Уникальное применение керамических материалов в современной технике реферат

Обновлено: 05.07.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1. РОЛЬ КЕРАМИКИ В ЖИЗНИ ЧЕЛОВЕКА 4

1.1. Понятие и виды керамики 4

1.2. Значение керамики в развитии человечества 6

1.3. Процесс получения керамических изделий 7

2. ИЗГОТОВЛЕНИЕ КЕРАМИЧЕСКОГО ИЗДЕЛИЯ - ВАЗЫ 8

3. ИССЛЕДОВАНИЕ ОТНОШЕНИЯ ОДНОКЛАССНИКОВ К КЕРАМИЧЕСКИМ ИЗДЕЛИЯМ МЕТОДОМ АНКЕТИРОВАНИЯ 9

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 11

Среди всех известных материалов по совокупности физико-химических, механических и художественно-эстетических свойств керамика не имеет себе равных. Растущий интерес к керамике и её роли в жизни людей и определили выбор темы моей работы.

Мой интерес к керамике возник в прошлом году. Во время летних каникул наша семья посетила Кносский дворец царя Миноса. Большое впечатление на меня произвели огромные сосуды в человеческий рост, которым было четыре тысячи лет. Они называются пифосы. Мне стало интересно, как были сделаны эти сосуды, почему они сохранились до наших дней, кто изготовил их, делают ли сейчас что-то подобное. Я была удивлена, узнав, что пифосы сделаны из глины – материала, обладающего уникальными свойствами. Кроме того, я узнала, что человек до сих пор изготавливает из глины огромное количество предметов. Как глина превращается в столь разные по форме и назначению предметы? Это составляет проблему моей работы.

Изделия из глины получили название керамика. Керамика окружает нас повсюду. Тема работы актуальна, поскольку жизнь современного человека невозможна без керамики.

Цельработы – выявить роль керамических изделий в жизни человека.

познакомиться с основными видами керамических изделий;

рассмотреть области применения керамики;

изучить процесс получения керамических изделий;

изготовить самостоятельно керамическое изделие – вазу;

провести анкетирование одноклассников.

Объектисследования– керамические изделия.

Предмет исследования – значение керамики для людей.

Степень изученности вопроса достаточно высока. Но мир керамики настолько велик, что требуются постоянные исследования в данной области.

В своей работе я постаралась показать, что глина – прекрасный материал для творчества. Работа с ней увлекательна, и она по силам не только взрослым, но и детям.

1. РОЛЬ КЕРАМИКИ В ЖИЗНИ ЧЕЛОВЕКА

Понятие и виды керамики

Глина — один из самых распространенных на нашей планете природных материалов. В сухом виде она представляет собой плотную землистую субстанцию, в которой присутствуют вкрапления различных пород: песка, камней. Глина является осадочной горной породой. Она обладает уникальными свойствами. При смешивании с водой глина меняет свою структуру, становится более гибкой и вязкой. Присутствие в глине тех или иных примесей определяет такие качественные характеристики глины, как пластичность, усадка, спекаемость, огнеупорность, упругость, механическая прочность, цвет, текстура [4].

В зависимости от состава глиняной массы, температурным режимам обжига, приемам художественного оформления керамические изделия подразделяются на группы: терракота, майолика, шамот, фарфор, фаянс (рис.1– 6).

Терракотой называют предметы из обожженной цветной глины (желтой, коричневой, красной, самых различных оттенков и их сочетаний) с пористой структурой. При изготовлении терракотовых изделий глазурь не используется. Майолика – это изделия, перед обжигом покрытые непрозрачной глазурью и рисунком. Глиняная масса шамот характеризуется красивой зернистой фактурой, она часто декорируется глазурями. Ее используют в основном в декоративно-прикладном искусстве [3]. Фарфор – это минеральная масса из смеси каолина, пластичной глины, кварца, полевого шпата. Фарфор обладает особой белизной, тонкостенностью и прозрачностью. Фаянс очень похож на фарфор, но не имеет такой белизны и прозрачности, а также он более толстый [1].

Фарфор Фаянсовые вазы Плитка майолика

Люстра керамика Камин из шамота Статуя из терракоты

1.2.Значение керамики в развитии человечества

Освоение керамики сыграло огромную роль в истории человечества.

1. Появление глиняной посуды, в которой продукты можно было подвергать различным видам тепловой обработки, привело к укреплению иммунной системы и повышению продолжительности жизни древних людей. [4]

2. Глиняная посуда позволяла существенно расширить возможности хранения продуктов в различном состоянии.

3. Гончарное производство способствовало оседлости, создавало условия для развития земледелия, скотоводства и привело к росту народонаселения.

4. Самые древние сохранившиеся свидетельства письменности представляют собой обожженные глиняные таблички из Месопотамии. Глиняные таблички стали страницами самых первых книг, написанных древними авторами.

5. Являясь одним из самых прочных материалов, керамика стала незаменимым источником информации о прошлом человечества.

6. Особую роль гончарное производство сыграло в развитии художественного творчества и интеллектуального и духовного развития человека. Навыки в работе с керамикой послужили основой для возникновения и развития многих других видов искусства: живописи, скульптуры, графики, мелкой пластики, глиптики, настенных росписей (фресок), декоративно-прикладного творчества [2]. Гончарное производство положило начало множеству новых отраслей. За созданием керамического кирпича последовало производство обожженного, вслед за этим был создан цемент, что произвело революцию в строительном деле. Важнейшим следствием керамического производства было зарождение металлургии. На базе обработки керамики было позднее создано стекловарение. Создание гончарных изделий положило также начало фармакологии, то есть обработке различных природных компонентов, в первую очередь растений, с целью получения лекарственных препаратов [4].

7. Керамика применяется в медицине (циркониевые коронки), в обороне (защита для бронетанковой техники на основе карбида кремния), в авиации и космонавтике (рис. 7–9).

Керамическая броня Керамика в авиации Керамика в медицине

1.3. Процесс получения керамических изделий

На рис. 10 представлен процесс получения керамических изделий древними шумерами [6]. Раньше изделия из глины делали всей семьёй. Работа состояла из нескольких этапов. Сначала добывали глину, добавляли в неё воду, отсеивали вручную все камни и месили ногами, пока глина не становилась пластичной. Далее пластичная глина поступала к другим членам семьи – гончарам. На ручном гончарном круге мастер придавал глине форму, а помощник мастера руками вращал гончарный круг.

Потом изделия из глины сушили на солнце. Затем обжигали в печи. Стадии обжига осуществлялись последовательно. Процесс был периодическим. В одну печь укладывали горшки, в другой печи шёл обжиг, в третьей изделия остывали. Остывшие изделия раскрашивали.

Современное гончарство, как и древнее, включает в себя те же этапы: поиск и добычу исходного сырья, его подготовку, изготовление формовочных масс, конструирование изделий, обработку поверхности, нанесение декора, придание изделиям прочности и влагонепроницаемости, сушку и обжиг в печи. В настоящее время существует два основных вида гончарных производств: на заводах и в небольших мастерских. Процесс получения керамических изделий автоматизирован [7].

Гончары за работой

2. ИЗГОТОВЛЕНИЕ КЕРАМИЧЕСКОГО ИЗДЕЛИЯ – ВАЗЫ

Для подтверждения выдвинутой гипотезы мною с помощью мастера по керамике было изготовлено простейшее гончарное изделие – ваза.

Наша семья посетила керамическую мастерскую Питарокилис на острове Крит, в Греции. Процесс изготовления керамических изделий в мастерской полуавтоматизирован: не нужно крутить гончарный круг, не нужно разминать руками глину. Тем не менее, по мнению хозяина мастерской, их изделия изготавливаются традиционным способом.

После экскурсии по керамической мастерской и ознакомления с процессом я начала создавать собственное гончарное изделие - вазу. Эта работа была как волшебство: из глины, похожей на жидкую грязь, на вращающемся гончарном круге только при помощи легких движений рук получался красивый по форме сосуд, который не разваливался, хорошо держал форму и был очень изящным (рис.11). Меня переполняли восторженные, удивительные чувства. Я убедилась, что глина – это очень пластичный материал, удобный для создания самых разнообразных изделий. Далее я сушила вазу на жарком солнце три дня для придания изделию прочности. Таким образом, я на практике познакомилась с удивительными свойствами глины. Моя гипотеза подтверждена.

Рис. 11. Изготовление вазы

3. ИССЛЕДОВАНИЕ ОТНОШЕНИЯ ОДНОКЛАССНИКОВ

К КЕРАМИЧЕСКИМ ИЗДЕЛИЯМ МЕТОДОМ АНКЕТИРОВАНИЯ

Когда я открыла для себя удивительный мир керамики, мне стало интересно узнать, какие предметы из керамики есть дома у моих одноклассников, каково их отношение к ним. Мною была разработана анкета и проведён опрос 25-ти одноклассников. Результаты представлены на рис.12.

Рис.12. Результаты анкетирования

В ходе проделанной работы были сделаны следующие выводы.

1. Керамические изделия разнообразны по своему назначению. Они применяются в быту, в медицине, в обороне, в авиации, в космонавтике, в строительстве, в искусстве.

2. Технология современного гончарства включает в себя те же этапы, что и древнее. Процесс получения керамических изделий автоматизирован.

3. Мною было изготовлено простейшее гончарное изделие – ваза. Я убедилась, что глина – это очень пластичный материал, подвластный даже ребёнку, уникальный и удобный для создания самых разнообразных изделий. Самостоятельное изготовление керамических изделий наполняет жизнь человека радостью творчества.

4. Методом анкетирования мною было проведено исследование отношения одноклассников к керамическим изделиям, выявлены их интерес к керамике и наличие разнообразных керамических предметов дома.

5.Освоение керамики сыграло огромную роль в истории развития человечества. Результатом освоения керамики явилось:

- повышение продолжительности жизни древних людей;

- возможность хранения продуктов и предметов быта;

- осёдлость, создание условий для развития земледелия, скотоводства;

- развитие письменности, художественного творчества и интеллектуального и духовного развития человека.

6. Керамика – незаменимый источник информации о прошлом человека.

7. Гончарное производство положило начало множеству новых отраслей: металлургии, строительства, фармакологии.

8. Керамика послужила основой для возникновения и развития многих видов искусства: живописи, скульптуры, графики и других.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

Дорошенко Т.Н. Изделия из керамики. – Харьков: Фолио, 2007. – 221 с.

Изотова М.А. Гончарные работы для дома и заработка . – Ростов н/Д: Феникс, 2008. – 251 с.

Миллард А. История. Древний мир. В школе и дома. – Москва: Росмэн, 1999. – 97 с.

Поверин А.И. Гончарное дело. Энциклопедия. – Москва: АСТ-Пресс, 2015. – 160 с.

Общие сведения о керамических материалах, их классификация и типы, направления практического использования в промышленном производстве. Преимущества и недостатки применения данных материалов. Модуль упругости керамических волокон, их роль на сегодня.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 08.04.2014
Размер файла 25,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Керамические материалы в современной технике. Их возрастающая роль и применение

Введение

В современном мире очень широко применяются керамические материалы и изделия. Это связано с большой прочностью, значительной долговечностью, декоративностью многих видов керамики, а также распространенностью в природе сырьевых материалов. Керамические изделия обладают различными свойствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжига - газовой средой, температурой и длительностью. [1]

Целью данной работы является рассмотрение и изучение керамических материалов, их роль и применение в современном мире. В соответствии с поставленной целью можно выделить и задачи работы: изучить историю развития керамических материалов; технология и область применения керамических материалов; разновидности и роль в развитии техники.

1. Общие сведения о керамических материалах

Керамическими называют искусственные каменные материалы, изготовленные из природных глин с минеральными и органическими добавками путем формования, сушки и последующего обжига. Производство керамических материалов - одно из самых древних и распространенных, возникло оно за несколько тысячелетий до н.э. [2]

Положительными свойствами керамических материалов являются:

1. Высокая прочность;

3. Высокие теплотехнические свойства;

4. Простота изготовления;

8. Полное отсутствие токсичности;

10. Повсеместное распространение сырья для производства.

К отрицательным свойствам относят:

2. Сравнительно большую объемную массу;

3. Неиндустриальность из-за малых размеров штучных керамических материалов. [5]

Современные виды керамики делят на две группы: конструкционную и функциональную. Под конструкционной понимают керамику, используемую для создания механически стойких конструкций, а под функциональной - керамику со специфическими электрическими, магнитными, оптическими и термическими функциями. [6]

Классификацию керамики по структуре подразделяют на грубую, имеющую крупнозернистую неоднородную в изломе структуру (пористость 5-30%), и тонкую - с однородной мелкозернистой структурой (пористость 11 -10 Ом , см), пределом прочности на сжатие до 5 ГПа, стойкостью в окислительных средах в широком интервале температур; некоторые виды - высокотемпературной сверхпроводимостью. Среди оксидной керамики наибольшее распространение получили:

1. Алюмосиликатная керамика. Подразделяется на кварцевую и динасовую керамики. Из неё изготовляют посуду, детали и футеровку коксовых и мартеновских печей, ракет, космических аппаратов и ядерных реакторов, носители для катализаторов, корпуса галогенных ламп, костные имплантаты, детали радиоаппаратуры и многое другое.

2. Керамика на основе SiO2. к ней относят керамику состава SiO2-Al2O3-MgO (кордиеритовая), ZrSiO4 (цирконовая), SiO2-Al2O3-Li2O (сподуменовая), SiO2-Al2O3 BaO (цельзиановая керамика). Применяют в производстве радиотехнических деталей, теплообменников, огнеупоров, изоляторов азто- и авиасвечей и др.

3. Керамика на основе ТiO 2, титанатов и цирконатов Ва, Sr, Pb, а также керамика на основе ниобатов и танталатов Рb, Ва, К. Такая керамика применяется в электронике и радиотехнике.

4. Керамика на основе MgO. Применяют для изготовления огнеупоров.

5. Шпинельная керамика на основе ферритов Ni, Co, Мn, Са, Mg, Zn. Применяют такую керамику для изготовления магнитопроводов, сердечников катушек и деталей в устройствах памяти и т.п.

6. Керамика на основе BeO, ZrO 2, HFO 2, Y 2 O 3. Используют ее при изготовлении электровакуумных приборов, тиглей для плавки тугоплавких металлов.

К нитридной керамике относят материалы на основе BN, A1N, Si3N4, (U, Pu) N, а также керамику, получаемую спеканием соединений, содержащих Si, Al, О, N, или соединений, содержащих Y, Zr, О и N. Нитридная керамика характеризуется стабильностью диэлектрических свойств, высокой механической прочностью, термостойкостью, химической стойкостью в различных средах. Керамические нитридные материалы применяют для изготовления инструментов в металлообрабатывающей промышленности, тиглей для плавки некоторых полупроводниковых материалов, СВЧ изоляторов и другая керамика из Si3N4 - конструкционный материал, заменяющий жаропрочные сплавы из Со, Ni, Cr, Fe.

Среди силицидной керамики наиболее распространена керамика из дисилицида Мо. Она характеризуется малым электрическим сопротивлением (170-200 мкОм , см), стойкостью в окислительных средах (до 1650°С), расплавах металлов и солей. Применяют для изготовления электронагревателей, работающих в окислительных средах.

Из чистых фторидов, сульфидов, фосфидов, арсенидов некоторых металлов изготовляют оптическую керамику, применяемую в ИК технике.

При изготовлении керамики из глины и непластичного материала, последний измельчают в шаровых мельницах, а глины с добавлением воды размалывают в строгачах или распускают в смесителях; полученные суспензии дозируют и сливают в смесительные бассейны. В зависимости от способа формования суспензию обезвоживают в фильтр-прессах или распылительных устройствах. Из порошков с влажностью до 12% по массе изделия формуют одним из видов прессования; при формовании масс с влажностью 15-25% последовательно используют раскатку, выдавливание, допрессовку, формование на гончарном круге и обточку. Из суспензий с влажностью 25-45% (литейных шликеров) изделия формуют литьем в гипсовые, пористые пластмассовые и металлические формы. При изготовлении технической керамики литейный шликер приготовляют из непластичных порошков, добавляя в тонкомолотую смесь исходного сырья термопластичные вещества (напр., парафин, воск), олеиновую кислоту и некоторые ПАВ; изделия формуют всеми упомянутыми способами, в том числе вибропрессованием. Отформованные изделия подвергают сушке (в случае применения водорастворимой связки) или выжиганию органической связки.

Обжиг керамики. Сформованные изделия или предварительно спрессованные порошкообразные смеси исходных веществ подвергают обжигу - сложному процессу спекания, в результате которого создается материал определенного фазового состава и с заданными свойствами. Обжиг до получения прочного монолита (камневидного тела) проводят в специальных камерных, кольцевых или туннельных печах непрерывного действия. Температуры обжига колеблются от 900°С для строительной керамики до 2000°С для огнеупорной керамики. Для получения плотной керамики с мелкими кристаллами используют также горячее прессование в твердых или эластичных формах (газостатич. прессование) и реакционное спекание.

Обычно изделия после обжига готовы к использованию; некоторые виды керамики дополнительно подвергают механической обработке, металлизации, декорированию. Изделия из фарфора, фаянса и других видов тонкой керамики перед обжигом, как правило, покрывают глазурью, образующей при 1000-1400°С стекловидный водо- и газонепроницаемый слой. Тонкостенные изделия перед глазурованием во избежание размокания в глазурной суспензии подвергают предварительному обжигу.

При изготовлении теплоизоляционной керамики с высокой пористостью используют выгорающие добавки, на месте которых образуются поры, или керамические волокна из алюмосиликатов, из которых по технологии асбестовых изделий и бумаги изготовляют пористые войлоки, шнуры, вату, ленты и т.п. [7]

2. Применение керамических материалов

Керамические материалы обуславливается широким применением в различных областях деятельности человека.

Керамика-это фундамент медицинской техники. Детали из керамических материалов являются ключевыми компонентами усилителя рентгеновских снимков и источников рентгеновского излучения. Усилителя рентгеновских снимков - сердце компьютерных томографов. Он позволяет врачам с уверенностью ставить правильный диагноз при минимальном облучении пациентов.

Керамика используется в вакуумных камерах для ускорителей заряженных частиц, и гарантируют четкую и качественную работу благодаря стабильности геометрической формы в сочетании с высокими электроизоляционными свойствами. Фокусирующие устройства в электронных микроскопах изготовлены с точностью до нескольких микрон. Только при такой точности, возможно проводить исследования различных препаратов в области науки и техники под микроскопом, при высоком разрешении и с высокой четкостью.

В установках для изготовления фотоэлементов и полупроводников используются специальные процессы, происходящие исключительно в условиях глубокого вакуума. Такие материалы, как стекло и фарфор со своими свойствами, в этих экстремальных условиях оказываются за рамками своих возможностей. Электрические проходные изоляторы и изоляционные трубки из керамики помогают в осуществлении самых различных процессов.

Во время технологических обработок типографской пленки и бумаги встречается техническая керамика. В первую очередь, это - направляющие планки из керамических материалов, с помощью которых достигается очень высокая скорость перемещения пленки и бумаги благодаря отшлифованной поверхности, а также малым допускам по геометрическим размерам и по позиционированию. При помощи деталей из керамики возможна также переработка абразивных и даже чувствительных к механическим повреждениям видов пленки. Большая скорость перемещения в сочетании с высоким качеством делают незаменимым применение технической керамики в цифровой печати.

При производстве стекла керамике. Его термостойкость составляет до 1950°C. Благодаря использованию керамики достигается высокая точность измерения температуры при стекловарении и при производстве стеклокерамики. Керамика - химически инертный материал, таким образом, технологическая безопасность при переработке всех химических материалов полностью обеспечена.

При исчезновении напряжения с сети или в автономных системах топливные элементы из керамики обеспечивают электропитание. Изоляция отдельных поверхностей топливного элемента друг от друга и обеспечение зазора между ними осуществляется с помощью рамок из керамики.

При изготовлении электрических ламп термостойкость играет решающую роль. Благодаря высокой коррозионностойкости, колодки и формирующие ролики из керамических материалов гарантируют неизменно высокую точность.

Сварочные штифты из керамики обеспечивают высокую точность взаимного расположения свариваемых деталей автомобильных кузовов. Применение вытяжных штампов из керамики делает излишней дорогостоящую доработку деталей после процессов деформации металла.

Изделия из керамики, установленные в оборудовании для химической промышленности, значительно снижают потери из-за протечки жидких материалов. В то время как керамический защитный экран в магнитной муфте отвечает за обеспечение высокой герметичности химического насоса, антифрикционные свойства керамических поршней насосов высокого давления гарантируют долгую работоспособность элементов, обеспечивающих герметичность.

Инструменты из керамики при обработке твердых поверхностей обладают неоспоримыми преимуществами. О долговечности этих высококачественных инструментов особенно хорошо знают производители высокоточных механических приборов и устройств, например, в часовой, оптической и стекольной промышленности. Поликристаллический спеченный рубин (агломерат-рубин) имеет твердость, близкую к твердости алмаза, и может использоваться для различных видов обработки поверхности деталей.

Керамика отличается исключительным многообразием свойств по сравнению с другими типами материалов. Среди видов керамики всегда можно найти такие, которые с успехом заменяют металлы и полимеры, тогда как обратное возможно далеко не во всех случаях. Использование керамики открывает возможность для создания разнообразных по свойствам материалов в пределах одной и той же химической композиции. [3] [4]

3. Роль в современном мире

В мире современных материалов керамике принадлежит заметная роль, обусловленная широким диапазоном ее разнообразных физических и химических свойств. Керамика не окисляется и устойчива в более высокотемпературной области, чем металлы. У распространенных керамических материалов (оксидов алюминия, магния, тория) термическая устойчивость намного превышает устойчивость большинства сталей и сплавов. Модуль упругости керамических волокон на порядок выше, чем у металлов.

Грандиозные перспективы открыты перед сверхпроводящей керамикой и совсем недавно созданной керамикой с гигантским магнитным сопротивлением, перед новым поколением конструкционной керамики, получившей название синэргетической из-за нелинейного эффекта взаимодействия матрицы и наполнителя, давшего возможность производить керамические композиты с рекордно высокой ударной вязкостью. Но не хлебом единым жив человек, и роль керамики сейчас, как и на заре человеческой цивилизации, не исчерпывается только прагматическими целями.

Объем производства керамических материалов во всех странах мира растет необычайно быстрыми темпами. Предполагается, что за грядущие 20 лет мировой объем производства керамики вырастет в 10 раз и превысит 60 млрд долл. в год. В настоящее время основными производителями керамики являются США и Япония (38 и 48% соответственно). США доминируют в области конструкционной керамики, предназначенной в первую очередь для металлообрабатывающих целей. Япония безраздельно доминирует в области функциональной керамики (основном компоненте электронных устройств). Такая ситуация, судя по прогнозам, сохранится и в ближайшем будущем. [8]

Заключение

В заключении сказанного можно подвести итоги:

Керамическими называют материалы и изделия, получаемые из порошкообразных веществ различными способами и подвергаемые в технологический период обязательной термической обработке при высоких температурах для упрочнения и получения камневидного состояния.

Современные виды керамики делят на две группы: конструкционную и функциональную.

Керамические материалы применяются в медицине, авиации и космической технике, строительстве, науке, автомобильной и химической промышленностей, типографии и т.д.

Керамика играет важнейшую роль в современном мире и позволяет упростить жизнь человечеству с давних времен.

Список литературы и источников

керамический волокно промышленный

[1] Сажин В.Б. Основы материаловедения. М.: Теис, 2005. - 155 с.

[2] Третьяков Ю.Д. Керамика - материал будущего. М.: Знание, 1987. 48 с.

[3] Шевченко В.Я., Баринов С.М. Техническая керамика. М.: Наука, 1993. 187 с.

[4] Лейт. Avgustinik A. А. Керамика. 2-е изд.. Л., 1975.

Подобные документы

Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.

презентация [2,4 M], добавлен 14.01.2016

Свойства строительных материалов, области их применения. Искусство изготовления изделий из глины. Классификация керамических материалов и изделий. Цокольные глазурованные плитки. Керамические изделия для наружной и внутренней облицовки зданий.

презентация [242,9 K], добавлен 30.05.2013

Состав и свойства сырьевых материалов для производства кровельных керамических материалов. Изготовление кровельных керамических материалов пластическим способом. Виды готовой продукции и области применения. Контроль качества технологических процессов.

курсовая работа [45,1 K], добавлен 01.11.2015

Характеристика сырьевых материалов, номенклатура продукции и сфера ее применения. Химический состав глин. Сырье для производства керамических материалов. Месторождения и показатели химического состава каолина при производстве керамических изделий.

дипломная работа [545,4 K], добавлен 11.04.2016

Общие сведения о строительных материалах. Влияние различных факторов на свойства бетонных смесей. Состав, технология изготовления и применение в строительстве кровельных керамических материалов, дренажных и канализационных труб, заполнителей для бетона.

Обжиг керамики. Сформованные изделия или предварительно спрессованные порошкообразные смеси исходных веществ подвергают обжигу — сложному процессу спекания, в результате которого создается материал определенного фазового состава и с заданными свойствами. Обжиг до получения прочного монолита (камневидного тела) проводят в специальных камерных, кольцевых или туннельных печах непрерывного действия… Читать ещё >

  • керамические материалы в современной технике. их возрастающая роль и применение

Введение. Керамические материалы в современной технике. Их возрастающая роль и применение ( реферат , курсовая , диплом , контрольная )

В современном мире очень широко применяются керамические материалы и изделия. Это связано с большой прочностью, значительной долговечностью, декоративностью многих видов керамики, а также распространенностью в природе сырьевых материалов. Керамические изделия обладают различными свойствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжига — газовой средой, температурой и длительностью. [1].

Целью данной работы является рассмотрение и изучение керамических материалов, их роль и применение в современном мире. В соответствии с поставленной целью можно выделить и задачи работы: изучить историю развития керамических материалов; технология и область применения керамических материалов; разновидности и роль в развитии техники.

Общие сведения о керамических материалах

Керамическими называют искусственные каменные материалы, изготовленные из природных глин с минеральными и органическими добавками путем формования, сушки и последующего обжига. Производство керамических материалов — одно из самых древних и распространенных, возникло оно за несколько тысячелетий до н.э. [2].

Положительными свойствами керамических материалов являются:

  • 1. Высокая прочность;
  • 2. Долговечность;
  • 3. Высокие теплотехнические свойства;
  • 4. Простота изготовления;
  • 5. Декоративность;
  • 6. Огнестойкость;
  • 7. Водонепроницаемость;
  • 8. Полное отсутствие токсичности;
  • 9. Кислотостойкость;
  • 10. Повсеместное распространение сырья для производства.

К отрицательным свойствам относят:

  • 1. Хрупкость;
  • 2. Сравнительно большую объемную массу;
  • 3. Неиндустриальность из-за малых размеров штучных керамических материалов. [5]

Современные виды керамики делят на две группы: конструкционную и функциональную. Под конструкционной понимают керамику, используемую для создания механически стойких конструкций, а под функциональной — керамику со специфическими электрическими, магнитными, оптическими и термическими функциями. [6].

Классификацию керамики по структуре подразделяют на грубую, имеющую крупнозернистую неоднородную в изломе структуру (пористость 5−30%), и тонкую — с однородной мелкозернистой структурой (пористость 11 -10 Ом , см), пределом прочности на сжатие до 5 ГПа, стойкостью в окислительных средах в широком интервале температур; некоторые виды — высокотемпературной сверхпроводимостью. Среди оксидной керамики наибольшее распространение получили:

  • 1. Алюмосиликатная керамика. Подразделяется на кварцевую и динасовую керамики. Из неё изготовляют посуду, детали и футеровку коксовых и мартеновских печей, ракет, космических аппаратов и ядерных реакторов, носители для катализаторов, корпуса галогенных ламп, костные имплантаты, детали радиоаппаратуры и многое другое.
  • 2. Керамика на основе SiO2. к ней относят керамику состава SiO2-Al2O3-MgO (кордиеритовая), ZrSiO4 (цирконовая), SiO2-Al2O3-Li2O (сподуменовая), SiO2-Al2O3 BaO (цельзиановая керамика). Применяют в производстве радиотехнических деталей, теплообменников, огнеупоров, изоляторов азтои авиасвечей и др.
  • 3. Керамика на основе ТiO 2, титанатов и цирконатов Ва, Sr, Pb, а также керамика на основе ниобатов и танталатов Рb, Ва, К. Такая керамика применяется в электронике и радиотехнике.
  • 4. Керамика на основе MgO. Применяют для изготовления огнеупоров.
  • 5. Шпинельная керамика на основе ферритов Ni, Co, Мn, Са, Mg, Zn. Применяют такую керамику для изготовления магнитопроводов, сердечников катушек и деталей в устройствах памяти и т. п.
  • 6. Керамика на основе BeO, ZrO 2, HFO 2, Y 2 O 3. Используют ее при изготовлении электровакуумных приборов, тиглей для плавки тугоплавких металлов.

К нитридной керамике относят материалы на основе BN, A1N, Si3N4, (U, Pu) N, а также керамику, получаемую спеканием соединений, содержащих Si, Al, О, N, или соединений, содержащих Y, Zr, О и N. Нитридная керамика характеризуется стабильностью диэлектрических свойств, высокой механической прочностью, термостойкостью, химической стойкостью в различных средах. Керамические нитридные материалы применяют для изготовления инструментов в металлообрабатывающей промышленности, тиглей для плавки некоторых полупроводниковых материалов, СВЧ изоляторов и другая керамика из Si3N4 — конструкционный материал, заменяющий жаропрочные сплавы из Со, Ni, Cr, Fe.

Среди силицидной керамики наиболее распространена керамика из дисилицида Мо. Она характеризуется малым электрическим сопротивлением (170−200 мкОм , см), стойкостью в окислительных средах (до 1650°С), расплавах металлов и солей. Применяют для изготовления электронагревателей, работающих в окислительных средах ("https://referat.bookap.info", 27).

Из чистых фторидов, сульфидов, фосфидов, арсенидов некоторых металлов изготовляют оптическую керамику, применяемую в ИК технике.

При изготовлении керамики из глины и непластичного материала, последний измельчают в шаровых мельницах, а глины с добавлением воды размалывают в строгачах или распускают в смесителях; полученные суспензии дозируют и сливают в смесительные бассейны. В зависимости от способа формования суспензию обезвоживают в фильтр-прессах или распылительных устройствах. Из порошков с влажностью до 12% по массе изделия формуют одним из видов прессования; при формовании масс с влажностью 15−25% последовательно используют раскатку, выдавливание, допрессовку, формование на гончарном круге и обточку. Из суспензий с влажностью 25−45% (литейных шликеров) изделия формуют литьем в гипсовые, пористые пластмассовые и металлические формы. При изготовлении технической керамики литейный шликер приготовляют из непластичных порошков, добавляя в тонкомолотую смесь исходного сырья термопластичные вещества (напр., парафин, воск), олеиновую кислоту и некоторые ПАВ; изделия формуют всеми упомянутыми способами, в том числе вибропрессованием. Отформованные изделия подвергают сушке (в случае применения водорастворимой связки) или выжиганию органической связки.

Обжиг керамики. Сформованные изделия или предварительно спрессованные порошкообразные смеси исходных веществ подвергают обжигу — сложному процессу спекания, в результате которого создается материал определенного фазового состава и с заданными свойствами. Обжиг до получения прочного монолита (камневидного тела) проводят в специальных камерных, кольцевых или туннельных печах непрерывного действия. Температуры обжига колеблются от 900 °C для строительной керамики до 2000 °C для огнеупорной керамики. Для получения плотной керамики с мелкими кристаллами используют также горячее прессование в твердых или эластичных формах (газостатич. прессование) и реакционное спекание.

Обычно изделия после обжига готовы к использованию; некоторые виды керамики дополнительно подвергают механической обработке, металлизации, декорированию. Изделия из фарфора, фаянса и других видов тонкой керамики перед обжигом, как правило, покрывают глазурью, образующей при 1000−1400°С стекловидный водои газонепроницаемый слой. Тонкостенные изделия перед глазурованием во избежание размокания в глазурной суспензии подвергают предварительному обжигу.

При изготовлении теплоизоляционной керамики с высокой пористостью используют выгорающие добавки, на месте которых образуются поры, или керамические волокна из алюмосиликатов, из которых по технологии асбестовых изделий и бумаги изготовляют пористые войлоки, шнуры, вату, ленты и т. п. [7].

В современном мире в строительстве очень широко применяются керамические материалы и изделия. Это обусловлено большой прочностью, значительной долговечностью, декоративностью многих видов керамики, а также распространенностью в природе сырьевых материалов.

Целью данной работы является рассмотрение и изучение керамических материалов. В соответствии с поставленной целью можно выделить и задачи работы: изучить общие сведение о керамических материалах: понятие, виды, свойства керамических материалов и изделий; сырье для производства керамических материалов и изделий: глинистые материалы, отощающие материалы.

Керамические изделия обладают различны ми свойствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжига - газовой средой, температурой и длительностью. Материал (т.е. тело), из которого состоят керамические изделия, в технологии керамики именуют керамическим черепком.

1. Общие сведения о керамических материалах

Большая прочность, значительная долговечность, декоративность многих видов керамики, а также распространенность в природе сырьевых материалов обусловили широкое применение керамических материалов и изделий в строительстве. В долговечности керамических материалов можно убедиться на примере Московского Кремля, стены которого сложены почти 500 лет назад.

Среди сырьевых порошкообразных материалов - глина, которая имеет преимущественное применение при производстве строительной керамики. Она большей частью содержит примеси, влияющие на ее цвет и термические свойства. Наименьшее количество примесей содержит глина с высоким содержанием минерала каолинита и потому называемая каолином, имеющая практически белый цвет. Кроме каолинитовых глин разных цветов и оттенков применяют монтмориллонитовые, гидрослюдистые.

Кроме глины к применяемым порошкообразным материалам, являющимися главными компонентами керамических изделий, относятся также некоторые другие минеральные вещества природного происхождения - кварциты, магнезиты, хромистые железняки.

Для технической керамики (чаще именуемой специальной) используют искусственно получаемые специальной очисткой порошки в виде чистых оксидов, например оксиды алюминия, магния, кальция, диоксиды циркония, тория и др. Они позволяют получать изделия с высокими температурами плавления (до 2500-3000В°С и выше), что имеет важное значение в реактивной технике, радиотехнической керамике. Материалы высшей огнеупорности изготовляют на основе карбидов, нитридов, боридов, силицидов, сульфидов и других соединений металлов как без глинистых сырьевых веществ. Некоторые из них имеют температуры плавления до 3500 - 4000В°С, особенно из группы карбидов.

Большой практический интерес имеют керметы, состоящие обычно из металлической и керамической частей с соответствующими свойствами. Получили признание огнеупоры переменного состава. У этих материалов одна поверхность представлена чистым тугоплавким металлом, например, вольфрамом, другая - огнеупорным керамическим материалом, например оксидом бериллия. Между поверхностями в поперечном сечении состав постепенно изменяется, что повышает стойкость материала к тепловому удару.

Для строительной керамики, как отмечено выше, вполне пригодна глина, которая является распространенным в природе, дешевым и хорошо изученным сырьем. В сочетании с некоторыми добавочными материалами из нее получают в керамической промышленности разнообразные изделия и в широком ассортименте. Их классифицируют по ряду признаков. По конструкционному назначению выделяют изделия стеновые, фасадные, для пола, отделочные, для перекрытий, кровельные изделия, санитарно-технические изделия, дорожные материалы и изделия, для подземных коммуникаций, огнеупорные изделия, теплоизоляционные материалы и изделия, химически стойкую керамику.

По структурному признаку все изделия разделяют на две группы: пористые и плотные. Пористые керамические изделия впитывают более 5% по весу воды (кирпич обыкновенный, черепица, дренажные трубы). В среднем водопоглощение пористых изделий составляет 8 - 20% по весу или 15 - 35% по объему. Плотными принимают изделия с водопоглощением меньше 5% по массе, и они практически водонепроницаемые, например плитки для пола, канализационные трубы, кислотоупорный кирпич и плитки, дорожный кирпич, санитарный фарфор. Чаще всего оно составляет 2 - 4% по весу или 4 - 8% по объему. Абсолютно плотных керамических изделий не имеется, так как испаряющаяся вода затворения, вводимая в глиняное тесто, всегда оставляет некоторое количество микро- и макропор.

По назначению в строительстве различают следующие группы керамических материалов и изделий:

стеновые материалы (кирпич глиняный обыкновенный, пустотелый и легкий, камни керамические пустотелые);

кровельные материалы и материалы для перекрытий (черепица, керамические пустотелые изделия);

облицовочные материалы для наружной и внутренней облицовки (кирпич и камни лицевые, плиты керамические фасадные, малогабаритные плитки);

материалы для полов (плитки);

материалы специального назначения (дорожные, санитарно-строительные, химически стойкие, материалы для подземных коммуникаций, в частности трубы, теплоизоляционные, огнеупорные и др.);

заполнители для легких бетонов (керамзит, аглопорит).

Наибольшего развития достигли стеновые материалы, причем наряду с общим увеличением объема производства особое внимание обращено на увеличение выпуска эффективных изделий (пустотелый кирпич и камни, керамические блоки и панели и т.д.). Предусмотрено также расширить производство фасадной керамики, особенно для индустриальной отделки зданий, глазурованных плиток для внутренней облицовки, плиток для полов, канализационных и дренажных труб, санитарно-строительных изделий, искусственных пористых заполнителей для бетонов.

По температуре плавления керамические изделия и исходные глины разделяются на легкоплавкие (с температурой плавления ниже 1350В°С), тугоплавкие (с температурой плавления 1350-1580В°С) и огнеупорные (свыше 1580В°С). Выше отмечались также примеры изделий и сырья высшей огнеупорности (с температурой плавления в интервале 2000-4000Х), используемых для технических (специальных) целей.

Отличительная особенность всех керамических изделий и материалов состоит в их сравнительно высокой прочности, но малой деформативности. Хрупкость чаще всего относится к отрицательным свойствам строительной керамики. Она обладает высокой химической стойкостью и долговечностью, а форма и размеры изделий из керамики обычно соответствуют установленным стандартам или техническим условиям.

2. Сырье для производства керамических материалов и изделий

Сырьевые материалы, используемые для изготовления керамических изделий, можно подразделить на пластичные глинистые (каолины и глины) и отощающие (шамот, кварц, шлаки, выгорающие добавки). Для понижения температуры спекания в глину иногда добавляют плавни. Каолин и глины объединяют общим названием - глинистые материалы.

керамический строительство кровельный облицовочный

2.1 Глинистые материалы

Каолины. Каолины образовались в природе из полевых шпатов и других алюмосиликатов, не загрязненных окислами железа. Они состоят преимущественно из минерала каолинита. После обжига присущий им белый или почти белый цвет сохраняется.

Глины. Глинами называют осадочные породы, представляющие собой тонкоземлистые минеральные массы, способные независимо от их минералогического и химического состава образовывать с водой пластичное тесто, которое после обжига превращается в водостойкое и прочное камневидное тело.

Состоят глины из тесной смеси различных минералов, среди которых наиболее распространенными являются каолинитовые, монтмориллонитовые и гидрослюдистые. Представителями каолинитовых минералов являются каолинит и галлуазит. В монтмориллонитовую группу входят монтмориллонит, бейделлит и их железистые разновидности. Гидрослюды - в основном продукт разной степени гидратации слюд.

Наряду с этими минералами в глинах встречаются кварц, полевой шпат, серный колчедан, гидраты окислов железа и алюминия, карбонаты кальция и магния, соединения титана, ванадия. Такие примеси влияют как на технологию керамических изделий, так и на их свойства. Например, тонко распределенный углекислый кальций и окислы железа понижают огнеупорность глин. Если в глине имеются крупные зерна и песчинки углекислого кальция, то при обжиге из них образуются более или менее крупные включения извести, которая на воздухе гидратируется с увеличением объема (дутики), что вызывает образование трещин или разрушение изделий. Соединения ванадия служат причиной появления зеленоватых налетов (выцветов) на кирпиче, что портит внешний вид фасадов.

Глины часто содержат также органические примеси. По отношению к действию высоких температур различают глины трех групп: огнеупорные (огнеупорность выше 1580'С), тугоплавкие (1350 - 1580'С) и легкоплавкие (ниже 1350'С). К огнеупорным относятся большей частью каолинитовые глины, содержащие мало механических примесей. Такие глины используют для производства фарфора, фаянса и огнеупорных изделий. Тугоплавкие глины содержат окислы железа, кварцевый песок и другие примеси в значительно большем количестве, чем огнеупорные, и применяются для производства тугоплавкого, облицовочного и лицевого кирпича, плиток для полов и канализационных труб. Легкоплавкие глины наиболее разнообразны по минералогическому составу, содержат значительное количество примесей (кварцевого песка, окислов железа, известняка, органических веществ). Используют их в кирпичном и черепичном производствах, в производстве легких заполнителей и т. д.

В производстве искусственных обжиговых материалов можно применять также некоторые другие осадочные породы: диатомиты, трепелы и их уплотненные разновидности - опоки, а также сланцы в чистом виде и с примесью глин или порообразующих добавок.

2.2 Отощающие материалы

Для уменьшения усадки при сушке и обжиге, а также для предотвращения деформаций и трещин в жирные пластичные глины вводят искусственные или природные отощающие материалы.

В качестве искусственных отощающих материалов используют дегидратированную глину и шамот, а также отходы производства (котельные и другие шлаки, золы, очажные остатки и т.д.). Дегидратированную глину получают нагреванием обычной глины примерно до 600-700'С (при этой температуре она теряет свойство пластичности) и применяют в качестве отощителя при производстве грубой строительной керамики. Шамот изготовляют путем обжига огнеупорных или тугоплавких глин при температурах 1000 - 1400'С. Шамот является основным сырьем в производстве огнеупорных шамотных изделий.

К природным отощающим материалам относятся такие вещества, которые неспособны в смеси с водой образовывать пластичную массу, например кварцевые пески, пылевидный кварц.

Порообразующие материалы. В производстве изделий грубой строительной керамики, например кирпича, для отощения массы, а также для получения изделий, обладающих повышенной пористостью и, следовательно, пониженной теплопроводностью, в сырьевую массу вводят порообразующие добавки. Обычно применяют органические добавки, называемые выгорающими, - древесные опилки, уголь, торфяную пыль, и др. Они выгорают при обжиге изделий и образуют поры.

Плавни. Введение в глину плавней способствует понижению температуры ее спекания. К числу плавней относятся полевые шпаты, железная руда, доломит, магнезит, тальк и др.

В заключение сказанного можно подвести итоги, сформулировать выводы:

- керамическими называют материалы и изделия, получаемые из порошкообразных веществ различными способами и подвергаемые в технологический период обязательной термической обработке при высоких температурах для упрочнения и получения камневидного состояния. Такая обработка носит название обжига;

- кроме глины к применяемым порошкообразным материалам, являющимися главными компонентами керамических изделий, относятся также некоторые другие минеральные вещества природного происхождения - кварциты, магнезиты, хромистые железняки;

- по структурному признаку все изделия разделяют на две группы: пористые и плотные;

- сырьевые материалы, используемые для изготовления керамических изделий, можно подразделить на пластичные глинистые (каолины и глины) и отощающие (шамот, кварц, шлаки, выгорающие добавки). Для понижения температуры спекания в глину иногда добавляют плавни. Каолин и глины объединяют общим названием - глинистые материалы.

Список литературы

1. Краткий химический справочник / В.А. Рабинович, З.Я. Хазов, - Л.: Химия, 1978. - 356с.

3. Новые материалы / под науч. ред. Ю.С. Карабасова, - М.: Мисис, 2002 - 738с.

Керамика (от греческого keramike – гончарное искусcтвo, от keramos – глина), изделия и материалы, полученные спеканием глин и их смесей с минеральными добавками, а так же оксидов металлов и других неорганических соединений.[1]

Когда же человек догадался обжигать глину, спектр ее применения увеличился неоднократно. Благодаря своим уникальным свойствам (керамика не окисляется, устойчива в более высокотемпературной области, чем металлы) она играет в мире современных материалов заметную роль.

Целю моей работы является выяснить в каких сферах человеческой деятельности керамика используется наиболее успешно, а так же попытаться выяснить почему объем производства керамических материалов во всех странах мира растет необычайно быстрыми темпами (предполагается, что за грядущее 25-летие мировой объем производства вырастит в 10 раз)[2] .

СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА КЕРАМИКИ

Основным сырьем производства керамических изделий является глина. Она представляет собой измельченную горную породу различного химико-минералогического состава, в соединении с водой образующую тестообразную массу, способную сохранять приданную ей форму, а при обжиге становиться камнеподобной. Основным свойством глины, определяющим ее пригодность для гончарных изделий, является пластичность. Глина — единственный в своем роде такой природный материал, имеющийся в большом количестве. Именно по этому признаку различают три сорта глин: высокопластичные, средне- и низкопластичные.

Гончары определяют пластичность обычно на ощупь, путем разминания и растирания комочков глины в руках. Один из простейших способов оценки качества материала — сформовать длинный цилиндр, который затем следует сгибать дугой до появления трещин. Чем пластичнее глина, тем меньшим будет радиус дуги при появлении трещины. Применяют и такой способ: из глиняного теста нормальной густоты делают цилиндр длиной до 10 см, диаметром 3 см. Взяв в руки цилиндр, его медленно разрывают; если глина пластична — концы разрыва будут тонкие и длинные, если тощая — короткие и толстые. Высокопластичные глины — вязкие, "жирные". Они нежны на ощупь, хорошо тянутся, легко полируются. Блеск сохраняется и после обжига. Но такая глина разрушается при высокой температуре.

Глины низкой пластичности, песчаные, "тощие", известны под названием в "глей", В изломе они матовы, шершавы на ощупь, в руках рассыпаются и практически не формуются. Их достоинство — огнеупорность. И "жирные", и "тощие" глины в естественном виде не годятся для применения в производстве. Они требуют соответствующей обработки: в зависимости от вида изделий и качества керамической массы увеличивают или уменьшают пластичность глины. Для этого используют песок и шамот.

У глин различают границы пластичности — нижнюю и верхнюю. Нижняя характеризуется таким влагосодержанием, при котором нити, скатанные из глины, неспособны соединяться друг с другом; верхний предел определяется таким влагосодержанием, при котором начинает появляться текучесть. Глинам присуще еще и такое свойство, как усадка, то есть уменьшение размеров без изменения формы. Различают воздушную усадку (при высушивании перед обжигом) и огневую (при обжиге). Воздушная усадка тем больше, чем выше пластичность глин. Она колеблется от 1,5 до 13%, огневая достигает 23 % от сырого объема.[3]

Искусство керамики — изготовление различных предметов из глины — древний вид народного ремесла. С незапамятных времен керамические изделия служили человеку. Они различались по виду используемого сырья, составу глазурных покрытий, способу производства, по своему назначению. Повсюду, где имелись природные запасы глины, пригодной для обработки, мастера-гончары создавали разнообразные по форме и декору цветочные горшки, миски, кувшины, блюда, фляги, вазы и многие другие предметы, необходимые в быту. Пластичность материала, его тональность, колористическое многообразие глазурей, придающих изделиям пеструю и сочную окраску, способствовали тому, что керамические изделия выполняли не только сугубо утилитарную функцию, они становились произведениями искусства.

Керамика различных эпох отмечена характерными чертами своего времени. Интерес к ней сохранился и в наше время. Популярно народное художественное ремесло

Ныне керамика широко используется в интерьере в виде декоративных перегородок, решеток. Из керамических кирпичей сооружают камины. Украшением служат и керамические рельефы, орнаментальные и тематические панно, подсвечники, декоративные вазы, сосуды, чаши, цветочные горшки используемые как отдельные изделия, так и в композициях, создающих особый настрой, уют. Большой популярностью пользуются различные по форме и размеру вазы, настенная керамика — декоративные блюда, тарелки, пласты. При умелом подборе такого рода керамических предметов они хорошо вписываются в интерьер и дополняют его. Так же керамика широко используется в электрической и радиоэлектронной промышленности.

а) ХУДОЖЕСТВЕННАЯ КЕРАМИКА

Основными технологическими видами керамики являются майолика, шамот, фарфор, фаянс. Они различаются составом глин, режимом обжига, приемами художественного оформления.

Шамот используется для создания декоративных ваз, рельефов, декоративной скульптуры. Эти изделия отличаются красивой зернистой фактурой, а декорирование глазурями придает им своеобразный колорит. [4]

Майолика близка по свойствам и качеству к терракоте, только в отличие от последней покрыта глазурью. Глазурь придает изделию влагонепроницаемость, предохраняет от загрязнений, улучшает внешний вид, повышает прочность. Для грубых керамических изделий, к числу которых относится и майолика, доступной и дешевой является соляная глазурь. Для ее нанесения на поверхность изделия в топку раскаленной печи (1040. 1180°C) вводят каменную соль (NaCl) и водяной пар. При этой операции в окислительной атмосфере цвет изделия будет коричнево-желтым, а в восстановительной – серым. Изделия, покрытые соляной глазурью, имеют неровную поверхность, что снижает качество изделий. При соляном глазуровании происходит гидролиз хлорида натрия и хорошие глазури имеют состав от Na2 O·0,5Al2 O3 ·2,8SiO2 до Na2 O·Al2 O3 ·5,5SiO2 .

Полноценная глазурь – прозрачное бесцветное или окрашенное стекловидное покрытие, хорошо растекающееся при нанесении на черепок. Глазурь обеспечивает изделию гладкость поверхности и декоративный эффект. Прочности сцепления глазури с черепком способствует оксид кальция CaО. Он приводит к образованию промежуточного слоя, воспринимающего и гасящего напряжения, возникающие между глазурью и черепком при быстрой смене температур вследствие различных коэффициентов температурного расширения. Поэтому в майоликовых массах для производства печных кафелей (для которых неизбежны частые температурные перепады) содержание CaО доходит до 37. 38%.

Глазури можно рассматривать как неопределенного состава химические соединения кремнезема с другими оксидами. Состав наиболее распространенных глазурей можно выразить соотношением основных компонентов: 1(M2 О + M΄О):(0,5. 1,4)Al2 O3 :(5. 12)SiO2 , где М – ионы щелочных, а M΄ – ионы щелочно-земельных металлов, а также Pb (II), Fe (II), Низкие пределы Al2 O3 и SiO2 характерны для фаянсовых глазурей, а высокие – для фарфоровых. Как правило, глазурь наносится на уже обожженное фарфоровое или фаянсовое изделие, после чего проводят дополнительный обжиг. При этом обжиге глазурь реагирует с черепком с образованием промежуточного слоя, который обеспечивает их сопряжение.

Терракотовые и майоликовые изделия часто имеют сложную конфигурацию. Для ее придания изделия отливают в гипсовых формах или штампуют на прессах в металлических пресс-формах.

Читайте также: