Углеродные волокна новые разработки и предложения реферат

Обновлено: 05.07.2024

Развитие промышленности, успехи химии в области органического синтеза привели ктому, что перед человечеством остро встала проблема охраны окружающей среды и ее защиты от последствий собственной деятельности. В окружающую среду внедряется все больше и больше новых веществ, чуждых ей, токсичных и опасных для живых организмов. Часть из них не включается в естественный круговорот и накапливается в биосфере, приводя к нежелательным экологическим последствиям.
На одном из первых местстоит загрязнение воздушного бассейна соединениями азота, фтора, серы и хлора. Водоемы подвергаются загрязнению соединениями цинка, меди, ртути, а также целым рядом органических веществ, таких как СПАВы, фенолы, масло- и нефтепродукты и. т. д., нарушающих природный баланс водной среды.
В связи с этим, для осуществления радикальных методов защиты окружающей среды возникает необходимость созданияновых, наряду с уже известными, высокоэффективных хемосорбционных материалов для извлечения антропогенных загрязнений из промышленных и бытовых стоков.
Исследования, направленные на разработку и усовершенствование нового класса хемосорбционных материалов - композиционных ионообменных волокнистых материалов, - с целью увеличения селективности, сорбционных характеристик и повышения долговечностиработы, являются очень перспективными.
На кафедре химической технологии Энгельсского технологического института был разработан новый класс хемосорбентов, которые получают по малостадийной технологии методом поликонденсационного наполнения. При поликонденсационном наполнении после пропитки химических волокон мономерами протекает поликонденсация термореактивных олигомеров в структуре и наповерхности волокон.

Углеродные волокна – перспективные наполнители ПКМ

Углеродное волокно состоит главным образом из углерода. Получают их термической обработкой химических волокон. УВ обладают рядом преимуществ, таких как высокая механическая прочность, устойчив к действию высоких температур, химических реагентов, ультрафиолетового излучения. Они устойчивы к агрессивным химическим средам, однакоокисляются при нагревании в присутствии кислорода, Их предельная температура эксплуатации в воздушной среде составляет 300-350 0С. [3].
Иногда выделяют несколько типов УВ в зависимости от их свойств.

Таблица 1.Характеристики углеродных волокон
Показатель Волокна
Угольные низко-модульные Графитиро-ванные низко-модульные Графитиро-ванные средне-модульные Графитиро-ванные высоко-модульные Графитиро-ванныевысоко-прочные
Плотность, г/см3 1,5-1,6 1,4-1,6 1,4-1,7 1,6-2,0 1,7-1,9
Модульупругости, ГПа 30-40 40-60 70-180 300-500 200-300
Прочность на разрыв, ГПа 0,4-1,0 0,6-1,0 1,0-2,5 1,5-3,0 2,0-4,0
Относит. удлинение, % 2,0-2,5 1,5-2,0 1,2-1,5 0,5-0,6 1,0-1,3

1.1. Получение углеродных волокон на основе ПАН волокон

Процесс получения УВ из ПАН волокна включает текстильную подготовку материала,окисление, высокотемпературную обработку (карбонизация и графитация), подготовку поверхности УВ и получение препрегов.
Исследования, связанные с использованием в качестве предматериала ПАН волокон, впервые были начаты в СССР . В то время в научной и патентной литературе отсутствовали сведения о применении ПАН волокон для этих целей. Затем интенсивные исследования начали.

Углеродное волокно — материал, состоящий из тонких нитей диаметром от 5 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.

Почти в то же время в России и несколько позже, в 1961 г., в Японии были получены УВ на основе полиакрилонитрильных (ПАН) волокон. Характеристики первых углеродных волокон на основе ПАН были невысоки, но постепенно технология совершенствовалась и уже через 10 лет (к 1970 г.) были получены углеродные волокна на основе ПАН-волокон с пределом прочности 2070 МПа и модулем упругости 480 ГПа. Тогда же была показана возможность получения углеродных волокон по этой технологии с еще более высокими механическими характеристиками: модулем упругости до 800 ГПа и пределом прочности более 3 ГПа. УВ на основе нефтяных пеков были получены в 1970 г. также в Японии.


УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рис. 1. После окисления следует стадия карбонизации — нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.


УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600—2000 °С в отсутствии кислорода механические показатели волокна не изменяются. Это предопределяет возможность применения УВ в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике. На основе УВ изготавливают углерод-углеродные композиты, которые отличаются высокой абляционной стойкостью. УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300—350°С. Нанесение на УВ тонкого слоя карбидов, в частности SiC, или нитрида бора позволяет в значительной мере устранить этот недостаток. Благодаря высокой химической стойкости УВ применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др. Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2Ч10−3 до 106 ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др. Активацией УВ получают материалы с большой активной поверхностью (300—1500 мІ/г), являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью. Обычно УВ имеют прочность порядка 0,5—1 ГПа и модуль 20—70 ГПа, а подвергнутые ориентационной вытяжке — прочность 2,5—3,5 ГПа и модуль 200—450 ГПа. Благодаря низкой плотности (1,7—1,9 г/смі) по удельному значению (отношение прочности и модуля к плотности) механических свойств УВ превосходят все известные жаростойкие волокнистые материалы. На основе высокопрочных и высокомодульных УВ с использованием полимерных связующих получают конструкционные углеродопласты. Разработаны композиционные материалы на основе УВ и керамических связующих, УВ и углеродной матрицы, а также УВ и металлов, способные выдерживать более жесткие температурные воздействия, чем обычные пластики.

Углеродное волокно — материал, состоящий из тонких нитей диаметром от 5 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.

Почти в то же время в России и несколько позже, в 1961 г., в Японии были получены УВ на основе полиакрилонитрильных (ПАН) волокон. Характеристики первых углеродных волокон на основе ПАН были невысоки, но постепенно технология совершенствовалась и уже через 10 лет (к 1970 г.) были получены углеродные волокна на основе ПАН-волокон с пределом прочности 2070 МПа и модулем упругости 480 ГПа. Тогда же была показана возможность получения углеродных волокон по этой технологии с еще более высокими механическими характеристиками: модулем упругости до 800 ГПа и пределом прочности более 3 ГПа. УВ на основе нефтяных пеков были получены в 1970 г. также в Японии.


УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рис. 1. После окисления следует стадия карбонизации — нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.


УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600—2000 °С в отсутствии кислорода механические показатели волокна не изменяются. Это предопределяет возможность применения УВ в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике. На основе УВ изготавливают углерод-углеродные композиты, которые отличаются высокой абляционной стойкостью. УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300—350°С. Нанесение на УВ тонкого слоя карбидов, в частности SiC, или нитрида бора позволяет в значительной мере устранить этот недостаток. Благодаря высокой химической стойкости УВ применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др. Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2Ч10−3 до 106 ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др. Активацией УВ получают материалы с большой активной поверхностью (300—1500 мІ/г), являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью. Обычно УВ имеют прочность порядка 0,5—1 ГПа и модуль 20—70 ГПа, а подвергнутые ориентационной вытяжке — прочность 2,5—3,5 ГПа и модуль 200—450 ГПа. Благодаря низкой плотности (1,7—1,9 г/смі) по удельному значению (отношение прочности и модуля к плотности) механических свойств УВ превосходят все известные жаростойкие волокнистые материалы. На основе высокопрочных и высокомодульных УВ с использованием полимерных связующих получают конструкционные углеродопласты. Разработаны композиционные материалы на основе УВ и керамических связующих, УВ и углеродной матрицы, а также УВ и металлов, способные выдерживать более жесткие температурные воздействия, чем обычные пластики.

Открытие углеродных волокон, их классификация, состав и текстильные формы. Способы получения УВ из химических или природных органических волокон, их применение в составе композиционных материалов. Свойства однонаправленных углепластиков, наполненных УВ.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 14.01.2018
Размер файла 135,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Санкт-Петербургский политехнический университет Петра Великого

Институт металлургии, машиностроения и транспорта

студентка группы № 43317/1 Овчарова М.А.

  • Введение
  • 1. История открытия углеродного волокна
  • 2. Получение
  • 3. Классификация
  • 4. Состав
  • 5. Свойства
  • 6. Текстильные формы углеродных волокон
  • 7. Применение углеволокна
  • Заключение
  • Список использованных источников

Введение

Композиционные материалы, представляют собой металлические и неметаллические матрицы (основы) с заданным распределением в них упрочнителей (волокон, дисперсных частиц и др.); при этом эффективно используются индивидуальные свойства составляющих композиции. Композиционные материалы позволяют иметь заданное сочетание разнородных свойств: высокой удельной прочности и жесткости, жаропрочности, износостойкости, теплозащитных свойств и др. Спектр свойств композиционных материалов невозможно получить при использовании обычных материалов. Их применение дает возможность создавать ранее недоступные, принципиально новые конструкции.

Благодаря композиционным материалам стал возможен новый качественный скачок в увеличении мощности двигателей, уменьшении массы машин и конструкций и повышении весовой эффективности транспортных средств и авиационно-космических аппаратов.

Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.

В качестве матриц в композиционных материалах могут быть использованы металлы и их сплавы, полимеры органические и неорганические, керамические, углеродные и другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее эксплуатационные свойства: плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред [1].

1. История открытия углеродного волокна

Углеродные волокна впервые были получены Эдисоном еще в 1882г. Они долгое время применялись в электрических лампах. С появлением вольфрамовых нитей углеродные волокна потеряли свое значение.

Интерес к углеродным волокнам, появившийся в 1960-е годы, обусловлен тем, что в отличие от стеклянных (а также органических) волокон они обладают весьма высоким модулем упругости, специфическими тепло- и электрофизическими свойствами. В последующие годы ученым и технологам удалось значительно повысить и прочность углеродных волокон; уже сейчас по своей удельной прочности углеродные волокна в качестве армирующих материалов не только не уступают другим типам волокон, но и успешно конкурируют с ними.

Промышленное производство углеродных волокон впервые было осуществлено с использованием высокотемпературной обработки вискозы. В Японии профессор Синдо был разработан метод производства углеродных волокон из полиакрилонитрила. Этот метод в настоящее время является основным. В последнее время разработан промышленный метод получения пековых углеродных волокон. Работы по улучшению характеристик углеродных волокон и на основе полиакрилонитрила, и на основе пеков продолжаются, в том числе в направлении совершенствования технологии их производства. Характеристики углеродных волокон неуклонно улучшаются, в то время как свойства других армирующих материалов остаются на постоянном уровне.

Вторично интерес к углеродным волокнам появился в середине XX в., когда велись поиски материалов, пригодных для использования в качестве компонентов композитов для изготовления ракетных двигателей. УВ (углеродные волокна) по своим качествам оказались одними из наиболее подходящих для такой роли армирующими материалами, поскольку они обладают высокой термостойкостью, хорошими теплоизоляционными свойствами, коррозионной стойкостью к воздействию газовых и жидких сред, высокими удельными прочностью и жесткостью.

Почти в то же время в России и несколько позже, в 1961 г., в Японии были получены УВ на основе полиакрилонитрильных (ПАН) волокон. Характеристики первых углеродных волокон на основе ПАН были невысоки, но постепенно технология совершенствовалась и уже через 10 лет (к 1970 г.) были получены углеродные волокна на основе ПАН-волокон с пределом прочности 2070 МПа и модулем упругости 480 ГПа. Тогда же была показана возможность получения углеродных волокон по этой технологии с еще более высокими механическими характеристиками: модулем упругости до 800 ГПа и пределом прочности более 3 ГПа. УВ на основе нефтяных пеков были получены в 1970 г. также в Японии [3].

углеродный волокно композиционный химический

2. Получение

Углеродное волокно обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рис. 2. После окисления следует стадия карбонизации - нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков [4].

Рисунок 1 - Структуры, образующиеся при окислении ПАН-волокна

3. Классификация

Углеродные волокна можно получать из многих полимерных волокон. В зависимости от режима термообработки углеродные волокна подразделяются на карбонизованные и графитизированные. Вследствие различия их кристаллического состояния первые называют карбоновыми или углеродными, а вторые - графитовыми. По физическим характеристикам они подразделяются на высококачественные и низкокачественные (низкосортные) углеродные волокна. К высококачественным волокнам относятся: 1) высокопрочные углеродные и высокомодульные графитовые волокна, углеродные волокна с повышенной прочностью и удлинением (на основе полиакрилонитрила (ПАН)) 2) высокомодульные графитовые волокна (на основе жидкокристаллических (мезофазных) пеков). К низкосортным волокнам или волокнам общего назначения относятся:

1) низкографитизированкые углеродные и графитовые волокна и материалы (на основе ПАН); 2) низкографитизированные углеродные и графитовые волокна и материалы (на основе обычных пеков). Для массового производства весьма перспективными являются углеродные волокна на основе пеков, причем волокна на основе обычных пеков являются низкосортными и изотропными, а на основе жидкокристаллических пеков - высококачественными и анизотропными. В зависимости от используемого прекурсора (вискозных или ПАН-волокон) и методов получения по своим свойствам УВ делятся на несколько основных типов, имеющих характеристики, приведенные в таблице 1.

Таблица 1 - Характеристики нескольких типов УВ

Модуль упругости, ГПа

Удельное электр. Сопротивление,

Между углеродными волокнами из ПАН и из пеков имеются существенные различия в структуре и механических свойствах. Среди высококачественных углеродных волокон (высокопрочных и высокомодульных) существуют различные типы волокон, отличающиеся по прочности и модулю упругости; фирмы изготовители присваивают таким волокнам разные марки. Высококачественные волокна могут изготавливаться в виде нитей или жгутов, состоящих из 1000, 3000, 6000, 10000 и большего числа элементарных непрерывных волокон. Кроме того, выпускаются ткани из этих волокон, а также жгуты, состоящие из еще большего числа элементарных волокон. При использовании углеродных волокон для армирования пластмасс проводят обработку их поверхности с целью улучшения взаимодействия волокон и матрицы. С этой же целью, а также для улучшения технологических свойств нитей и жгутов и эксплуатационных характеристик углепластиков поверхность волокон подвергается шлихтованию или аппретированию. Для армирования термопластичных матриц используют рубленые волокна размером от нескольких миллиметров до 1-2 см.

4. Состав

Основу углеродного волокна составляют плоские длинные узкие ленты поликонденсированного ароматического углерода с преимущественной ориентацией вдоль оси волокна. Ленты имеют ширину около 60 - 100А° и длину в несколько тысяч ангстрем. Определенное число пачек лент 3-7, соединяясь между собой, образуют микрофибриллы. На границе фибриллы разделены микрофибриллярным пространством, представляющим собой вытянутые поры длиной 200- 300А° и диаметром 10- 20 А°, которые, также как и оси ориентированы вдоль оси волокна. Общий объем пор колеблется в пределах 5-30% от объема волокна. Углеродные волокна на основе обычных пеков представляют собой пучки из множества элементарных волокон длиной до 20-30 см и диаметром от долей микрометра до нескольких микрометров или образуют хлопкообразный мат с хаотичным расположением волокон.

5. Свойства

Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.

Они имеют исключительно высокую термостойкость: в инертных средах или в вакууме - до 3000°С, на воздухе - до 450°С.

Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.

Углеродные волокна превосходят все известные жаростойкие волокнистые материалы благодаря большой активной поверхности до 2500 м 2 /г, высокой прочности (3,6 Гн/м 2 ).

УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600-2000 °С в отсутствии кислорода механические показатели волокна не изменяются. Это предопределяет возможность применения УВ в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике. На основе УВ изготавливают углерод-углеродные композиты, которые отличаются высокой абляционной стойкостью. УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300-350°С. Нанесение на УВ тонкого слоя карбидов, в частности карбида кремния, или нитрида бора позволяет в значительной мере устранить этот недостаток. Благодаря высокой химической стойкости УВ применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др. Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2Ч10-3 до 106 ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.

Активацией УВ получают материалы с большой активной поверхностью (300-1500 мІ/г), являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью.

Обычно УВ имеют прочность порядка 0,5-1 ГПа и модуль 20-70 ГПа, а подвергнутые ориентационной вытяжке - прочность 2,5-3,5 ГПа и модуль 200-450 ГПа. Благодаря низкой плотности (1,7-1,9 г/смі) по удельному значению (отношение прочности и модуля к плотности) механических свойств УВ превосходят все известные жаростойкие волокнистые материалы. На основе высокопрочных и высокомодульных УВ с использованием полимерных связующих получают конструкционные углеродопласты. Разработаны композиционные материалы на основе УВ и керамических связующих, УВ и углеродной матрицы, а также УВ и металлов, способные выдерживать более жесткие температурные воздействия, чем обычные пластики.

УВ обладают низкой плотностью и высокими прочностью при растяжении и модулем упругости. Наиболее характерной особенностью углеродных волокон является их высокий удельный модуль упругости. Это позволяет с успехом использовать углеродные волокна для армирования материалов конструкционного назначения.

Таблица 2 - Физические свойства углеродных волокон

Плотность, кг/м 3

Удельная поверхность, м 2 /г

Температурный коэффициент температурного расширения, 10 6 /К

Удельная теплоемкость, кДж/кг*К

Тангенс угла диэлектрических потерь

В таблице 1 представлены сравнительные данные по свойствам углепластиков, наполненных углеродными волокнами, произведенными в России и Японии.

Таблица 3 - Свойства однонаправленных углепластиков, наполненных углеродными волокнам

Прочность при растяжении, ГПа

Прочность при сжатии, ГПа

Модуль упругости, ГПа

6. Текстильные формы углеродных волокон

Углеродные волокна могут выпускаться в виде самых разнообразных текстильных структур: штапелированные, непрерывные нити, тканные или нетканые материалы. Жгуты, пряжа, ровинги и нетканые холсты являются наиболее распространенными в настоящее время видами углеволокнистых структур. Углеродные волокна имеют высокий модуль упругости и малые удлинения. Поэтому они не выдерживают многократных деформаций и использование их для получения тканых материалов представляет известные трудности. Однако в связи с прогрессом в технологии производства углеродных волокон и в технике ткачества оказалось возможным изготавливать из них и всевозможные тканые материалы.

Преимуществом однонаправленных тканей (в этом случае тонкие нити: стеклянные или органические, расположенные по утку, служат лишь для технологической связи нитей или жгутов друг с другом) является то, что в них практически исключаются перегибы волокон в продольном направлении, волокна хорошо ориентированы, материал получается гладким и приятным на ощупь. Их выпускают и в виде гибридных лент и полотна в сочетании со стекловолокнистыми нитями. В настоящее время, ассортимент тканей весьма разнообразен; они различаются плотностью расположения нитей по ширине, структурой плетения, соотношением числа нитей в продольном (по основе) и поперечном (по утку) направлениях, числом элементарных волокон в пучке и другими характеристиками.

В зависимости от условий применения, УВМ выпускают в виде непрерывных нитей и жгутов (образованных из 1000, 3000, 5000, 6000, 10000 и большего числа элементарных непрерывных волокон), шнуров, штапельного волокна, кнопа, лент, тканей (часто комбинированных с полимерными или стеклянными волокнами), однонаправленных лент, в которых прочные нити основы связаны малопрочным утком (поперечная (горизонтальная) система направления параллельных друг другу нитей в ткани, располагающихся под прямым углом к системе основы, и проходящих от одной кромки ткани до другой), нетканых материалов (войлока, матов) и пр. На основе углеродных волокон разработан и используется практически весь возможный ассортимент текстильных форм.

Для получения тканых изделий из УВ используются два основных способа: ткачество исходных волокон и последующая термическая переработка тканых изделий в углеродные (т.е. карбонизация и графитация тканых форм); получение углеродных нитей, жгутов и их последующая текстильная переработка. Преимущество последнего способа в возможности получения тканей с меньшей анизотропией свойств, а также возможность получения комбинированных тканых материалов из УВ и других типов волокон, недостаток - хрупкость УВ и связанные с ней трудности при текстильной переработке.

На рисунке 2 показаны типы некоторых тканей специального назначения: неизвитая ткань, в которой благодаря исключению изгибов углеродных волокон, предотвращается повреждение волокон и снижение их прочности. Спиральная ткань, в которой углеродные волокна расположены по спирали и связаны между собой в радиальном направлении; ткани с ориентацией углеродных волокон пол углом 0. 30 и 60 о ; трехмерные ткани, в которых углеродные волокна ориентированы также и в направлении толщины ткани, и т.д.

Рисунок 2 - Примеры тканей специального назначения: а) - неизвитая ткань; б) - спиральная ткань; в) - ткань с трехосной ориентацией нитей в плоскости ткани; г) - трехмерная ткань с ортогональной объемной ориентацией нитей.

7. Применение углеволокна

Заключение

Список использованных источников

3. .Конкин А.А. Углеродные и другие жаростойкие волокнистые материалы. - М.: Химия, 1974.

Молекулы обычных полимеров содержат, помимо углерода, еще и атомы других элементов - водорода, кислорода, азота и т.д. Но сейчас разработаны методы получения волокон, представляющих собой, по сути дела, чистый полимерный углерод. Такими волокнами являются углеродные волокна. /1/

Впервые получение и применение углеродных волокон было предложено и запатентовано известным американским изобретателем — Томасом Алва Эдисоном в 1880 году в качестве нитей накаливания в электрических лампах. Эти волокна получались в результате пиролиза хлопкового или вискозного волокна и отличались хрупкостью и высокой пористостью и впоследствии были заменены вольфрамовыми нитями. В течение последующих 20 лет Эдисон же предложил получать углеродные волокна на основе различных природных волокон. /2/

Понадобилось несколько десятков лет, прежде чем к углеродным волокнам вновь возник интерес. Поводом послужило получение углеродного волокна из искусственных волокон. В 1958 году волокна из вискозы уже вырабатывались в значительных количествах. В 1959 году союз химических объединений выпускает в продажу высокомодульное углеродное волокно, полученное путем высокотемпературной обработки целлюлозы. Это резко повысило интерес к нему.

В 1977 году на мировом рынке были широко представлены дешевые углеродные волокна из пека со средними механическими характеристиками. Дальнейшее исследование возможностей создания углеродных волокон из пеков с высокими механическими характеристиками позволило разработать технологию получения их жидкокристаллических пеков сверхмодульных углеродных волокон. /3/

Так появились современные углеродные волокна, которые в инертной среде выдерживают до трех тысяч градусов, а в окисленной — до четырехсот.

Сегодня углеродные волокна получают в основном из вискозных и полиакрилонитрильных волокон, нагревая их до высоких температур в инертной среде, и из пеков /1/. В зависимости от типа сырья для производства углеродных волокон, режимов и условий их термообработки они имеют различные прочность, модуль упругости и другие характеристики. /4/

Цель данной работы – изучить особенности углеродных волокон, способы их получения и выяснить, какие существуют новые научные разработки и перспективы в области углеродных волокон. Для достижения цели необходимо решить следующие задачи:

  1. Изучить физические и механические свойства углеродных волокон;
  2. Рассмотреть исходное сырье для получения углеродных волокон;
  3. Описать технологии получения углеродных волокон из различного вида сырья;
  4. Выяснить области применения углеродных волокон.

1 Исходное сырье для производства углеродных волокон

Исследователями всего мира достаточно большое количество работ посвящено отысканию сырья для получения углеродных волокон. Предполагается, что любое волокно, дающее высокий выход коксового остатка, можно рассматривать как потенциальный материал для получения углеродного волокна. Однако существуют и другие факторы, играющие важную роль при получении этих волокон. Так, для волокон из полимеров, плавящихся при повышенной температуре, обязательным является предварительное окисление волокна для преобразования его в неплавкое состояние. Только после этого волокно можно подвергать карбонизации.

Окисление – наиболее ответственная и сложная операция, определяющая свойства конечного продукта, - должно проводиться при температуре ниже температуры плавления волокна. Известно, что при окислении из-за деструкции полимера снижаются ориентация, степень кристалличности и механические свойства волокна. Окисленное волокно должно обладать достаточно высокими физико-механическими показателями, обеспечивающими возможность его переработки и получения качественного волокна, создать такие условия достаточно трудно. /3/

Волокна, предназначенные для переработки в углеродные материалы, должны удовлетворять следующим требованиям:

  1. Не плавиться при карбонизации;
  2. Давать высокий выход углеродного волокна;
  3. Получаемое углеродное волокно должно обладать высокими физико-механическими свойствами. /5/

В любом случае исходным материалом для получения углеродных волокон служат волокна, ибо только такая форма материала позволяет получить данные волокна.

Целлюлоза является одним из самых распространенных природных полимеров. Гидратцеллюлоза – одна из структурных модификаций целлюлозы, получаемая химической переработкой природной целлюлозы. Из гидратцеллюлозы состоят вискозные и медноаммиачные волокна, которые поэтому и называют гидратцеллюлозными. Отличаются они способом получения прядильного раствора.

Целлюлоза имеет прочные водородные межмолекулярные связи, разорвать которые достаточно сложно. Поэтому, чтобы преобразовать целлюлозу в раствор, необходимо использование высокоактивных химических реагентов.

Наибольшее применение нашли вискозные волокна, получаемые из природной целлюлозы по вискозному методу. Вискоза – это раствор ксантогената целлюлозы в разбавленном водном растворе NaOH.

Целлюлоза является одним из основных видов сырья, используемых для получения углеродных волокнистых материалов. Из целлюлозы вырабатывают ткани, нити, жгуты, нетканые волокнистые материалы.

Интересен тот факт, что именно целлюлоза послужила первым материалом для разработки способа получения волокон из углерода. Этот способ подсказан впервые Эдисоном и Сваном еще в 1880 г. Им удалось, нагревая органические волокна в определенных условиях, не разрушать их, а превращать в углеродные.

В результате многочисленных исследований различных целлюлозных нитей установлено, что наиболее приемлемой является вискозная кордная нить. Кордные нити производятся непрерывным способом, где одновременно осуществляется формование, вытягивание, промывка, сушка и кручение волокна. Кордные нити имеют повышенные прочность, относительное удлинение и динамические свойства. /3/

1.2 Полиакрилонитрильное волокно

В настоящее время полиакрилонитрильные волокна (ПАН – волокна) являются основным видом сырья, применяемым для получения углеродных волокнистых материалов. Из них изготавливают главным образом высокопрочные высокомодульные углеродные волокна.

Среди различных видов карбоцепных волокон наиболее широкое применение получили волокна, вырабатываемые из сополимеров акрилонитрила. Сополимеры, содержащие до 15 % второго компонента, по своим основным показателям (растворимости, термостойкости) практически не отличаются от чистого полиакрилонитрила. Молекулярная масса полимеров и сополимеров, используемых для получения волокон, составляет от 40 000 до 60 000.

Таким образом, полиакрилонитрил, используемый для получения волокна, служащего сырьем в производстве углеродных волокон, не является в строгом смысле полиакрилонитрильным полимером. Это обычно тройной сополимер, содержащий в своем составе метилакрилат и около 1 % итаконовой кислоты.

Полиакрилонитрил не плавится без разложения, поэтому волокно из него может быть получено только методом формования из растворов.

На технологические параметры процесса получения углеродного волокна и на его свойства определяющее влияние оказывают структура и свойства исходного ПАН-волокна. В патентной литературе отмечаются такие важные факторы, как условия получения полимера, его химический состав, условия формования, вытяжки и термообработки волокна, содержание в готовом волокне растворителя, крутка волокна, добавки и прочее.

На свойства углеродного волокна также большое влияние оказывают загрязнения ПАН-волокна, причем большинство инородных частиц находится на его поверхности. В результате выгорания инородных включений во время карбонизации на поверхности углеродного волокна возникают трещины, резко снижающие его прочность.

Первые разработки по получению углеродных волокон из пека были осуществлены японскими исследователями, которые и сейчас удерживают первенство на мировом рынке по производству углеродных волокон из пеков.

В качестве исходного сырья для получения углеродных волокон могут применяться как собственно пеки, так и продукты термической обработки лигнина, поливинилхлорида, кубовые остатки при перегонке бензилхлорида, хлорбензола, природные и искусственные асфальты, битумы, продукты химической очистки сырой нефти и нефтепродуктов, продукты экстракции каменного угля ароматическими углеводородами.

Первое волокно из пека, названное МР-волокном, было получено с использованием поливинилхлорида, который в виде порошка подвергался термодеструкции, в результате которой происходило дегидрохлорирование с глубокими превращениями, приводящее к образованию смолы (пека). Из пека формовалось волокно, которое подвергалось термообработке для получения углеродного волокна. Причем при термообработке при 400 0 С образуется плавкий пек; при термообработке при 300 0 С, в присутствии кислорода воздуха, неплавкий – пригодный для карбонизации.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ОТКРЫТИЕ УГЛЕРОДНОГО ВОЛОКНА.

Лазаренко В.Д., Васютченкова Е.А.,

Руководитель – Пенкина Н.А., преподаватель

Передовые отрасли промышленности и строительства за последнее время освоили немало принципиально новых технологий, большая часть которых связана с инновационными материалами. Например, в автомобилестроении внедряются карбоновые элементы, повышающие эксплуатационные качества спорткаров. И это далеко не все направления, в которых задействуются углепластики, т.е. материалы на основе углеродного волокна. Собственно, в непревзойденных технико-физических качествах и заключается уникальность и активное распространение композитов нового поколения.

Впервые получение и применение углеродных волокон (УВ) (точнее, нитей) было предложено и запатентовано известным американским изобретателем — Томасом Эдисоном — в 1880 г. в качестве нитей накаливания в электрических лампах. Эти волокна получались в результате пиролиза хлопкового или вискозного волокна и отличались хрупкостью и высокой пористостью и впоследствии были заменены вольфрамовыми нитями. В течение последующих 20 лет он же предложил получать углеродные и графитированные волокна на основе различных природных волокон.

Понадобилось несколько десятков лет, прежде чем к углеродным волокнам вновь возник интерес. Поводом послужило получение углеродного волокна из искусственных волокон. В 1958 году волокна из вискозы уже вырабатывались в значительных количествах. В 1959 году союз химических объединений выпускает в продажу высокомодульное углеродное волокно, полученное путем высокотемпературной обработки целлюлозы. Это резко повысило интерес к нему.

Почти в то же время в СССР и несколько позже, в 1961 г., в Японии были получены УВ на основе полиакрилонитрильных (ПАН) волокон. Характеристики первых углеродных волокон на основе ПАН были невысоки, но постепенно технология совершенствовалась и уже через 10 лет (к 1970 г.) были получены углеродные волокна на основе ПАН-волокон с пределом прочности 2070 МПа и модулем упругости 480 ГПа. Тогда же была показана возможность получения углеродных волокон по этой технологии с ещё более высокими механическими характеристиками: модулем упругости до 800 ГПа и пределом прочности более 3 ГПа. УВ на основе нефтяных пеков были получены в 1970 г. также в Японии.

Так появились современные углеродные волокна, которые в инертной среде выдерживают до трех тысяч градусов, а в окисленной — до четырехсот.

Специфика технологии получения материала наложила свой отпечаток на эксплуатационные качества волокон. В результате высокая термическая стойкость стала главной отличительной чертой структуры таких изделий. Кроме тепловых воздействий, материал устойчив и к химическим агрессивным средам. Правда, если в процессе окисления при нагревании присутствует кислород, это губительно сказывается на волокнах. Зато механическая прочность углеродного волокна может составить конкуренцию многим традиционным материалам, которые считаются твердотельными и стойкими к повреждениям. Это качество особенно выражено в карбоновых изделиях. Еще одним свойством, которое имеет спрос среди технологов различной продукции, является способность абсорбции. Благодаря активной поверхности данное волокно можно рассматривать в качестве эффективной каталитической системы.

По сравнению с обычными конструкционными материалами, например, алюминием или сталью, композиты с углеродными волокнами обладают некоторыми весьма полезными свойствами: высокий модуль упругости и прочность, низкая плотность, низкий коэффициент трения, а также высокая стойкость к атмосферному влиянию и химическим реагентам. Кроме высоких прочностных свойств и малого веса, углеродные волокна и композиты из них (углепластики) имеют черный цвет и хорошо проводят электрический ток. Кроме этого, углеродные волокна имеют очень низкий, почти нулевой коэффициент линейного расширения, который делает их незаменимыми в некоторых специальных областях применения.

Углеродные волокна применяют для армирования композиционных, теплозащитных, химостойких в качестве наполнителей в различных видах углепластиков.

УВ по своим качествам оказались одними из наиболее подходящих армирующих материалов для космической промышленности, поскольку они обладают высокой термостойкостью, хорошими теплоизоляционными свойствами, коррозионной стойкостью к воздействию газовых и жидких сред, высокими удельными прочностью и жёсткостью. Их используют для термозащиты космических кораблей, самолетов, ракет, изготовления их носовых частей, деталей двигателей, теплопроводящих устройств.

Композиционные материалы и изделия на основе непрерывных волокон и армирующих тканей широко используются для производства внешних деталей самолетов, кораблей, автомобиля (силовые конструкции, элементы крепления бамперов и радиаторов, декоративные элементы, крышки багажников, кузовные панели, тормозные диски, элементы кузова, термо- и звукоизоляцию).

Из модернизированных углеволокон изготовляют электроды, термопары, экраны, поглощающие электромагнитное излучение, изделия для электро- и радиотехники.

На основе углеродных волокон получают жесткие и гибкие электронагреватели , обогреваемую одежду и обувь. Нетканые углеродные материалы служат высокотемпературной изоляцией технологических установок и трубопроводов. Благодаря химической инертности углеволокнистые материалы используют в качестве фильтрующих слоев для очистки агрессивных жидкостей и газов от дисперсных примесей, а также в качестве уплотнителей и сальниковых набивок. Углеволокнистые ионообменники служат для очистки воздуха, а также технологических газов и жидкостей, выделения из последних ценных компонентов, изготовления средств индивидуальной защиты органов дыхания.

Углеродные материалы имеют и медицинские области применения: живой организм их не отторгает. Поэтому если скрепить сломанную кость штифтом на основе углепластика, а поврежденное сухожилие заменить легкой и прочной углеродной лентой, то организм не воспримет этот материал как чужеродный.

Они совершенно безопасны в пожарном отношении, так как тепловой поток равномерно распределяется по большой поверхности. Их применяют также для изготовления средств индивидуальной одежды.

К сожалению, к недостаткам углеродных волокон относится высокая стоимость, что отчасти объясняется небольшими объемами их производства. Его получение может себе позволить далеко не каждая компания. По-видимому, при увеличении масштабов производства стоимость углеродных волокон значительно снизится.

Читайте также: