесс выгрузки осадка, в связи с чем в большинстве конструкций используют вакуум под фильтрующей перегородкой.

По расположению слоя осадка относительно фильтрующей перегородки различают перегородки с верхним расположением осадка, вертикальным расположением и с расположением осадка под фильтрующей перегородкой.

Осадки, образующиеся при фильтровании, разделяют на несжимаемые и сжимаемые. Примером несжимаемых осадков могут служить частицы песка, кристаллы карбоната кальция, их пористость в не меняется процессе фильтрования. Примером сжимаемых осадков могут служить осадки гидроокисей металлов, их пористость уменьшается при фильтровании. Сжатие осадка ведет к повышению гидравлического сопротивления, как следствие уменьшается скорость фильтрования. Для повышения пористости осадков к суспензиям добавляют реагенты, которые способствуют агрегированию мелких частиц. Фильтрация является эффективным методом разделения жидких неоднородных систем (взвесей, коллоидных растворов). Метод широко применяется в различных сферах промышленности (в химической, пищевой, нефтеперерабатывающей, горнорудной и др.), а также в лабораториях. Способ фильтрации также используется для очистки газообразных сред от жидких и твердых фракций.

2. Виды фильтрования

При разделении суспензий в зависимости от вида фильтровальной перегородки и свойств самой суспензии фильтрование может происходить с образованием осадка на поверхности перегородки, с закупориванием пор фильтрующей перегородки и с тем и другим явлениями одновременно (промежуточный вид фильтрования).

Фильтрование с закупориванием пор происходит, когда твердые частицы проникают в поры фильтровальной перегородки. Закупоривание пор твердыми частицами наблюдается уже в начальный период процесса фильтрования, что снижает производительность фильтра. Для поддержания ее на должном уровне фильтр регенерируют, промывая обратным током жидкости либо прокаливая металлические фильтровальные перегородки.

Фильтрование с образованием осадка происходит в тех случаях, когда диаметр частиц больше диаметра пор перегородки, в результате чего только первые порции фильтрата уносят с собой небольшую часть твердой фазы, прошедшую через фильтр. В дальнейшем отверстия перекрываются сводами из частиц. Образуется осадок, толщина которого увеличивается по мере продолжения процесса фильтрования. И он начинает играть основнуюроль при задержании последующих частиц, размеры которых больше размеров капилляров осадка. По мере роста толщины слоя осадка увеличивается сопротивление фильтрованию и уменьшается его скорость, которая определяется перепадом давления перед и после фильтрующей перегородки, т.к. только при выполнении этого условия процесс будет осуществляться.

Промежуточный вид фильтрования имеет место в случае одновременного закупоривания пор фильтровальной перегородки и отложения осадка на ее поверхности. Таким образом, тип фильтрования зависит от свойств суспензии, фильтрующей перегородки, давления фильтрования. Поэтому одна и та же суспензия может фильтроваться при соответствующих условиях различно.

3. Оборудование для фильтрования

фильтрование технологический смесь

Фильтры, используемые для разделения суспензии, работают как под вакуумом, так и под избыточным давлением, периодически и непрерывно. К фильтрам, работающим под давлением, предъявляют повышенные требования к механической прочности.

В фильтрах периодического действия осадок удаляется после прекращения процесса фильтрования, в фильтрах непрерывного действия - по мере необходимости без остановки процесса.

Нутч-фильтр, работающий как под вакуумом, так и под избыточным давлением, широко распространен в малотоннажных производствах. Выгрузка из него осадка механизирована. Для сброса осадка фильтр снабжен перемешивающим устройством в виде однолопастной мешалки. Для удаления осадка из фильтра на цилиндрической части корпуса предусмотрен люк.

Нутч-фильтр с перемешивающим устройством:

Суспензия и сжатый воздух подаются через раздельные штуцера, фильтрат удаляется через спускной кран. Фильтр снабжен предохранительным клапаном.

Цикл работы фильтра состоит из заполнения его суспензией, фильтрования суспензии под давлением, удаления осадка с фильтровальной перегородки при вращающейся мешалке и регенерации фильтровальной перегородки. В таких фильтрах может проводиться одновременно промывка осадка.

Рамный фильтр-пресс используется для осветления виноматериалов, вина, молока и пива. Фильтрующий блок состоит из чередующихся рам и плит с зажатой между ними фильтровальной тканью или картоном. Рамы и плиты зажимаются в направляющих зажимным винтом. Фильтр монтируют на металлической станине.

Для извлечения пива и дрожжей из дрожжевой суспензии, образующейся при седиментации в бродильных чанах, применяют барабанный вакуум-фильтр. Фильтровальный элемент состоит из крупноячеистой сетки, на которую накладывается мелкоячеистая сетка. Для улучшения условий фильтрования на мелкоячеистую сетку намывается слой вспомогательного материала - кизельгура либо картофельного крахмала. Пивная или дрожжевая суспензия, подаваемая из бака, при вращении барабана равномерно распределяется по фильтровальной поверхности, а дрожжевой осадок (лепешка) срезается ножом, установленным над баком.

Ленточный фильтр состоит из рамы, приводного и натяжного барабанов, между которыми натянута бесконечная перфорированная резиновая лента. Под ней расположены вакуум-камеры, соединенные в нижней части с коллекторами для отвода фильтрата и промывной жидкости. За счет вакуума лента прижимается к верхней части вакуум-камер. К резиновой ленте натяжными роликами прижимается фильтровальная ткань, выполненная также в виде бесконечной ленты.

Суспензия подается на фильтровальную ткань из лотка. Фильтрат под вакуумом отсасывается в камеры и отводится через коллектор в сборник. Промывная жидкость подается через форсунки на образовавшийся осадок и отсасывается в камеры, из которых через коллектор отводится в сборник.

На приводном барабане фильтрующая ткань отделяется от резиновой ленты и огибает направляющий ролик. При этом осадок соскальзывает с фильтровальной ткани и падает в сборник осадка.

При прохождении фильтровальной ткани между роликами 7 она промывается, просушивается и очищается.

Фильтрующие центрифуги периодического и непрерывного действия разделяются по расположению вала на вертикальные и горизонтальные, по способу выгрузки осадка - на центрифуги с ручной, гравитационной, пульсирующей и центробежной выгрузкой осадка. Главным отличием фильтрующих центрифуг от отстойных является то, что они имеют перфорированный барабан, обтянутый фильтровальной тканью.

В фильтрующей центрифуге периодического действия суспензия загружается в барабан сверху. После загрузки суспензии барабан приводится во вращение. Суспензия под действием центробежной силы отбрасывается к внутренней стенке барабана. Жидкая дисперсионная фаза проходит через фильтровальную перегородку, а осадок выпадает на ней. Фильтрат по сливному патрубку направляется в сборник. Осадок после окончания цикла фильтрования выгружают вручную через крышку.

Конструкция фильтрующей центрифуги с перфорированным барабаном аналогична конструкции автоматической отстойной центрифуги с непрерывным ножевым съемом осадка.

В саморазгружающихся центрифугах осадок удаляется под действием гравитационной силы. Такие центрифуги выполняют с вертикальным валом, на котором располагается перфорированный барабан. Суспензия подается на загрузочный диск при вращении барабана с низкой частотой. Нижняя часть барабана имеет коническую форму, причем угол наклона делается большим, чем угол естественного откоса осадка. После окончания цикла фильтрования и остановки барабана осадок под действием гравитационной силы сползает со стенок барабана и удаляется из центрифуги через нижний люк.

Список использованной литературы

1. Г.Д. Каветский, В.П. Касьяненко. Процессы и аппараты пищевых производств, 2008

2. Ю.М. Плаксин, Н.Н. Малахов, В.А. Ларин. Процессы и аппараты пищевых производств, 2007

3. А.Г. Айнштейн. Общий курс процессов и аппаратов химической технологии, 2003.

Подобные документы

Классификация, основные характеристики и методы разделения неоднородных систем. Их роль в химической технологии. Основные параметры процесса разделения жидких неоднородных систем. Осаждение в поле действия сил тяжести и под действием центробежных сил.

контрольная работа [404,8 K], добавлен 23.06.2011

Классификация и основные характеристики неоднородных систем, их разновидности и отличительные признаки. Классификация, принципы и обоснование выбора, оценка эффективности методов разделения. Разделение в поле сил тяжести, в поле центробежных сил.

презентация [851,5 K], добавлен 28.09.2013

Понятие и основные этапы кристаллизации как процесса фазового перехода вещества из жидкого состояния в твердое кристаллическое с образованием кристаллов. Физическое обоснование данного процесса в природе. Типы кристаллов и принципы их выращивания.

презентация [464,0 K], добавлен 18.04.2015

Количественная оценка эффекта взаимодействия двух скважин, построение их траекторий и изобар, физическое обоснование данного процесса и его регулирование. Оценка расчета параметров скважин кольцевой батареи. Изменение депрессии и его обоснование.

контрольная работа [377,9 K], добавлен 08.01.2014

Назначение и описание конструкции трехфазного асинхронного двигателя. Разработка технологического процесса изготовления статора, обоснование типа производства. Применяемые приспособления и нестандартное оборудование. Испытания статора двигателя.

Фильтрование применяют в промышленности для тонкого разделения жидких или газовых гетерогенных систем. С его помощью можно добиться значительно более полной, чем в процессах осаждения, очистки жидкости или газа от взвешенных частиц и, соответственно, более высокого выхода продукта (если им является твердая фаза суспензии).

В процессе фильтрования твердые частицы либо задерживаются на поверхности фильтровальной перегородки, образуя осадок, либо проникают в ее глубину, задерживаясь в порах. В соответствии с этим различают фильтрование с образованием осадка и фильтрование с закупориванием пор. Иногда их совмещают (применяя фильтрование с образованием осадка и закупориванием пор).

Движущей силой процесса фильтрования является разность давлений до и после фильтра. Если эта разность создается с помощью насоса, компрессора или вакуум-насоса, то происходит фильтрование под действием перепада давления, если с помощью центробежных сил - центробежное фильтрование (центрифугирование).

2. Фильтрование суспензий

В простейшем случае фильтр представляет собой сосуд, корпус которого разделен на две части фильтровальной перегородкой. Суспензию помещают в верхнюю часть сосуда таким образом, чтобы она в течение всего процесса фильтрования соприкасалась с фильтровальной перегородкой. В разделенных частях сосуда создают разность давлений

под действием которой жидкость проходит через поры фильтровальной перегородки, образуя фильтрат. Твердые частицы задерживаются на поверхности перегородки, формируют осадок. Этот процесс является примером фильтрования с образованием осадка. Он предпочтительнее фильтрования с закупориванием пор, так как в последнем случае сильно осложняется или становится вообще невозможной регенерация фильтровальной перегородки.

Разность давлений по обе стороны фильтровальной перегородки создают разными способами, соответственно и фильтрование проходит при различных условиях.

Если пространство над суспензией сообщают с источником сжатого газа или пространство под фильтровальной перегородкой присоединяют к источнику вакуума, происходит фильтрование при постоянной разности давлений. При этом скорость фильтрования уменьшается вследствие повышения гидравлического сопротивления слоя осадка возрастающей толщины.

Если суспензию подают на фильтр поршневым насосом, производительность которого практически не зависит от напора, фильтрование осуществляется при постоянной скорости. Разность давлений при этом увеличивается по мере роста сопротивления осадка.

3. Фильтры и фильтрующие центрифуги

По режиму работы различают фильтры периодического и непрерывного действия; оба типа широко применяют в промышленности для процессов фильтрования с образованием осадка. Для фильтрования с закупориванием пор используют только фильтры периодического действия.

На фильтрах непрерывного действия осуществляют режим фильтрования при постоянной разности давлений (в случае промывки осадка - одновременно и при постоянной скорости). На фильтрах периодического действия осуществляют любой режим фильтрования.

По способу создания разности давлений различают вакуум-фильтры и фильтры, работающие под давлением. Последние наиболее целесообразно использовать, когда осадок малосжимаем, но обладает высоким гидравлическим сопротивлением. В других случаях вакуум-фильтры предпочтительнее, поскольку проще по конструкции.

По взаимному направлению силы тяжести и движения фильтрата различают фильтры с совпадающими, противоположными и перпендикулярными направлениями.

Нутч-фильтры. Нутч представляет собой простейший фильтр периодического действия, работающий под вакуумом или под избыточным давлением. Направления силы тяжести и движения фильтрата в нем совпадают. К достоинствам конструкции, помимо перечисленных выше для открытого нутча, добавляются большая движущая сила и пригодность для разделения суспензий, выделяющих токсичные пары. К недостаткам относятся ручная выгрузка осадка, громоздкость. По этим причинам нутчи используют в основном в производствах малой мощности. Нутч небольшого размера применяют в лабораторных исследованиях.


Рис. 1. Открытый нутч-фильтр

1-корпус; 2-суспензия; 3 - фильтровальная перегородка; 4—пористая подложка; 5 - штуцер для выхода фильтрата, соединенный с вакуум-насосом

На рис.1 изображен нутч-фильтр, работающий под вакуумом. Он представляет собой открытый резервуар 1, над дном которого расположена пористая подложка (ложное дно) 4, поддерживающая фильтровальную перегородку 3. Суспензию 2 загружают сверху, затем в пространстве под ложным дном создают вакуум (соединяя его с вакуум-насосом), вследствие чего жидкая фаза проходит в виде фильтрата через фильтровальную перегородку З и удаляется из нутча через штуцер внизу. Твердая фаза суспензии образует осадок на фильтровальной перегородке. После этого в случае необходимости нутч заполняют промывной жидкостью и проводят отмывку осадка от фильтрата. По окончании процесса фильтрования нутч некоторое время остается под вакуумом, что позволяет уменьшить влажность осадка. Затем осадок удаляют из фильтра сверху вручную.

Основными достоинствами вакуумных нутч-фильтров являются простота и надежность в работе, возможность тщательной промывки осадка. К недостаткам относятся громоздкость, ручная выгрузка осадка, негерметичность. Кроме того, для них, как и для других вакуум-фильтров (которые будут рассмотрены ниже), характерна невысокая движущая сила (на практике Ар не более 75 кПа).

На рис.2. изображен закрытый нутч-фильтр, работающий под давлением (до 0,3 МПа). Нутч состоит из корпуса 1 с рубашкой 2, съемной крышки 8 и перемещающегося дна 4. На опорной решетке б располагается фильтровальная перегородка 5. Иногда в качестве перегородки применяют слой волокон. В этом случае необходимо использовать защитную сетку 7. Над фильтровальной перегородкой располагают кольцевую перегородку 3, поддерживающую осадок во время его выгрузки. При этом дно 4 опускается и поворачивается на такой угол, чтобы осадок было удобно снимать вручную с фильтровальной перегородки. Нутч снабжен штуцерами 9, 10 и 11 соответственно для подачи суспензии и сжатого воздуха и для удаления фильтрата. для того чтобы давление в аппарате не превысило допустимого, он снабжен предохранительным клапаном 12. В рубашку 2 обычно подают насыщенный водяной пар для повышения температуры фильтрования, что обеспечивает снижение вязкости фильтрата и соответствующее увеличение производительности.

Цикл работы на нутче обычно состоит из следующих стадий: заполнение нутча суспензией, собственно фильтрование под давлением сжатого газа, подсушка осадка, заполнение нутча промывной жидкостью, промывка осадка, его сушка, удаление с фильтровальной перегородки, регенерация последней.

К достоинствам конструкции, помимо перечисленных выше для открытого нутча, добавляются большая движущая сила и пригодность для разделения суспензий, выделяющих токсичные пары. К недостаткам относятся ручная выгрузка осадка, громоздкость. По этим причинам нутчи используют в основном в производствах малой мощности. Нутч небольшого размера применяют в лабораторных исследованиях.


Рис. 2. Закрытый нутч-фильтр:

Фильтр-прессы. Они относятся к фильтрам периодического действия, работающим под давлением. Направления сил тяжести и движения фильтрата в них перпендикулярны.


а- плита; б рама; в - сборка, 1-отверстия в плитах и рамах, образующие при сборке канал для подачи суспензии, 2 отверстия в плитах и рамах, образующие канал для подачи промывной жидкости, 3- отводы для прохода суспензии внутрь рам; 4-внутренние пространства рам; 5-фильтровальные перегородки; б- рифления плит, 7- каналы в плитах для выхода фильтрата на стадии фильтрования или промывной жидкости - на стадии промывки осадка, 8 -центральные каналы в плитах для сбора фильтрата или промывной жидкости; 9 -краны на линиях вывода фильтрата или промывной жидкости

фильтрование гетерогенный центрифуга суспензия

На стадии фильтрования суспензия по каналу 1 и отводам З поступает в полое пространство (камеру) 4 внутри рам. Жидкость проходит через фильтровальные перегородки 5, по желобкам рифлений б движется к каналам 7 и далее в каналы 8. Отсюда фильтрат выводится через краны 9, открытые на стадии фильтрования.

После заполнения пространства (камеры) 4 осадком подачу суспензии прекращают. Затем начинается стадия промывки осадка. Промывная жидкость проходит по каналам 2, омывает осадок и фильтровальные перегородки и выводится через краны 9. По окончании промывки осадок обычно продувают сжатым воздухом для удаления остатков промывной жидкости. После этого плиты и рамы раздвигают, и осадок частично падает под действием силы тяжести в сборник, установленный под фильтром. Оставшуюся часть осадка выгружают вручную.

К достоинствам фильтр-прессов относятся большая удельная поверхность фильтрования, возможность проведения процесса при высоких давлениях (до 1,5 М Па), простота конструкции, отсутствие частей, движущихся в процессе эксплуатации, возможность отключения отдельных неисправных плит закрытием выходного крана.

Недостатками являются ручное обслуживание, невозможность полной промывки осадка, быстрый износ фильтровальных салфеток из-за частой разборки фильтра и работы его при повышенных давлениях.

Среди фильтров непрерывного действия наиболее распространены барабанные вакуум-фильтры. Схема такого фильтра представлена на рис.4. Фильтр имеет вращающийся цилиндрический перфорированный барабан 1, покрытый металлической волнистой сеткой 2, на которой располагается тканевая фильтрующая перегородка 3. Барабан на 30—40% своей поверхности погружен в суспензию. Поскольку в данном фильтре направление осаждения твердых частиц противоположно направлению движения фильтрата, в корыте 6 для суспензии установлена качающаяся мешалка 7, поддерживающая ее однородность.


Рис.4. Барабанный вакуум-фильтр:

1 - перфорированный барабан, 2 - волнистая сетка; З - фильтровальная перегородка; 4 - осадок; 5 - нож для съема осадка, б - корыто для суспензии; 7 - касающаяся мешалка; 8 - устройство для подвода промывной жидкости; 9 - камеры (ячейки) барабана;10 - соединительные трубки; 11 - вращающаяся чаегь распределительной головки; 12 - неподвижная часть распределительной головки; I - зона фильтрования и отсоса фильтрата; II – зона промывки осадка и отсоса промывных вод; III - зона съема осадка; IV - зона очистки фильтровальной ткани

Барабан разделен радиальными перегородками на ряд изолированных друг от друга ячеек (камер) 9. Каждая камера соединяется трубой 10 с различными полостями неподвижной части 12 распределительной головки. Трубы объединяются во вращающуюся часть 11 распределительной головки. Благодаря этому при вращении барабана 1 камеры 9 в определенной последовательности присоединяются к источникам вакуума и сжатого воздуха. В результате при полном обороте барабана каждая камера проходит несколько зон, в которых осуществляются процессы фильтрования, промывки осадка и другие.

Зона 1 — фильтрования и отсоса фильтрата. Здесь камера соприкасается с суспензией. В это время камера соединена с источником вакуума. Под действием вакуума фильтрат проходит через фильтровальную ткань, сетку и перфорацию барабана внутрь камеры и через трубу выводится из аппарата. На наружной поверхности барабана, покрытой фильтровальной тканью, образуется осадок 4.

Зона II — промывки осадка и отсоса промывных вод. Здесь камера, вышедшая из корыта с суспензией, также сообщена с источником вакуума, а на осадок с помощью устройства 8 подается промывная жидкость. Она проходит через осадок и по трубе выводится из аппарата.

Зона III — съема осадка. Попав в эту зону, осадок сначала подсушивается вакуумом, а затем камера соединяется с источником сжатого воздуха. Воздух не только сушит, но и разрыхляет осадок, что облегчает его последующее удаление. При подходе камеры с просушенным осадком к ножу 5 подача сжатого воздуха прекращается. Осадок падает с поверхности ткани под действием силы тяжести. Нож служит в основном направляющей плоскостью для слоя осадка, отделяющегося от ткани.

Зона IV — очистки фильтровальной перегородки. В этой зоне фильтровальная ткань продувается сжатым воздухом или водяным паром и освобождается от оставшихся на ней твердых частиц.

После этого ячейки с регенерированной тканью вновь входят в корыто с суспензией, и весь цикл операций повторяется.

Таким образом, на каждом участке поверхности фильтра все операции проводятся последовательно одна за другой, но участки работают независимо, и поэтому в целом все операции проводятся одновременно. т. е. процесс протекает непрерывно. Это одно из достоинств данного фильтра. Среди других следует отметить простоту обслуживания, возможность фильтрования суспензий с большим содержанием твердой фазы, хорошие условия для промывки осадка.

К недостаткам фильтра относятся сравнительно небольшая удельная поверхность фильтрования, относительно высокая стоимость, сложность герметизации, необходимость перемешивания суспензии в корыте б из-за противоположного направления движений частиц под действием силы тяжести и фильтрата.

Ленточный вакуум-фильтр. Фильтр представляет собой работающий под вакуумом аппарат непрерывного действия, в котором направления силы тяжести и движения фильтрата совпадают.

Схематически фильтр изображен на рис.5.

Перфорированная резиновая лента 2 перемещается по замкнутому пути с помощью приводного 8 и натяжного З барабанов. Фильтрующая ткань 5 прижимается к ленте при натяжении роликами б. Из лотка 4 на фильтрующую ткань подается суспензия. Фильтрат отсасывается в вакуум-камеры 1, находящиеся под лентой, и выводится из аппарата. Отложившийся на ткани осадок промывается жидкостью, подаваемой из форсунок 9. Промывная жидкость отсасывается в другие вакуум-камеры и также отводится из аппарата.


Рис.5. Ленточный вакуум-фильтр

1 -вакуум-камеры, 2 - перфорированная лента, З натяжной бара6ан, 4—лоток для подачи суспензии; 5 - фильтровальная ткань, б -натяжные ролики; 7- валик для перегиба ленты; 8 - приводной барабан 9—форсунки для подачи промывной жидкости

Осадок благодаря вакууму подсушивается и при перегибе ленты через валик 7 отделяется от ткани и сбрасывается в бункер. На обратном пути между роликами б фильтровальная ткань обычно регенерируется: очищается с помощью механических щеток, пропаривается или промывается жидкостью.

К достоинствам ленточных фильтров, помимо упомянутого выше совпадения направлений фильтрования и осаждения, относятся простота устройства (отсутствие специальной распределительной головки), хорошие условия промывки и обезвоживания осадка. Благодаря простоте съема осадка и регенерации ткани возможна обработка труднофильтруемых материалов.

Недостатками являются небольшая удельная поверхность и довольно быстрый износ фильтрующей ленты, громоздкость аппарата, сложность герметизации.

Дисковый вакуум-фильтр. Фильтр представляет собой аналог барабанного фильтра, в котором для увеличения поверхности фильтрования установлены диски с фильтрующими боковыми поверхностями.

Карусельный вакуум-фильтр. Такой фильтр обладает достоинствами нутчей, являясь аппаратом непрерывного действия. Фильтр состоит из ряда горизонтальных нутчей, размещенных по кругу и соединенных гибкими шлангами с распределительным устройством, аналогичным применяемому в барабанных и дисковых вакуум-фильтрах. При вращении рамы, на которую опираются нутчи, каждый из них последовательно проходит стадии заполнения суспензий, фильтрования, промывки осадка, его сушки, удаления осадка, промывки.

Фильтрующие центрифуги. Основной частью центрифуги является перфорированный барабан, насаженный на вращающийся вал. На барабане располагается фильтровальная ткань 4 (как правило, между барабаном и тканью помещают дренажную сетку).

Суспензию загружают в барабан сверху, после чего он приводится во вращение. Фильтрат (фугат) под действием центробежной силы проходит через осадок, фильтровальную перегородку и перфорацию барабана и попадает в кожух, откуда выводится. По окончании фильтрования осадок из барабана выгружают вручную.

1. Касаткин А.Г. Основные процессы и аппараты химической технологии 9-ое изд. М.: Химия, 1973г, 750 с.

2. Айнштейн В.Г., Захаров М.Н., Носов Г.А., Захаренко В.В., Зиновкина Т.В., Таран А.Л., Костанян А.Е. Общий курс процессов и аппаратов химической технологии. Учебник для вузов, в двух книгах. М.: Химия, 1999 (кн. 1, 888 с; кн.2, 872 с.)

3. Дытнерский Ю.И. Процессы и аппараты химической технологии. М.: Химия, 1995г, 768 с (ч.1, 400с.; ч.2,368 с.)

4. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия: 1987, 576 с.

5.Основные процессы и аппараты химической технологии (Пособие по проектированию)./ Под ред. Ю.И. Дытнерского. М.: Химия, 1991, 496 с.

6. Руководство к практическим занятиям в лаборатории процессов и аппаратов химической технологии. Под ред. П.Г. Романкова, 5-ое изд. Л.: Химия, 1979, 256 с.

7. Скобло А.И., Трегубов И.А. Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности. М.: Химия, 1982. 584 с.

8. Владимиров А.И. и др. Основные процессы и аппараты нефтегазопереработки. М.: ООО Недра-Бизнесцентр. 2002. 227 с.

9. Скобло А.И. и др. Процессы и аппараты нефтегазопереработки и нефтехимии. М.: Недра. 2000. 677 с.

10. Коган В.Б. Теоретические основы типовых процессов химической технологии. Л.: Химия, 1997. 512 с.

Вспомогательные материалы не вступают в химические реакции с про­дуктом и после выполнения своих технологических функций полно­стью удаляются из него. В готовом пищевом продукте вспомогатель­ные материалы должны отсутствовать (их неудаляемые остатки регла­ментируются в составе примесей). К. вспомогательным материалам от­носятся осветлители, осушители, катализаторы, средства для снятия кожицы с плодов, экстрагенты.

5.1. Вещества, облегчающие фильтрование

Вещества, облегчающие фильтрование (адсорбенты, флокулянты н др.), — это инертные нерастворимые вещества, повышающие эффек­тивность фильтрования, то есть облегчающие и улучшающие отделе­ние твёрдых частиц от жидкостей или газов при фильтровании, уско­ряющие и дающие возможность удалять нежелательные замутняющие компоненты из жидкостей (преимущественно из напитка), ко­торые длительное время должны оставаться прозрачными.

Они не изменяют химический состав фильтруемого вещества. Вспомогатель­ные фильтрующие материалы придают фильтрующему слою необхо­димую прочность и регулируют размер пор. Они способны также раз­рыхлять осадок, образующийся на фильтре, и уменьшать забивание пор фильтра.

Вспомогательные фильтрующие материалы добавляются к фильтруемой жидкости в виде суспензии или образуют вспомога­тельный слой на фильтре.

Чаще всего используются целлюлоза, ки­зельгур и перлит. Целесообразно перед их применением провести очистку от растворимых оксидов железа и/или соединений микро­элементов.

Фильтрование может иметь целью не только очистку жидкости, но и получение твёрдых веществ, например, ультрафильтрация — метод фракционирования и концентрирования белков с помощью полимерных мембран.

В производстве прозрачных натуральных соков пользуются фильтрацией и сепарацией. Для облегчения фильтрации, например пектинсодержащих фруктовых и ягодных соков, практикуют расщепление замутняющих пектинов и белков и снижение вязкости с по­мощью обработки ферментами. Возможные в дальнейшем белково-полифенольные помутнения предотвращают, удаляя полифенолы желатином, полиамидом или поливинилпирролидоном, а белки — бентонитом или танином.

Адсорбенты — это обычно твёрдые нерастворимые вещества, кото­рые благодаря большой удельной поверхности могут селективно ад­сорбировать из жидкостей определённые вещества и вместе с ними выпадать в осадок.

Коагуляцией называют превращение золя (коллоидного раство­ре твердого вещества) в гель, сопровождающееся флокуляцией. Это превращение может быть вызвано добавкой коагулянтов (флокулянтов).

5.2. Осветлители

С помощью осветлителей удаляют мелкодисперсные и коллоидные компоненты, которые невозможно отфильтровать. Осветлители связывают мельчайшие частички мути и осаждаются вместе с ними. Принцип действия осветлителей может быть очень разным: адсорбция. коагуляция или образование с ионами металлов труднорастворимых соединений, которые выпадают в осадок и могут быть отфильтрованы от водных растворов.

Для осветления обычно используют агар, активированный уголь, каррагинан, целлюлозу, желатин, рыбий клей, древесный уголь, высушенный белок куриного яйца (10. 20г на 100л), каолин, гексацианоферрат калия, кизельгур (З00. 400г/100л), фитиновую кислоту, полифинилполипирролидон, танин и другие вещества. Фруктовые соки, особенно яблочный, можно осветлять с помощью пектата натрия. I особых случаях для осветления вин применяют жидкий рыбий клей. Фурцеллеран облегчает осаждение белков в пиве.

Для эффективного использования осветлителей рекомендуется предварительно уточнить их дозировку в лабораторных условиях..

Осветлители полностью удаляются фильтрацией или седиментаци­ей из напитка, поэтому в готовом продукте они отсутствуют.

Читайте также: