Утилизация рыбных отходов реферат

Обновлено: 06.07.2024

По подсчетам Росстата среднее потребление рыбы россиянами составляет 21,5 кг. на человека в год. Основные крупные предприятия по добыче и переработке аквакультуры в России сосредоточены на Дальнем Востоке, Баренцевом, Черном и Балтийском морях.

Переработка отходов

В результате деятельности рыбоперерабатывающих производств образуется масса биологических рыбных отходов. Использование рыбных отходов в качестве сырья для производства различной продукции получило широкое применение, благодаря богатому содержанию животного белка, микроэлементов, витаминов, азотистых соединений и минералов.

Переработка в корм биологических отходов предприятий аквакультуры является одним из самых рациональных типов их утилизации.

Продукты переработки отходов аквакультуры представляют не используемые в основном производстве части рыбы, такие как плавники, головы, внутренности, костно-хрящевой аппарат, кожа.

Этапы переработки

После сортировки масса с отходами, измельченная в специальном агрегате, направляется на линию переработки. Там ее нагревают и помещают в гидроизолирующий аппарат. Получившуюся пасту центрифугируют и пропускают через жироотделитель. Жом подвергают сушке и размельчают на мелкую фракцию.

Продукция из отходов переработки рыбы

Из сырья, полученного на перерабатывающих производствах, изготавливаются аптечные препараты, биоудобрения, рыбная мука и т.д.

Аптечные препараты

Из отделившегося в процессе переработки жира изготавливают аптечные препараты с одноименным названием. Ценность их в содержании жирных кислот омега 3, 6 и витаминами А, Д, Е, которые необходимы для человеческого организма. Более богата рыбьим жиром печень гидробионтов.

Биоудобрения

В области утилизации рыбных отходов постоянно разрабатываются новые изобретения в виде биологических удобрений, в основе которых находятся остатки рыбного производства.

Этапы переработки

Известны такие формы, как кормовой рыбный гидролизат, компост с добавлением свекловичной мелассы, компост, приготовленный путем силосования.

Рыбная мука

Представляет из себя высушенный и измельченный жом. Ее ценность в высоком содержании незаменимых аминокислот, жиров, фосфора, витаминов, минералов, протеинов. Широко используется в пищевых целях в качестве биологически активной добавки на скотоводческих и птичьих фермах. Проведенный анализ состояния животных, принимающих в пищу биодобавки показал, что вещества рыбной муки позволяют ускорить рост молоди, укрепляют костную и нервную ткани, иммунитет. Наличие в рационе этой добавки положительно отражается на яйценоскости птицы, качестве меха у пушных зверей, составе мяса у крупного рогатого скота. Белая (высокоочищенная) мука активно используется в кулинарных целях в Китае.

В состав рыбной муки входит протеин – 60%, клетчатка – 1%, жир сырой – 1%, фосфор – 3,5%, витамин В – 1 мг/кг, В4 – 35000 мг/кг.

Сурими

Очищенный фарш из отходов рыбы. При переработке остатков выделяют мягкие ткани, дезодорируют, прессуют и подвергают формовке. Самый широко используемый в России продукт из сурими – крабовые палочки. Для их приготовления используются нежирные виды рыб (путассу, хек, минтай, окунь).

На зверофермах свежими отходами рыбопроизводства кормят пушных животных. Для откорма свиней термически обработанные остатки добавляют в корм при приеме пищи.

Из отходов рыбы производят суррогатное молоко, богатое цистеином, жирами, азотистыми соединениями.

Экономически эффективный способ переработки отходов – ферментирование. Массу с остатками рыб при определенных условиях подвергают воздействию некоторых штаммов бактерий, выделяющих специфические ферменты и получают на выходе полужидкую субстанцию, обогащенную микро- и макроэлементами. Разбавленная водой масса широко и эффективно применяется для откорма молоди на рыбоводческих и животноводческих фермах.

Сурими

Отходы гидробионтов находят применение и в непищевых производствах. Из чешуи химическими растворами выделяют перламутровое вещество, из которого создают имитированный жемчуг. Плавательный пузырь содержит вязкие вещества, незаменимые при производстве клея и лекарственных оболочек. Неочищенный рыбий жир используют в технических целях.

Отходами при кулинарной обработке называют фрагменты, оставшиеся от процесса приготовления блюд. Пищевые отходы – те, которые в дальнейшем можно использовать в пищу. Из рыбных субпродуктов к наиболее употребляемым в пищу относят молоки, икру, печень, хвостовые плавники, головы.

Из голов и плавников варят уху, соусы или просто используют в пищу в отварном виде. Головы осетровых рыб перед варкой обрабатываются крутым кипятком, освобождают от жабр. Головное мясо используют в качестве фарша для котлет.

Чешуя содержит клейкие вещества, которые используются для приготовления желе заливной рыбы.

На основе молока и икры изготавливают форшмак и паштеты. Икра также употребляется в маринованном виде.

Количество отходов зависит от сорта рыбы, а также от вида обработки. При разборке рыбы на филейную часть образуется наибольшее количество остатков кожи, костей, хрящей.

Отходы рыбной продукции можно использовать в аграрных целях для повышения плодородности и насыщения полезными микроэлементами и азотом. Масса вносится в грунт и присыпается сверху слоем почвы. Однако этот метод не всегда удобен, поскольку запах от процесса гниения органической массы привлекает животных.

Второй способ получения удобрения – компостирование. В специально приготовленные ящики в равных пропорциях закладываются листья, рисовая шелуха и остатки рыбы. Эта смесь тщательно перемешивается и увлажняется водой. Сверху присыпается листвой или рисовой шелухой для предотвращения неприятного запаха. Раз в неделю важно массу перемешивать. В процессе компостирования погибают вредоносные личинки и другие паразиты. Подобное удобрение не оказывает негативного влияния на состав почвы, не загрязняет грунтовые воды.

компостирование

Сточные воды предприятий аквакультуры, образующиеся в процессе переработки гидробионтов, загрязняют водоемы. Это смывы от тары, оборудования, рыбных тушек, содержащие кровь, желчь, жир, фосфаты. В составе таких смывов преобладают взвешенные вещества.

Делят сточные воды рыбоперерабатывающих производств на два типа: жиросодержащие (от цехов первоначальной обработки) и не имеющие в составе жир (от цехов последующей переработки продукции). Стоки цехов аквакультуры биологически имеют высокую степень бактериального загрязнения, в связи с чем перед утилизацией обязательно выполняется очистка (механическая и биологическая) и обеззараживание. Поля фильтрации рыбных стоков быстро засоряются взвешенными веществами. Сточные воды скапливаясь на полях сливаются в водоемы, оказывая губительное воздействие на гидробионтов.

Переработка отходов рыбного производства экономически выгодна для крупных предприятий аквакультуры. Некоторые, в основном мелкие фирмы, в целях экономии средств на утилизацию несанкционированно размещают отходы в неустановленных местах. Это прямое нарушение природоохранного законодательства, наказуемое высокими штрафными санкциями.


Неполноценное использование отходов рыбоперерабатывающих производств является распространенной проблемой рыбной отрасли. Ежедневно в процессе переработки рыбных ресурсов производятся тонны отходов при производстве рыбного филе, фаршей, консервов и других видов рыбной продукции. Самой распространенной технологией для переработки отходов до сих пор остается производство кормовой рыбной муки, в то время, как большая часть отходов оказывается на свалках промышленного мусора [9]. Необходимость решения проблемы комплексного использования водных ресурсов очевидна, это не только снизит затраты на производство традиционных видов рыбной продукции, но и позволит заметно расширить ассортимент.

В последних работах по проблеме недоиспользования водных ресурсов, отходами принято называть конечный продукт, который не имеет дальнейшего использования. Всё то, что подлежит дальнейшей переработке, является сырьем. [8]. Состав такого сырья варьируется в зависимости от вида рыбы, из которого оно произведено, сезона и других факторов. В качестве сырья могут служить рыбные головы, части тканей рыбы, отделенные в ходе филетирования, кости, кожа, внутренние органы рыб. Головы и кости достаточно целесообразно перерабатывать по имеющейся технологии производства рыбной муки, в то время, как мягкие ткани и внутренние органы, содержащие ценные липидную и белковую фракции, остаются крайне недоиспользованными. Для эффективного использования сырья, фракции необходимо разделить, причем максимально сохраняя качество и выход обоих. В данном обзоре остановимся подробнее на этих недоиспользуемых элементах сырья, их составе и способах утилизации.

Традиционной технологией переработки отходов рыбоперерабатывающих производств с целью получения рыбного жира является переработка с использованием измельчения, нагревания, прессования и сепарации отделившегося рыбного жира. [4]. В целях комплексной переработки рыбных отходов, содержащих и белковую и липидную фракции, необходимо использовать технологию, позволяющую разделить и утилизировать обе фракции. Традиционный вид обработки сырья в данном случае вызывает ряд нежелательных последствий вследствие легкой окисляемости и нестабильности жировой фракции и небольшого выхода белковой фракции. Для эффективной переработки сырья, содержащего как белковую так и липидную фракции применяется гидролиз, который позволяет получить на выходе как рыбный жир так и рыбный белковый гидролизат (РБГ). Существуют два пути проведения гидролиза - химический и ферментативный, но из-за сравнительной опасности проведения химического гидролиза, в связи с применением опасных реагентов и небережного отношения к сырью, предпочтительной является технология ферментативного гидролиза. [2]. Технология комплексной переработки сырья включает в себя ферментативный гидролиз в диапазоне температур от 40 до 60 градусов Цельсия, инактивацию ферментов при 90 градусах Цельсия и последующую сепарацию. Но, основным недостатком этой технологии является приоритетное получение качественного РБГ, нежели рыбного жира, т.к. в ходе процесса гидролиза жировая фракция окисляется за счет присутствия фермента липазы и качество готового рыбного жира ухудшается. С целью получения обеих фракций с высокими качественными показателями используется комбинированный метод переработки, включающий нагревание сырья до 70-90 градусов Цельсия с целью получения рыбного жира высокого качества, его отделения и дальнейшей переработки оставшегося сырья методом ферментативного гидролиза, описанным выше. Таким образом, данная технология позволяет получать высококачественный рыбный жир с низкими перекисным и кислотными числами, рыбный жир более низкого качества и высокий выход РБГ, что подразумевает комплексную переработку сырья и утилизацию готовой продукции. Здесь имеет место заметить, что качество получаемых фракций зависит не только от условий переработки сырья, но и от качества сырья перед началом переработки, поэтому важно получать на переработку сырье максимально свежим.

Технология ферментативного гидролиза требует дальнейшего изучения, потому как такие ее элементы, как, например, степень измельчения сырья, температура процесса, выбор ферментного препарата, продолжительность процесса и прочие должны быть изучены и их влияние на выход готовых фракций и их свойства должны быть установлены.

Дальнейшее использование получаемого рыбного жира зависит от его органолептических, физических и химических показателей, таких как запах, вкус, цвет, прозрачность, кислотное и перекисное числа, массовая доля влаги и неомыляемых веществ, и других, и предполагает широкий спектр утилизации от применения в качестве технического рыбного жира до внедрения в пищевой рацион в качестве биологически-активной добавки.

РБГ - это продукты с большим содержанием свободных аминокислот и низших пептидов, обладающие хорошими функциональными и питательными свойствами. В последние годы производятся работы по изучению биоактивных свойств РБГ [6]. Основными направлениями изучения рыбных белковых гидролизатов являются органолептические и функциональные свойства, в большой степени, обусловленные молекулярным размером пептидов. Рыбные белковые гидролизаты широко используются в медицине, микробиологии, пищевой и комбикормовой промышленности.

Механизм получения концентратов и изолятов рыбного белка основан на аналогичных принципах.

В настоящее время разработано несколько способов получения изолята рыбного белка. Основные из них: экстракция и осаждение белка раствором солей, метод pH-сдвига.

Преимущества применения для экстракции белка и его осаждения разбавленных растворов щелочей и кислот обусловлены рядом причин, в числе которых уменьшение расхода реагентов для изменения pH по сравнению с осаждением белка раствором солей и снижение затрат на переработку стоков и регенерацию воды за счет метода нейтрализации сточных вод [3]. Также для большинства белков характерны минимальная растворимость при изоэлектрической точке и увеличение растворимости при удалении от неё. Следовательно, метод pH-сдвига можно использовать для экстракции альбуминов, глобулинов и глютелинов, что обеспечивает больший выход и меньшее фракционирование при растворении, чем солевые растворы [5].

Технологические процессы производства концентратов и изолятов белка состоят из сравнительно небольшого числа операций. Обычно они включают механическое измельчение и очистку исходного сырья, экстракцию из него целевых и антипитательных веществ, солюбилизацию белка, очистку белкового раствора, концентрирование или осаждение белка, регулирование его функциональных свойств, сушку или замораживание, или дальнейшее использование для получения продуктов питания.

Изоляты белка, полученные с помощью добавления кислоты или щёлочи, отличаются по ряду характеристик. Так солюбилизация при высоком значении pH даёт лучшие показатели по степени белизны, прочности геля и стойкости к окислению протеина. Гемопротеины денатурируют и соосаждаются, что делает полученный изолят менее стабильным и более тёмным. Тем не менее, кислотный метод обычно обеспечивает больший выход белка [7].

Основными направлениями на пути создания и оптимизации технологий изготовления изолята рыбного белка являются: выбор сырья, наиболее приемлемого для его изготовления, подготовка фарша с наиболее приемлемыми показателями, определение значений технологических параметров, обеспечивающих максимальный выход и качество изолята рыбного белка, максимальная расшифровка механизмов формирования основных свойств изолята и на их базе создание моделируемых процессов и управляемых технологий.

Изоляты рыбного белка обладают многими ценными функциональными свойствами: растворимостью в воде, эмульгирующей, пенообразующей, связующей способностями и другими. Именно они позволяют использовать ИРБ в процессе изготовления широкого диапазона пищевых продуктов. ИРБ может быть использован в качестве ингредиента для производства обогащённых и готовых к употреблению продуктов на основе рыбного фарша или сурими.

Рыбные белковые концентраты (РБК) - продукты, получаемые в процессе гидролиза, прерванного на начальной стадии образования концентрированного пептидного раствора, химическим, физико-химическим, биохимическим и комбинированным способами. К используемым промышленностью способам получения белковых препаратов из мелких пелагических рыб путем обработки их органическими растворителями относятся такие, как применяемый в Норвегии способ приготовления РБК путем однократной экстракции рыбной муки изопропанолом и применяемый в Японии и Перу способ приготовления маринбифа. Этим способам свойственны существенные недостатки. Основные недостатки норвежского способа приготовления РБК - недостаточная очистка препарата от жира и утрата белком ряда функциональных свойств. Недостатком японского способа приготовления маринбифа является низкий выход продукта и, вследствие этого, высокая его себестоимость. В частности в Перу, где маринбиф выпускается в качестве белковой основы для кулинарных формованных изделий, его стоимость превышает стоимость говядины.

Недостатки применения органических растворителей для осаждения белка обусловлены в первую очередь тем, что на этот процесс влияют присутствие солей и рН. Соли же могут поступать из исходного сырья при его экстракции водными растворами. Также эти осадители способны вызывать денатурацию белка, понижая растворимость и другие функциональные свойства белка. Также белковые концентраты, полученные этим способом, плохо набухают в воде, не проявляют эмульгирующей и пенообразующей способности, поэтому применение их в качестве структурообразователей затруднительно [1].

При ферментативном способе производства РБК применяют ферменты, которые, гидролизуя белки тканей рыбы, повышают их растворимость, а также способствуют более легкому и полному отделению липидов. При этом способе используются собственные ферментные системы рыб, а также ферменты, вырабатываемые организмами животных или микроорганизмами. Большинство технологий производства рыбных белковых концентратов имеют недостатки: использование дорогостоящих экстрагентов (для удаления жира), применение технологических процессов с высокими температурами, давлением. Некоторые из них приводят к потере ценных биологически активных компонентов - эссенциальных липидов, витаминов, минеральных веществ.

Огромное количество отходов рыбоперерабатывающих производств - потенциального сырья оказывается на свалках из-за некомплексного подхода к утилизации рыбных ресурсов. Для эффективной переработки рыбных запасов необходимо обеспечить технологию, которая позволит получать отходы от рыбного производства свежими, обеспечить как высокое качество, так и высокий выход готовой продукции из данного вида сырья, и ее эффективную утилизацию. Для эффективной утилизации продукции из отходов рыбной отрасли необходимо детально изучить ее свойства и разработать соответствующую документацию для возможности внедрения технологии в массовое производство.

Богданов В.Д., Сафронова Т.М. Структурообразователи и рыбные композиции. М.: ВНИРО, 1993. - 172 с.

Максимова Е.М. Разработка технологии утилизации белковых отходов методом ферментативного гидролиза.- Вестник МГТУ, том 9, N 5, 2006.- стр. 875-879

Choi Y.J., Lin T.M., Tomlinson K. and Park J.W. 2007. Effect of salt concentration and temperature of storage water on the physicochemical properties of fish proteins. Elsevier LWT.

FAO (1986) The production of fish meal and oil. FAO Fisheries Technical Paper.

Hultin HO, Kristinsson HG, Lanier Tyre C and Park JW. 2005. Process for Recovery of Functional Proteins by PH-shifts. In Park, Surimi and surimi seafood, Boca Raton; Taylor and Francis Group. 107-139.

Kim S.-K. And Mendis, E. (2006). Bioactive compounds from marine processing by-products- a review. Food Research Internetional, 39, 383-393

Kristinsson HG and Liang Y. 2006. Effect of pH-shift Processing and Surimi Processing of Atlantic croaker (Micropogonias undulates) Muscle Proteins. Journal of Food Science. 71(5), C304-312.

Основные термины (генерируются автоматически): рыбный белок, рыбный жир, ферментативный гидролиз, FAO, осаждение белка, градус Цельсия, дальнейшее использование, качество, свойство, цель получения.

Переработка отходов в рыбную муку на котле Лапса: способ устарел?

Суть технологии в том, что сырье подвергается длительной термообработке. Отходы нагреваются и в течение долгого времени находятся под воздействием температуры и давления. На выходе получается рыбная мука, которую можно использовать как добавку в корма. Таким образом, продукт, получаемый на выходе, ценен, но сам процесс имеет множество недостатков.

В первую очередь это длительность процесса – он может достигать 12 часов. Такая многочасовая термообработка приводит к денатурации 70-75% протеина, это значит кормовая ценность продукта снижается. Во-вторых, такая установка очень энергоемкая, для ее работы также нужны газ, пар и горячая вода. И, наконец, котлы Лапса способствуют загрязнению окружающей среды – образуются жиросодержащие сточные воды, увеличивающие нагрузку на локальные очистные сооружения, а также неприятно пахнущие и токсические вещества (сероводород, сернистый газ, меркаптан и др.). Себестоимость такой рыбной муки получается очень высокой.

Экструдирование - наше все?

Мы предлагаем использовать экструдирование – современный способ, лишенный недостатков переработки на котлах Лапса. Он позволит снизить энергозатраты: кроме электроэнергии для технологического процесса не нужны другие энергоносители, такие как газ, пар, горячая вода. Кроме того, отсутствуют вредные выбросы в атмосферу, стоки и вторичные отходы. Также метод экструдирования позволяет повысить степень использования сырья, улучшить усвояемость продукта и сократить трудовые затраты.

В процессе работы линии отрицательные эффекты термообработки сведены до минимума: время прохождения смеси через экструдер не превышает 30 секунд, а в зоне максимальной температуры она находится лишь 5-6 секунд.

В результате переработки получается готовый продукт – экструдат, который не требует сушки для обеспечения длительного срока хранения. Экструдат – это готовый корм из обеззараженных и обработанных растительных и животных компонентов с высокой степенью усвояемости и регулируемым содержанием животного белка. Этот продукт очень ценен для рынка кормов и используется как на небольших КФХ, так и на крупных агропромышленных предприятиях.

Наиболее сбалансированные по составу экструдаты получаются при добавлении к рыбным отходам в качестве растительных компонентов зернобобовых культур, подсолнечного соевого, рапсового жмыхов и шротов, а также бобов сои и семян рапса.

Наш опыт экструдирования смеси из рыбных отходов, овощей и зернового наполнителя:

Технология легко адаптируется для производства полнорационных кормов с вводом витаминных добавок и премиксов.

Что выбрать при небольших объемах отходного сырья?

Если у вас небольшое производство и объемы отходного сырья не слишком велики, обратите внимание на нашу установку получения высокопротеиновых смесей. Для работы вам потребуется только электричество. На выходе мы получаем готовую кормовую высокопротеиновую добавку, которую можно сразу использовать как компонент комбикорма или проэкструдировать. Мы уже писали об этом агрегате более подробно в одном из выпусков Вестника

Таким образом, существует несколько способов переработки рыбных отходов. Не знаете, какой способ выбрать, задайте вопрос нашему специалисту. Просто позвоните или оставьте заявку на нашем сайте!

Содержание

1. Отходы от разделки гидробионтов и их рациональная переработка……

1.1 Общие схемы рациональной переработки гидробионтов………………

1.2 Рациональное использование рыбы при ее переработке……………….

1.3 Отходы переработки водорослей, морской капусты и их рациональное использование………………

1.4 Отходы переработки моллюсков……………………………………

1.5 Комплексная переработка ракообразных…………………..

1.6 Переработка отходов иглокожих…………

2. Технология производства продуктов из отходов от переработки гидробионтов….

2.1 Получение БАВ из отходов от переработки рыб………

2.2 Получение БАВ из отходов от переработки беспозвоночных……

2.3 Получение БАВ из водорослей и трав…………

3. Применение БАВ из гидробионтов в пищевой промышленности……

4. Перспективы развития и совершенствования технологий комплексной и рациональной переработки гидробионтов…………

Список использованных источников

Работа состоит из 1 файл

курсовая готово.docx

1.2 Рациональное использование рыбы при её переработке.

Рыба является основным сырьевым ресурсом для большинства предприятий, занимающихся выловом и обработкой гидробионтов. Видовое разнообразие рыб велико, но благодаря сходности строений организмов всех рыб при переработке в большинстве случаев отходами являются сходные части тела рыб.

При обработке рыбных объектов отходы производства составляют 60 %. На пищевые отходы приходится 40-45 % сырья, поступившего на обработку, что весьма значительно. К непищевым отходам относят кости рыб, кровь, органы пищеварительного тракта, гонады, слизь, чешую, кожу. Слизь составляет для некоторых видов рыб более 20 % массы тела и теряется при мойке рыбы. Она на 80-90 % состоит из воды и содержит 10-12 % сухих веществ. В состав сухих веществ в основном входят липиды и минеральные вещества. При утилизации слизи возможно получение ряда аминокислот, в том числе незаменимых, а также фосфатидов и холестерина.

В теле рыбы полезные вещества распределены неравномерно – большая часть содержится во внутренних органах, что и определяет высокую биологическую ценность отходов переработки рыбы.

Отходы, образующиеся при переработке рыбы, содержат большое количество минеральных веществ, аминокислот, липидов, витаминов и азотистых веществ.

В настоящее время успешно перерабатываются отходы рыбной промышленности для создания различных медицинских препаратов, технических продуктов, удобрений, кормовой муки и других веществ, нашедших свое применение в различных отраслях народного хозяйства[2].

Рыбные отходы благодаря своему уникальному составу являются идеальным сырьем для производства удобрений. Удобрения, полученные из отходов переработки гидробионтов, экологически чистые, не оказывают негативного воздействия на растения, но при этом обладают высокой питательной ценностью.

Основное направление современной переработки отходов заключается в производстве рыбной муки. Рыбная мука используется в дальнейшем для производства комбинированных кормов или непосредственно добавляется в рацион сельскохозяйственных животных, птиц и молоди рыбы на рыборазводных заводах[22].

Печень рыб может быть использована для производства пищевого жира, имеющего широкое пищевое и лечебно-профилактическое применение. Рыбный печеночный жир содержит не только полиненасыщенные жирные кислоты, но и жирорастворимые витамины А и D, что позволяет считать его уникальным диетическим продуктом. Разработан ферментативный способ, который предусматривает щадящие режимы технологической обработки и обеспечивает увеличение выхода жира. Печень рыб является источником высокомолекулярных полиеновых жирных кислот (предшественник простагландинов), гепарина (антикоагулянт прямого действия), сквалена (бактерицидное вещество) и препарата, обладающего способностью активировать функцию ретикулоэндотелия[19].

Молоки морских рыб – ценное пищевое сырье с высоким содержанием биологически активных соединений – нуклеотидов и полиненасыщенных жирных кислот (арахидоновой, эйкозапентаеновой, докозагексаеновой). Содержащаяся в составе молок низкомолекулярная ДНК обладает высокой биологической активностью. Она способствует активизации умственной деятельности, замедлению процессов старения, снижению уровня холестерина в крови, повышению иммунитета, оказывает общеукрепляющее действие. Молоки рыб характеризуются высоким содержанием белка, липидов, дезоксирибонук-леиновой кислоты. Молоки реализуются главным образом в мороженом виде и используются для производства консервов (паштетов), пресервов в заливках, в кулинарии (жареные)[8].

Следует отметить, что себестоимость молок значительно ниже, чем объектов морского промысла (рыбы и ценных морепродуктов). Кроме того, при первичной обработке молок отсутствуют отходы, что обеспечивает высокую рентабельность производства.

Из хрящевой ткани и костных хребтов с прирезями мяса лососевых рыб получают БАД, содержащие противовоспалительные компоненты, которые отвечают за обменные процессы в соединительной ткани и используются для профилактики и лечения остеопороза.

Исследования биологической ценности мяса и костей лососевых рыб (в сумме) показали, что они отличаются хорошо сбалансированным белковым составом, незначительным содержанием липидов и, что особенно важно, сбалансированы по минеральным микронутриентам[20].

В последнее время большое внимание уделяется коже гидробионтов как сырью для получения структурообразующих веществ, которые используются в производстве пищевых продуктов с эмульсионной структурой. Коллаген – структурный белок, образующий кожный покров, скелет, плавники и чешую всех видов рыб .

Как известно, коллаген является целевым сырьем для производства желатина. На сегодняшний день различными фирмами выпускаются три вида желатина: пищевой, промышленный, фотографический. Желатин, предназначенный для пищевых целей, характеризуется экологической чистотой и высокими эстетическими свойствами.

В пищевой промышленности коллаген применяют для очистки алкогольных напитков, при производстве желатина, искусственной икры. В медицине это многочисленные препараты, используемые при лечении гипертонической болезни, остеоатрита, недержания мочи. Выявлен противораковый эффект рыбного коллагена. Некоторые фармацевтические компании наладили производство различных оздоровительных напитков и коктейлей, средств по снижению веса.

Совсем недавно стали производить контактные линзы из фибриллярного белка рыб.

Большое будущее за рыбным коллагеном видят в Японии, считая его полноценной альтернативой коллагену млекопитающих, так как использование коллагена млекопитающих небезопасно, учитывая последние события массового падежа скота из-за бешенства. Японские ученые также предлагают ряд оригинальных технологий по производству продуктов питания, косметических средств и биомедицинских материалов из фибриллярных белков.

Ученые считают, что коллаген может стать основой для искусственной кожи, предназначенной для людей с серьезными ожогами. Возможно также использовать коллаген рыб для изготовления искусственных кровеносных сосудов[5].

Более рациональное применение кожи рыб заключается в получении белков (альбуминоидов, муцинов, коллагена, проколлагена), мукополисахаридов, каротиноидов, липидов, меланиновых пигментов, ядов[6].

Головы и плавники рыб могут быть использованы при производстве суповых наборов, белковых гидрализатов, жира и кормовой муки. Мышечная ткань туловища, ястыки и гонады направляют для производства продуктов питания[2].

Плавательные пузыри используются для производства технического клея. Сырье для получения такого клея консервируют посолом, а затем направляют на клееварочные заводы.

На чешуе некоторых видов рыб содержится кристаллическое органическое вещество – гуанин, придающее рыбе характерный серебристый цвет (от 0,5 до 5%). Он широко применятся для изготовления ювелирных поделок, перламутровых имитаций, в химико-фармацевтической промышленности – для получения кофеина. Также чешую можно направлять на производство рыбного клея . Помимо этого она может быть источником специфического альбуминоида и проколлагена. Массовая доля чешуи рыбы достигает 10 %[2].

Белковые гормоны (инсулин и глюкагон) можно получить из поджелудочных желез рыб. Почки рыб представляют собой материал для получения минеральных веществ, липолитических и протеолитических ферментов. Из надпочечников могут быть выделены кортикостероидные гормоны, адреналин и норадреналин, из гонад - незаменимые аминокислоты, половые гормоны и липидные вещества (жирорастворимые витамины, каротиноиды и фосфолипиды)[3].

1.3 Отходы переработки водорослей, морской капусты и их рациональное использование.

Наибольшее промысловое значение имеют бурые и багряные водоросли.

Бурые водоросли. В эту группу водорослей входит большое количество морских растений из которых промысловое значение имеют ламинария и фукус.

Ламинария состоит из слоевища, переходящего в стволик, заканчивающийся разветвленными органами прикрепления – ризоидами. Весь запас полезных веществ сосредоточен в слоевище длиной 3–5 м.

Багряные водоросли. Промысловое распространение получили водоросли анфельция – это многолетнее растение с тонким разветвленным слоевищем, высотой 10–40 см, с красновато - багряной окраской[6].

Авторы Э.А. Врищ, В.М.Калугина(1988) считают, что наиболее ценными продуктами переработки бурых водорослей являются соли альгиновой кислоты, которые образуют водорастворимые альгинаты (натрия, калия, аммония) и нерастворимые в воде соединения альгиновой кислоты в виде кальциевой и других солей.

Водорастворимые альгинаты, в основном альгинат натрия, используются в производстве пищевых продуктов, парфюмерии, текстильной промышленности и в других целях. Нерастворимый в воде альгинат кальция используется для научных исследований, производстве искусственных волокон.

В основу технологии производства альгината кальция была положена технология получения пищевого альгината натрия из бурых водорослей, разработанная ТИНРО, с включением процесса осаждения альгината кальция из щелочного водорослевого экстракта раствором хлористого кальция[23].

Морские водоросли и травы содержат вещества, регулирующие многие физиологические процессы в организме человека. В настоящее время комплексная переработка морских водорослей предполагает создание технологий, которые позволяют использовать в производстве все ценные для здоровья человека вещества морских растений. В результате исследований биологической ценности промысловых и перспективных к промыслу водорослей ДВ морей создана база данных по содержанию в растительном сырье основных физиологически активных соединений. К ним относятся полисахариды (альгинаты, фукоиданы, сульфатированные галактаны), свободные аминокислоты, полиненасыщенные жирные кислоты (омега-3); пигменты, широкий спектр микроэлементов. На основе этих данных разработана концепция комплексной переработки водорослей с сохранением в полученной из них продукции повышенных концентраций физиологически активных веществ. Пищевые продукты из водорослей разрабатываются по двум направлениям. В первом случае водоросли используются как самостоятельные диетические продукты питания. Во втором случае при изготовлении пищевой продукции используют физиологически активные вещества водорослей в виде экстрактов, концентратов[17].

1.4 Отходы переработки моллюсков.

Отходная часть переработки моллюсков состоит из раковин, мясной части и целых моллюсков, не пригодных для переработки[6].

Раковины моллюсков, которые составляют основную массу тела, включают три слоя. Первый, поверхностный слой представлен сильноминерализованным органическим веществом конхионином, второй – призматическими кристаллами карбоната кальция, третий – перламутровым покрытием, представляющим собой плотно соединенные тонкие известковые листики. Характер и толщина этих слоев у раковин различных видов моллюсков различны[15]. Раковины моллюсков используют для получения кормовой муки.

Отходы от разделки кальмаров (печень, гонады, остатки желудочно-кишечного тракта) являются жироносным сырьем. Жирность внутренностей колеблется в широких пределах - от 60 и ниже 10%. После разделки кальмара вручную отходы можно подвергать термической обработке, затем полученную массу разделяют на твердую и жидкую фазы, из жидкой фазы извлекают вещество, которое называют кальмаровым маслом.

Лецитин производят из гонад кальмара. Его широко применяют в косметической промышленности в качестве эмульгатора и смягчающего средства. В пищевой промышленности применяют в производстве маргарина, хлебобулочных и кондитерских изделий. Из ганглий кальмара получают ганглиин. Пептиды (ганглиин) беспозвоночных усиливают деятельность иммунной системы, повышают сопротивляемость организма к действию болезнетворных микроорганизмов и ядовитых продуктов, предупреждают развитие тяжелых болезней и злокачественных образований[16].

Содержание

1. Отходы от разделки гидробионтов и их рациональная переработка……

1.1 Общие схемы рациональной переработки гидробионтов………………

1.2 Рациональное использование рыбы при ее переработке……………….

1.3 Отходы переработки водорослей, морской капусты и их рациональное использование………………

1.4 Отходы переработки моллюсков……………………………………

1.5 Комплексная переработка ракообразных…………………..

1.6 Переработка отходов иглокожих…………

2. Технология производства продуктов из отходов от переработки гидробионтов….

2.1 Получение БАВ из отходов от переработки рыб………

2.2 Получение БАВ из отходов от переработки беспозвоночных……

2.3 Получение БАВ из водорослей и трав…………

3. Применение БАВ из гидробионтов в пищевой промышленности……

4. Перспективы развития и совершенствования технологий комплексной и рациональной переработки гидробионтов…………

Список использованных источников

Работа состоит из 1 файл

курсовая готово.docx

1.2 Рациональное использование рыбы при её переработке.

Рыба является основным сырьевым ресурсом для большинства предприятий, занимающихся выловом и обработкой гидробионтов. Видовое разнообразие рыб велико, но благодаря сходности строений организмов всех рыб при переработке в большинстве случаев отходами являются сходные части тела рыб.

При обработке рыбных объектов отходы производства составляют 60 %. На пищевые отходы приходится 40-45 % сырья, поступившего на обработку, что весьма значительно. К непищевым отходам относят кости рыб, кровь, органы пищеварительного тракта, гонады, слизь, чешую, кожу. Слизь составляет для некоторых видов рыб более 20 % массы тела и теряется при мойке рыбы. Она на 80-90 % состоит из воды и содержит 10-12 % сухих веществ. В состав сухих веществ в основном входят липиды и минеральные вещества. При утилизации слизи возможно получение ряда аминокислот, в том числе незаменимых, а также фосфатидов и холестерина.

В теле рыбы полезные вещества распределены неравномерно – большая часть содержится во внутренних органах, что и определяет высокую биологическую ценность отходов переработки рыбы.

Отходы, образующиеся при переработке рыбы, содержат большое количество минеральных веществ, аминокислот, липидов, витаминов и азотистых веществ.

В настоящее время успешно перерабатываются отходы рыбной промышленности для создания различных медицинских препаратов, технических продуктов, удобрений, кормовой муки и других веществ, нашедших свое применение в различных отраслях народного хозяйства[2].

Рыбные отходы благодаря своему уникальному составу являются идеальным сырьем для производства удобрений. Удобрения, полученные из отходов переработки гидробионтов, экологически чистые, не оказывают негативного воздействия на растения, но при этом обладают высокой питательной ценностью.

Основное направление современной переработки отходов заключается в производстве рыбной муки. Рыбная мука используется в дальнейшем для производства комбинированных кормов или непосредственно добавляется в рацион сельскохозяйственных животных, птиц и молоди рыбы на рыборазводных заводах[22].

Печень рыб может быть использована для производства пищевого жира, имеющего широкое пищевое и лечебно-профилактическое применение. Рыбный печеночный жир содержит не только полиненасыщенные жирные кислоты, но и жирорастворимые витамины А и D, что позволяет считать его уникальным диетическим продуктом. Разработан ферментативный способ, который предусматривает щадящие режимы технологической обработки и обеспечивает увеличение выхода жира. Печень рыб является источником высокомолекулярных полиеновых жирных кислот (предшественник простагландинов), гепарина (антикоагулянт прямого действия), сквалена (бактерицидное вещество) и препарата, обладающего способностью активировать функцию ретикулоэндотелия[19].

Молоки морских рыб – ценное пищевое сырье с высоким содержанием биологически активных соединений – нуклеотидов и полиненасыщенных жирных кислот (арахидоновой, эйкозапентаеновой, докозагексаеновой). Содержащаяся в составе молок низкомолекулярная ДНК обладает высокой биологической активностью. Она способствует активизации умственной деятельности, замедлению процессов старения, снижению уровня холестерина в крови, повышению иммунитета, оказывает общеукрепляющее действие. Молоки рыб характеризуются высоким содержанием белка, липидов, дезоксирибонук-леиновой кислоты. Молоки реализуются главным образом в мороженом виде и используются для производства консервов (паштетов), пресервов в заливках, в кулинарии (жареные)[8].

Следует отметить, что себестоимость молок значительно ниже, чем объектов морского промысла (рыбы и ценных морепродуктов). Кроме того, при первичной обработке молок отсутствуют отходы, что обеспечивает высокую рентабельность производства.

Из хрящевой ткани и костных хребтов с прирезями мяса лососевых рыб получают БАД, содержащие противовоспалительные компоненты, которые отвечают за обменные процессы в соединительной ткани и используются для профилактики и лечения остеопороза.

Исследования биологической ценности мяса и костей лососевых рыб (в сумме) показали, что они отличаются хорошо сбалансированным белковым составом, незначительным содержанием липидов и, что особенно важно, сбалансированы по минеральным микронутриентам[20].

В последнее время большое внимание уделяется коже гидробионтов как сырью для получения структурообразующих веществ, которые используются в производстве пищевых продуктов с эмульсионной структурой. Коллаген – структурный белок, образующий кожный покров, скелет, плавники и чешую всех видов рыб .

Как известно, коллаген является целевым сырьем для производства желатина. На сегодняшний день различными фирмами выпускаются три вида желатина: пищевой, промышленный, фотографический. Желатин, предназначенный для пищевых целей, характеризуется экологической чистотой и высокими эстетическими свойствами.

В пищевой промышленности коллаген применяют для очистки алкогольных напитков, при производстве желатина, искусственной икры. В медицине это многочисленные препараты, используемые при лечении гипертонической болезни, остеоатрита, недержания мочи. Выявлен противораковый эффект рыбного коллагена. Некоторые фармацевтические компании наладили производство различных оздоровительных напитков и коктейлей, средств по снижению веса.

Совсем недавно стали производить контактные линзы из фибриллярного белка рыб.

Большое будущее за рыбным коллагеном видят в Японии, считая его полноценной альтернативой коллагену млекопитающих, так как использование коллагена млекопитающих небезопасно, учитывая последние события массового падежа скота из-за бешенства. Японские ученые также предлагают ряд оригинальных технологий по производству продуктов питания, косметических средств и биомедицинских материалов из фибриллярных белков.

Ученые считают, что коллаген может стать основой для искусственной кожи, предназначенной для людей с серьезными ожогами. Возможно также использовать коллаген рыб для изготовления искусственных кровеносных сосудов[5].

Более рациональное применение кожи рыб заключается в получении белков (альбуминоидов, муцинов, коллагена, проколлагена), мукополисахаридов, каротиноидов, липидов, меланиновых пигментов, ядов[6].

Головы и плавники рыб могут быть использованы при производстве суповых наборов, белковых гидрализатов, жира и кормовой муки. Мышечная ткань туловища, ястыки и гонады направляют для производства продуктов питания[2].

Плавательные пузыри используются для производства технического клея. Сырье для получения такого клея консервируют посолом, а затем направляют на клееварочные заводы.

На чешуе некоторых видов рыб содержится кристаллическое органическое вещество – гуанин, придающее рыбе характерный серебристый цвет (от 0,5 до 5%). Он широко применятся для изготовления ювелирных поделок, перламутровых имитаций, в химико-фармацевтической промышленности – для получения кофеина. Также чешую можно направлять на производство рыбного клея . Помимо этого она может быть источником специфического альбуминоида и проколлагена. Массовая доля чешуи рыбы достигает 10 %[2].

Белковые гормоны (инсулин и глюкагон) можно получить из поджелудочных желез рыб. Почки рыб представляют собой материал для получения минеральных веществ, липолитических и протеолитических ферментов. Из надпочечников могут быть выделены кортикостероидные гормоны, адреналин и норадреналин, из гонад - незаменимые аминокислоты, половые гормоны и липидные вещества (жирорастворимые витамины, каротиноиды и фосфолипиды)[3].

1.3 Отходы переработки водорослей, морской капусты и их рациональное использование.

Наибольшее промысловое значение имеют бурые и багряные водоросли.

Бурые водоросли. В эту группу водорослей входит большое количество морских растений из которых промысловое значение имеют ламинария и фукус.

Ламинария состоит из слоевища, переходящего в стволик, заканчивающийся разветвленными органами прикрепления – ризоидами. Весь запас полезных веществ сосредоточен в слоевище длиной 3–5 м.

Багряные водоросли. Промысловое распространение получили водоросли анфельция – это многолетнее растение с тонким разветвленным слоевищем, высотой 10–40 см, с красновато - багряной окраской[6].

Авторы Э.А. Врищ, В.М.Калугина(1988) считают, что наиболее ценными продуктами переработки бурых водорослей являются соли альгиновой кислоты, которые образуют водорастворимые альгинаты (натрия, калия, аммония) и нерастворимые в воде соединения альгиновой кислоты в виде кальциевой и других солей.

Водорастворимые альгинаты, в основном альгинат натрия, используются в производстве пищевых продуктов, парфюмерии, текстильной промышленности и в других целях. Нерастворимый в воде альгинат кальция используется для научных исследований, производстве искусственных волокон.

В основу технологии производства альгината кальция была положена технология получения пищевого альгината натрия из бурых водорослей, разработанная ТИНРО, с включением процесса осаждения альгината кальция из щелочного водорослевого экстракта раствором хлористого кальция[23].

Морские водоросли и травы содержат вещества, регулирующие многие физиологические процессы в организме человека. В настоящее время комплексная переработка морских водорослей предполагает создание технологий, которые позволяют использовать в производстве все ценные для здоровья человека вещества морских растений. В результате исследований биологической ценности промысловых и перспективных к промыслу водорослей ДВ морей создана база данных по содержанию в растительном сырье основных физиологически активных соединений. К ним относятся полисахариды (альгинаты, фукоиданы, сульфатированные галактаны), свободные аминокислоты, полиненасыщенные жирные кислоты (омега-3); пигменты, широкий спектр микроэлементов. На основе этих данных разработана концепция комплексной переработки водорослей с сохранением в полученной из них продукции повышенных концентраций физиологически активных веществ. Пищевые продукты из водорослей разрабатываются по двум направлениям. В первом случае водоросли используются как самостоятельные диетические продукты питания. Во втором случае при изготовлении пищевой продукции используют физиологически активные вещества водорослей в виде экстрактов, концентратов[17].

1.4 Отходы переработки моллюсков.

Отходная часть переработки моллюсков состоит из раковин, мясной части и целых моллюсков, не пригодных для переработки[6].

Раковины моллюсков, которые составляют основную массу тела, включают три слоя. Первый, поверхностный слой представлен сильноминерализованным органическим веществом конхионином, второй – призматическими кристаллами карбоната кальция, третий – перламутровым покрытием, представляющим собой плотно соединенные тонкие известковые листики. Характер и толщина этих слоев у раковин различных видов моллюсков различны[15]. Раковины моллюсков используют для получения кормовой муки.

Отходы от разделки кальмаров (печень, гонады, остатки желудочно-кишечного тракта) являются жироносным сырьем. Жирность внутренностей колеблется в широких пределах - от 60 и ниже 10%. После разделки кальмара вручную отходы можно подвергать термической обработке, затем полученную массу разделяют на твердую и жидкую фазы, из жидкой фазы извлекают вещество, которое называют кальмаровым маслом.

Лецитин производят из гонад кальмара. Его широко применяют в косметической промышленности в качестве эмульгатора и смягчающего средства. В пищевой промышленности применяют в производстве маргарина, хлебобулочных и кондитерских изделий. Из ганглий кальмара получают ганглиин. Пептиды (ганглиин) беспозвоночных усиливают деятельность иммунной системы, повышают сопротивляемость организма к действию болезнетворных микроорганизмов и ядовитых продуктов, предупреждают развитие тяжелых болезней и злокачественных образований[16].

Читайте также: