Топлива для реактивных двигателей реферат

Обновлено: 07.07.2024

В отличие от бензинового и дизельного двигателя, в которых поступательное движение поршней цилиндров преобразуется во вращательное движение коленчатого вала, в воздушно-реактивном двигателе (ВРД) происходит непрерывное сгорание топлива на форсунках. Тепловое энергия, образующаяся при его сгорании превращается в кинетическую энергию дымовых газов, выходящих через суженое отверстие (сопло), расположенное в тыльной стороне ВРД. За счет этого создается тяговая сила противоположная по направлению движению дымовых газов. Чем выше скорость истечения газов тем большую работу они совершают, и тем выше тяговая сила двигателя. Чтобы скорость истечения газов из сопла была достаточной, необходимо обеспечить высокую интенсивность процесса сгорания топлива, что достигается поддержанием в камере сгорания соответствующих температуры и давления, а так же состава топливовоздушной смеси. Воздух в камеру сгорания подается с помощью турбокомпрессора, приводимого во вращение газовой турбиной, расположенной в задней части двигателя. Отсюда и названия ВРД - турбореактивные (ТРД), турбовинтовые (ТВД), турбокомпрессорные (ТКРД). Топливо сгорает в потоке воздуха, движущемся со скоростью 35-45 м/с, т.е. в 2. Отсюда и высокие требования к теплоте сгорания топлива.

В ВРД могут применяться более тяжелые топлива и с более широким фракционным составом, чем в поршневых двигателях. Однако, утяжеление фракционного состава ведет к ухудшению процесса образования горючей смеси. Это может нарушить непрерывность горения, что вообще недопустимо, или может вызвать неполноту сгорания, что снижает к.п.д. двигателя и может стать причиной нагарообразования.

Наиболее подходящими для такого процесса сгорания являются керосиновые фракции нефти, выкипающие в пределах 120-320 о С. В двигателях для дозвуковой авиации применяются топлива более легкие, для сверхзвуовой - более тяжелые. Кроме испаряемости наиболее важными характеристиками являются: теплотворная способность топлива, кинематическая вязкость, температура начала кристаллизации, содержание серы, воды, механических примесей и др.

Низкая калорийность топлива снижает тяговую силу и дальность полета, слишком высокая вязкость ухудшает распыл топлива на форсунке. Однако, топливо имеющее слишком низкую вязкость имеет плохие противоизносные свойства. Повышенное содержание нормальных парафиновых углеводородов вызывает кристаллизацию топлива в верхних холодных слоях атмосферы. Попадание в топливо воды может ухудшить его прокачиваемость. Возможность образования кристаллов льда в авиационных топливах особенно высока в связи с быстрым изменением в полете температуры и влажности воздуха, атмосферного давления. При понижении температуры и атмосферного давления и увеличении влажности растворимость воды в топливе снижается, а избыток ее выпадает в топливных баках в виде тонкодисперсных капель, способных к замерзанию. Для предотвращения образования кристаллов льда в топливо вводится присадка этилцеллозольв - жидкость “И”. Сернистые соединения, особенно меркаптаны, вызывают коррозию, как топливной аппаратуры, так и камеры сгорания. Механические примеси забивают топливные фильтры, форсунки, приводят к износу лопатки турбины. Все эти явления усугубляются тем, что авиамашина находится в воздухе, и устранить повреждения, а, тем более, остановить двигатель практически невозможно.

Показатели Дозвуковые Сверхзвуковые
ТС-1 РТ Т-6
плотность при 20 о С, кг/м 3 Фракционный состав: температура начала перегонки, о С: не ниже не выше 10% перегоняется при температуре, о С не выше 50% перегоняется при температуре, о С не выше 90% перегоняется при температуре, о С не выше 98% перегоняется при температуре, о С не выше Кинематическая вязкость,мм 2 /с: при 20 о С, не менее не более при минус 40 о С, не более Высота некоптящего пламени,мм, не менее Кислотность, мтКОН на 100 г топлива, не более Температура вспышки в закрытом тигле, о С, не ниже Температура начала кристаллизации, о С, не выше Концентрация фактических смол, мг на 100 см з топлива, не более Массовая доля ароматических углеводородов, %, не более Массовая доля общей серы, %, не более Низшая теплота сгорания, кДж/кг, не менее Содержание механических примесей и воды - 1,30 - 0,7 -60 0,25 отсутст. 1,25 - 0,4 - 0,7 -55 0,10 отсутст. - - 4,5 0,5 -60 0,05 отсутст.

Кроме этого реактивное топливо должно обладать хорошими антистатическими свойствами, поскольку трение плоскостей и фюзеляжа авиамашины о воздух вызывает накопление в топливе статического электрического заряда, который может вызвать пожар или взрыв. Таким образом, можно сказать, что к качеству реактивных топлив предъявляются более жесткие требования, чем другим видам моторных топлив.

Современная авиация в основном оснащена воздушно-реактив¬ными двигателями (ВРД). В этих двигателях топливо в камеру сгорания подается непрерывно, и вследствие этого процесс горения протекает постоянно. Лишь для запуска двигателя используют постороннее зажи¬гание. Также непрерывно поступает в камеру сгорания ВРД и воздух (требуемый для сжигания топлива), предварительно сжатый и нагретый в компрессоре.

Содержание работы

Реактивное топливо • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3
Получение реактивного топлива • • • • • • • • • • • • • • •• • • • • • • • • • • • • • •4
Свойства реактивного топлива • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • 5
Испаряемость• • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • •5
Полнота и теплота сгорания реактивных топлив• • • • • • • • • • • • • • ••6
Прокачиваемость• • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • 8
Склонность к образованию отложений• • • • • • • • • • • • • • • • • • • • • • •11
Совместимость с материалами• • • • • • • • • • • • • • • • • • • • • • • • • • • • 12
Противоизносные свойства• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 14
Список литературы• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •17

Файлы: 1 файл

РЕФЕРАТ ТХ.docx

Министерство образования Российской Федерации

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра химической технологии

РЕФЕРАТ НА ТЕМУ

Выполнил студент группы ЭЛ-09-1 А.Н. Рахматулин

шифр подпись И. О. Фамилия

Нормоконтроллер профессор О.И.Дошлов

подпись И. О. Фамилия

Реактивное топливо · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3

Получение реактивного топлива · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·4

Свойства реактивного топлива · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · 5

Полнота и теплота сгорания реактивных топлив· · · · · · · · · · · · · · ··6

Склонность к образованию отложений· · · · · · · · · · · · · · · · · · · · · · ·11

Совместимость с материалами· · · · · · · · · · · · · · · · · · · · · · · · · · · · 12

Противоизносные свойства· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14

Список литературы· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·17

Современная авиация в основном оснащена воздушно-реактивными двигателями (ВРД). В этих двигателях топливо в камеру сгорания подается непрерывно, и вследствие этого процесс горения протекает постоянно. Лишь для запуска двигателя используют постороннее зажигание. Также непрерывно поступает в камеру сгорания ВРД и воздух (требуемый для сжигания топлива), предварительно сжатый и нагретый в компрессоре. Газообразные продукты сгорания из камеры сгорания поступают в турбину, где часть тепловой энергии превращается в механическую работу вращения колеса турбины, от вала которого приводится в движение ротор компрессора, а также топливный и масляный насосы. После турбины продукты сгорания топлива в виде газового потока проходят реактивное сопло и, расширяясь в нем, создают реактивную силу тяги, с помощью которой и осуществляется полет самолета.

В турбореактивных двигателях топливо, проходя через топливо- масляный радиатор, снижает температуру смазочного масла, т.е. выполняет функцию охлаждающей среды. Помимо этого, топливо используют и для смазывания деталей трения топливных насосов. Кроме того, изменяя подачу топлива с помощью топливорегулируюшей аппаратуры, регулируют скорость полета самолета. Основные свойства реактивных топлив: хорошая испаряемость для обеспечения полноты сгорания; высокие полнота и теплота сгорания, предопределяющие дальность полета самолета;

хорошие прокачиваемость и низкотемпературные свойства для обеспечения подачи топлива в камеру сгорания;

низкая склонность к образованию отложений, характеризуемая высокой химической и термоокислительной стабильностью;

хорошая совместимость с материалами: низкие противокоррозионные свойства по отношению к металлам и отсутствие воздействия на резиновые технические изделия;

хорошие противоизносные свойства, обусловливающие небольшое изнашивание деталей топливной аппаратуры;

антистатические свойства, препятствующие накоплению зарядов статического электричества, что обеспечивает пожаробезопасность при заправке летательных аппаратов.

Получение реактивного топлива

Реактивные топлива вырабатываются в основном из среднедистиллятных фракций нефти, выкипающих при температуре 140—280(°)С (лигроино-керосиновых). Широкофракционные сорта реактивных топлив (Т-2) изготовляются с вовлечением в переработку также бензиновых фракций нефти. Для получения некоторых сортов реактивных топлив (Т-8В, Т-6) в качестве сырья применяются вакуумный газойль и продукты вторичной переработки нефти. В реактивные топлива могут вводиться функциональные присадки (антиокислительные, противоизносные и др.).

По способу получения реактивные топлива делятся на прямогонные и гидрогенизационные. Первые (Т-1, ТС-1, Т-2) получаются непосредственно из отогнанных фракций нефти без их глубокой переработки. Технология получения вторых (РТ, Т-8В, Т-6) включает такие процессы, как гидроочистку (РТ, Т-8В), глубокое гидрирование (Т-6), гидрокрекинг (Т-8В), основным содержанием которых является воздействие водорода при высоких давлениях и температурах на углеводороды и гетероорганические соединения нефти. При гидроочистке из нефтяного дистиллята удаляются агрессивные и содержащие серу, азот и кислород нестабильные соединения практически без изменения углеводородного состава топлива. При гидрокрекинге и гидрировании наряду с очисткой исходного сырья происходит изменение его углеводородного состава (превращение непредельных соединений в насыщенные).
Применение гидрогенизационных процессов при производстве реактивных топлив позволяет расширить сырьевую базу топлив и значительно повысить их термостабильность. Основными сортами отечественных реактивных топлив являются ТС-1, РТ и Т-6 (табл. 2).

Топливо ТС-1 является массовым реактивным топливом для дозвуковой авиации и сверхзвуковой авиации с ограниченной продолжительностью сверхзвукового полёта. Топливо РТ полностью удовлетворяет эксплуатационным требованиям, предъявляемым к топливу ТС-1, и может применяться вместо него. Вместе с тем, будучи более термостабильным, оно допускает нагрев в топливной системе силовой установки до более высоких температур, и поэтому допущено к применению в теплонапряжённых двигателях самолётов с увеличенной продолжительностью сверхзвукового полёта, в течение которого вследствие аэродинамического нагревания возможно значительного повышение температуры топлива в баках самолёта.

Свойства реактивного топлива

Испаряемость — одно из важнейших свойств реактивных топлив. Она влияет на пределы устойчивого горения топлива, полноту сгорания, нагарообразование в камере сгорания двигателя, бесперебойную работу топливных насосов и склонность к образованию паровых пробок в топливной системе самолетов в условиях высотных полетов. От испаряемости топлив зависят запуск двигателя и потери топлива от испарения при полетах на больших высотах. Реактивные топлива имеют более широкий диапазон температур выкипания, чем топлива другого назначения. Для ВРД используют топлива различного фракционного состава: для дозвуковой авиации — типа керосина с пределами выкипания от 136-156 до 250-280 °С (топлива ТС-1, РТ, Т-1) и широкого фракционного состава (60-280 °С), представляющее собой бензино-керосиновую фракцию (топливо Т-2), и для сверхзвуковой авиации — топлива Т-8В, выкипающее при температуре от 165 до 280 °С, и Т-6, выкипающее при температуре от 195 до 315 "С.

Снижение степени влияния испаряемости реактивных топлив на работу двигателя достигается чисто конструктивными мерами, что позволяет использовать на реактивных двигателях топлива, различные по испаряемости. При этом температура начала кипения топлива характеризует его склонность к образованию паровых пробок в топливной системе и пусковые свойства; температура выкипания 10 % (об.) — пусковые свойства, а 98 % (об.) — полноту испарения, определяющую полноту сгорания топлива.

Учитывая аэродинамический нагрев топлива в баках самолета, имеющий место при сверхзвуковом полете, во избежание образования паровых пробок в топливной системе регламентируются более высокие значения температуры начала кипения топлив, предназначенных для сверхзвуковых самолетов.

Полнота и теплота сгорания реактивных топлив

С понижением полноты сгорания топлива склонность его к нагарообразованию в двигателе возрастает. Нагар отлагается на сопле форсунки, на стенках камеры сгорания, на лопатках турбины. Нагарообразование в двигателе крайне нежелательно. Отложения нагара на форсунках изменяют форму струи распыливаемого топлива, вследствие чего ухудшаются условия его распыливания и испарения, а также нарушается распределение температур вдоль пространства сгорания. Нагарообразование на лопатках турбины вызывает их децентрирование и выход из строя. Частицы нагара, отделяясь от стенок камеры сгорания и, попадая вместе с газами на лопатки турбины, вызывают их эрозию.

Наличие в пламени сажистых частиц (продуктов неполного сгорания топлива) вызывает его свечение, что связано с излучением тепла пламенем, приводящим к повышению температуры стенок камеры сгорания, их местному короблению и прогару.

Показателями, характеризующими горение реактивных топлив, являются высота некоптящего пламени и люминометрическое число. Кроме того, склонность реактивных топлив к нагарообразованию в двигателе и свечению пламени оценивают по содержанию в них ароматических углеводородов.

Комплексом методов квалификационной оценки реактивных топлив предусмотрено определение их склонности к нагарообразованию на однокамерной установке. С повышением высоты Н некоптящего пламени склонность топлива к нагарообразованию снижается:

Значения люминометрического числа реактивных топлив и высота некоптящего пламени зависят от их углеводородного и фракционного составов. Наиболее низкие значения этих показателей имеют нафталиновые, нафтено-ароматические и моноциклические ароматические углеводороды, а наиболее высокие, снижающиеся с увеличением молекулярной массы и разветвлением молекулы, — парафиновые. Склонность реактивных топлив к нагарообразованию в значительной мере определяется конструкцией камеры сгорания двигателя.

Удельный расход топлива в реактивных двигателях определяет дальность полета самолета. Он снижается с увеличением полноты сгорания топлива, а также с повышением низшей теплоты его сгорания.

Для различных условий эксплуатации самолетов более важное значение имеет массовая, либо объемная теплота сгорания. Так, поскольку объем топливных баков для самолетов с дозвуковой скоростью полетов строго не ограничен, основное значение имеет массовая теплота сгорания. В сверхзвуковых самолетах, где объем топливных баков жестко лимитирован, превалирующее значение приобретает объемная теплота сгорания. Для всех марок реактивных топлив стандартами и техническими условиями регламентируется массовая теплота сгорания. Значения объемной теплоты сгорания топлива Регламентируют косвенно, так как она равна произведению массовой

Общая характеристика реактивных топлив, их назначение и физико-химические свойства. Технология получения и перспективы производства реактивных топлив, их марки и классификация сырья. Особенности топлив, применяемых жидкостных ракетных двигателей.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 11.06.2013
Размер файла 26,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. ПОЛУЧЕНИЕ И ПЕРСПЕКТИВЫ ПРОИЗВОДСТВА РЕАКТИВНЫХ ТОПЛИВ

2. РАКЕТНЫЕ ТОПЛИВА

3. МАРКИ РЕАКТИВНЫХ ТОПЛИВ РОССИИ

4. ОСНОВНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА РЕАКТИВНЫХ ТОПЛИВ

ВВЕДЕНИЕ

Реактивные топлива - это топлива, предназначенные для реактивных двигателей самолетов, вертолетов и ракет. Мировое производство реактивного топлива составляет в среднем 5 % от объема перерабатываемой нефти (примерно 2 % - в Европе и развивающихся странах и 7 % - в Северной Америке). В мирное время военные потребляют около 10 % от общих ресурсов реактивных топлив.

Масса топлива составляет от 30 до 60 % от взлетной массы самолета, что делает особо важной роль топлива.

Топлива эти однокомпонентные (т.е. смешение их не допускается), с жестко оговоренной технологией получения.

Они должны обеспечивать:

* надежный запуск двигателя в любых условиях;

* устойчивое горение в быстро движущемся потоке воздуха и при больших коэффициентах избытка воздуха;

* полное" сгорание без дыма и нагара;

* высокую скорость и дальность полета и безаварийность.

1. ПОЛУЧЕНИЕ И ПЕРСПЕКТИВЫ ПРОИЗВОДСТВА РЕАКТИВНЫХ ТОПЛИВ

Массовыми реактивными топливами в настоящее время практически являются топлива двух марок: ТС-1 (высшего и первого сортов), РТ (высшей категории качества).

Основное сырье для производства массовых реактивных топлив - среднедистиллятная фракция нефти, выкипающая в температурном интервале 140 - 280 °С.

Топливо ТС-1. В зависимости от качества перерабатываемой нефти (содержания меркаптанов и общей серы в дистиллятах) топливо получают либо прямой перегонкой, либо в смеси с гидроочищенным или демеркаптанизированным компонентом (смесевое топливо). Содержание гидроочищенного компонента в смеси не должно быть более 70 % во избежание значительного снижения противоизносных свойств.

Гидроочистку используют, когда в керосиновых дистиллятах нефти содержание общей и меркаптановой серы не соответствует требованиям стандарта, демеркаптанизацию когда содержание только меркаптановой серы не соответствует требованиям стандарта.

Топливо РТ получают, как правило, гидроочисткой прямогонных дистиллятов с пределами выкипания 135-280 °С. В качестве сырья для гидроочистки используют дистилляты, из которых нельзя получить топливо ТС-1 из-за повышенного сверх нормы содержания общей и меркаптановой серы.

Проблемы, связанные с топливами для реактивной авиации и ракет, в настоящее время заключаются в следующем:

* топлива можно получить не из всех нефтей, а только из специальных, которые обеспечивают нормируемые показатели качества;

* низкий потенциал топливных фракций в нефтях (10-12 %), что сильно уменьшает ресурсы топлива;

* жесткие нормы по таким показателям, как содержание АрУ, температура начала кристаллизации, вязкость и фракционный состав, накладывают такие ограничения, что в итоге резко сокращаются ресурсы топлива.

Использование потенциала топлива РТ составляет сейчас 70-75 %, так как при увеличении этой доли не соблюдаются показатели качества дизельного топлива.

С учетом тенденции снижения добычи легких нефтей, пригодных для получения топлив ТС-1 и РТ, возможны следующие варианты.

1. Повышение нормы на содержание АрУ до 23-25 %. Тогда для получения РТ будут пригодны до 75 % всех нефтей. Но это потребует некоторых конструктивных изменений турбореактивного двигателя, так как при этом увеличивается возможность нагароотложений.

2. Повышение нормы на температуру начала кристаллизации до значений "не выше минус 50°С", а на некоторые марки топлива до "не выше минус

40°С", поскольку топливо в баках никогда не охлаждается до минус 50°С.

3. Расширение фракционного состава, как по началу, так и по концу кипения. Первым шагом в этом направлении в ближайшие годы стал бы переход на использование топлива Т-2 (100-280°С). В дальнейшем повышение конца кипения до 340 или даже 350°С позволило бы вообще снять проблему с ресурсами реактивных топлив, но для этого потребуется пересмотреть конструкции ТРД и самолета в целом, так как по-иному должна быть построена система топливоподготовки, топливоподогрева, сжигания топлива и др.

4. Применение сжиженного водорода в авиации. Попытки его использования как топлива в обычных авиадвигателях уже делались, но были прекращены из-за сложностей хранения водорода на самолете. В дальнейшем возможно возобновление работ по применению водорода, но уже в новом качестве: как параллельного топлива для малых жидкостных ракетных двигателей - ЖРД (вместе с окислителем), которые могут выполнять роль разгонных двигателей или ускорителей.

2. РАКЕТНЫЕ ТОПЛИВА

реактивное топливо ракетный двигатель

Ракетные топлива применяются только для жидкостных ракетных двигателей (ЖРД) и поэтому есть свои особенности в их применении.

Они бывают однокомпонентными и двухкомпонентными.

Однокомпонентные ракетные топлива содержат в своем составе и горючие элементы, и кислород, например:

Метилнитрат - CH3ONO2 (температура кипения 64 °С)

Нитрометан - CH3NO2 (температура кипения 101 °С)

Эти топлива горят без подвода кислорода извне и используются в тех случаях, когда подвод кислорода ограничен.

Двухкомпонентные ракетные топлива - это углеводородное горючее, сжигаемое в присутствии сильного окислителя (обычно жидкого кислорода).

Горючее применяется синтетическое и природное. Примером синтетического горючего может служить гидразин, или диамид (H2N-HH2), кипящий при 113°С.

Природные горючие - это либо жидкий водород, либо углеводороды.

Углеводородные горючие используются самые различные. Это и серийные топлива Т-2 и Т-6, и специально выделенные фракции нафтеновых нефтей ("Нафтил"), а также синтезированные нафтеновые углеводороды.

3. МАРКИ РЕАКТИВНЫХ ТОПЛИВ РОССИИ

Топлива России разрабатывались начиная с 40-х годов XX века.

Т-1. Введено в 1948 г. Представляет собой прямогонный керосин с содержанием серы не более 0,1 %. Ориентировано на получение из нефтей Баку. Имеет широкий фракционный состав и относительно высокую норму по минимальной плотности. Фракционный состав (Фр. с.) 130-280°С.

ТС-1. Взаимозаменяемо с Т-1. Прямогонный керосин с содержанием серы не более 0,25 % (впервые получено из нефтей междуречья Урал-Волга). Фракционный состав определяется нормами на другие показатели. Малая термостабильность. Вырабатывается и в настоящее время. Фр. с. -130-240°С.

Т-2. Дистиллят широкого фракционного состава (100-280°С) из высокосернистых нефтей, имеющий высокую летучесть. Топливо введено в 1957 г. с целью расширения ресурсов авиатоплив. В настоящее время не выпускается и считается резервным.

Т-3. Специально вырабатывалось для ГДР.

Т-4. Введено в 1957 г. как временное и имеющее широкий фракционный состав и высокое содержание серы. Имело малую термостабильность и окислялось при хранении (вероятно, его получали из дистиллятов вторичного происхождения - крекинга и т.п.).

Т-5. Разработано как топливо для прямоточных ВРД. Имеет малую термостабильность, высокую плотность и вязкость и широкий фракционный состав.

Т-6. Введено в 1966 г. для сверхзвуковой авиации. Фракция 195-315°С первичной перегонки нефти с последующим гидрированием или фракция 195-300°С газойля каталитического крекинга с последующей гидродеароматизацией. Обладает высокой плотностью (0,845 г/см.), высокой температурой вспышки, большой теплотой сгорания (36 МДж/л), малым содержанием серы (0,05%) и ароматических углеводородов (5-8%). Имеет высокую термостабильность.

Т-7. Вторичное гидроочищенное топливо. Введено в 1966 г. для сверхзвуковой авиации с целью использования в гражданских самолетов, но несомненно пригодно как топливо для военных самолетов. Вырабатывалось из малосернистых нефтей. Термостабильно.

Т-8В. Впервые введено в 1968 г. специально для первого отечественного сверхзвукового гражданского самолета ТУ-144. Прямогонная фракция

170-280°С с последующей каталитической гидродеароматизацией. Имеет хорошую термостабильность и малую испаряемость. Используется также для военной сверхзвуковой авиации и другой техники.

РТ. Впервые введено в 1970 г. для дозвуковых самолетов. Фракция

135-280°С первичной перегонки нефти с последующей гидроочисткой. Содержит смазывающие присадки. Высокая термостабильность. Потенциально может использоваться, когда требуется повышенная выработка реактивных топлив.

Таким образом, в настоящее время вырабатываются реактивные топлива:

дозвуковые Т-1 и ТС-1 (аналог США- JP-4);

переходное РТ, которое может использоваться как для звуковых самолетов, так и для сверхзвуковых (аналог CШA-JP-5);

сверхзвуковые Т-6 и Т-8В.

ракетные (марки определяются соответствующими ТУ).

4. ОСНОВНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА РЕАКТИВНЫХ ТОПЛИВ.

Фракционный состав определяется в основном нормами на плотность, вязкость и температуру начала кристаллизации. Но в стандартах указаны предельные значения температур кипения (см. табл. 1.).

Американское топливо JP-4 имеет пределы кипения 120-250 °С.

В зависимости от конкретной нефти состав подбирается таким, чтобы были в норме плотность, вязкость и температура начала кристаллизации.

В табл.1 приведены нормы на показатели качества всех марок реактивных топлив.

Термостабильность характеризует топливо по его склонности к образованию смолистых веществ при контакте с воздухом при высокой температуре. При скорости самолета, в 2−5 раз превышающей скорость звука, топливные баки самолета разогреваются до 150−200°С, а отсюда — образование смол в топливе и, как следствие — отложение нагара при горении. Мерой термостабильности в статистических условиях является… Читать ещё >

Реактивные топлива ( реферат , курсовая , диплом , контрольная )

1. ПОЛУЧЕНИЕ И ПЕРСПЕКТИВЫ ПРОИЗВОДСТВА РЕАКТИВНЫХ ТОПЛИВ.

2. РАКЕТНЫЕ ТОПЛИВА.

3. МАРКИ РЕАКТИВНЫХ ТОПЛИВ РОССИИ.

4. ОСНОВНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА РЕАКТИВНЫХ ТОПЛИВ ЛИТЕРАТУРА.

ВВЕДЕНИЕ.

Реактивные топлива — это топлива, предназначенные для реактивных двигателей самолетов, вертолетов и ракет. Мировое производство реактивного топлива составляет в среднем 5% от объема перерабатываемой нефти (примерно 2% - в Европе и развивающихся странах и 7% - в Северной Америке). В мирное время военные потребляют около 10% от общих ресурсов реактивных топлив.

Масса топлива составляет от 30 до 60% от взлетной массы самолета, что делает особо важной роль топлива.

Топлива эти однокомпонентные (т.е. смешение их не допускается), с жестко оговоренной технологией получения.

Они должны обеспечивать:

* надежный запуск двигателя в любых условиях;

* устойчивое горение в быстро движущемся потоке воздуха и при больших коэффициентах избытка воздуха;

* полное" сгорание без дыма и нагара;

* высокую скорость и дальность полета и безаварийность.

1. ПОЛУЧЕНИЕ И ПЕРСПЕКТИВЫ ПРОИЗВОДСТВА РЕАКТИВНЫХ ТОПЛИВ.

Массовыми реактивными топливами в настоящее время практически являются топлива двух марок: ТС-1 (высшего и первого сортов), РТ (высшей категории качества).

Основное сырье для производства массовых реактивных топлив — среднедистиллятная фракция нефти, выкипающая в температурном интервале 140 — 280 °C.

Топливо ТС-1. В зависимости от качества перерабатываемой нефти (содержания меркаптанов и общей серы в дистиллятах) топливо получают либо прямой перегонкой, либо в смеси с гидроочищенным или демеркаптанизированным компонентом (смесевое топливо). Содержание гидроочищенного компонента в смеси не должно быть более 70% во избежание значительного снижения противоизносных свойств.

Гидроочистку используют, когда в керосиновых дистиллятах нефти содержание общей и меркаптановой серы не соответствует требованиям стандарта, демеркаптанизацию когда содержание только меркаптановой серы не соответствует требованиям стандарта.

Топливо РТ получают, как правило, гидроочисткой прямогонных дистиллятов с пределами выкипания 135−280 °С. В качестве сырья для гидроочистки используют дистилляты, из которых нельзя получить топливо ТС-1 из-за повышенного сверх нормы содержания общей и меркаптановой серы.

Проблемы, связанные с топливами для реактивной авиации и ракет, в настоящее время заключаются в следующем:

* топлива можно получить не из всех нефтей, а только из специальных, которые обеспечивают нормируемые показатели качества;

* низкий потенциал топливных фракций в нефтях (10−12%), что сильно уменьшает ресурсы топлива;

* жесткие нормы по таким показателям, как содержание АрУ, температура начала кристаллизации, вязкость и фракционный состав, накладывают такие ограничения, что в итоге резко сокращаются ресурсы топлива.

Использование потенциала топлива РТ составляет сейчас 70−75%, так как при увеличении этой доли не соблюдаются показатели качества дизельного топлива.

С учетом тенденции снижения добычи легких нефтей, пригодных для получения топлив ТС-1 и РТ, возможны следующие варианты.

1. Повышение нормы на содержание АрУ до 23−25%. Тогда для получения РТ будут пригодны до 75% всех нефтей. Но это потребует некоторых конструктивных изменений турбореактивного двигателя, так как при этом увеличивается возможность нагароотложений.

40°С", поскольку топливо в баках никогда не охлаждается до минус 50 °C.

3. Расширение фракционного состава, как по началу, так и по концу кипения. Первым шагом в этом направлении в ближайшие годы стал бы переход на использование топлива Т-2 (100−280°С). В дальнейшем повышение конца кипения до 340 или даже 350 °C позволило бы вообще снять проблему с ресурсами реактивных топлив, но для этого потребуется пересмотреть конструкции ТРД и самолета в целом, так как по-иному должна быть построена система топливоподготовки, топливоподогрева, сжигания топлива и др.

4. Применение сжиженного водорода в авиации. Попытки его использования как топлива в обычных авиадвигателях уже делались, но были прекращены из-за сложностей хранения водорода на самолете. В дальнейшем возможно возобновление работ по применению водорода, но уже в новом качестве: как параллельного топлива для малых жидкостных ракетных двигателей — ЖРД (вместе с окислителем), которые могут выполнять роль разгонных двигателей или ускорителей.

2. РАКЕТНЫЕ ТОПЛИВА.

реактивное топливо ракетный двигатель Ракетные топлива применяются только для жидкостных ракетных двигателей (ЖРД) и поэтому есть свои особенности в их применении.

Они бывают однокомпонентными и двухкомпонентными.

Однокомпонентные ракетные топлива содержат в своем составе и горючие элементы, и кислород, например:

Метилнитрат — CH3ONO2 (температура кипения 64 °С) Нитрометан — CH3NO2 (температура кипения 101 °С) Эти топлива горят без подвода кислорода извне и используются в тех случаях, когда подвод кислорода ограничен.

Двухкомпонентные ракетные топлива — это углеводородное горючее, сжигаемое в присутствии сильного окислителя (обычно жидкого кислорода).

Горючее применяется синтетическое и природное. Примером синтетического горючего может служить гидразин, или диамид (H2N-HH2), кипящий при 113 °C.

Природные горючие — это либо жидкий водород, либо углеводороды.

3. МАРКИ РЕАКТИВНЫХ ТОПЛИВ РОССИИ.

Топлива России разрабатывались начиная с 40-х годов XX века.

Т-1. Введено в 1948 г. Представляет собой прямогонный керосин с содержанием серы не более 0,1%. Ориентировано на получение из нефтей Баку. Имеет широкий фракционный состав и относительно высокую норму по минимальной плотности. Фракционный состав (Фр. с.) 130−280°С.

ТС-1. Взаимозаменяемо с Т-1. Прямогонный керосин с содержанием серы не более 0,25% (впервые получено из нефтей междуречья Урал-Волга). Фракционный состав определяется нормами на другие показатели. Малая термостабильность. Вырабатывается и в настоящее время. Фр. с. -130−240°С.

Т-2. Дистиллят широкого фракционного состава (100−280°С) из высокосернистых нефтей, имеющий высокую летучесть. Топливо введено в 1957 г. с целью расширения ресурсов авиатоплив. В настоящее время не выпускается и считается резервным.

Т-3. Специально вырабатывалось для ГДР.

Т-4. Введено в 1957 г. как временное и имеющее широкий фракционный состав и высокое содержание серы. Имело малую термостабильность и окислялось при хранении (вероятно, его получали из дистиллятов вторичного происхождения — крекинга и т. п. ).

Т-5. Разработано как топливо для прямоточных ВРД. Имеет малую термостабильность, высокую плотность и вязкость и широкий фракционный состав.

Т-6. Введено в 1966 г. для сверхзвуковой авиации. Фракция 195−315°С первичной перегонки нефти с последующим гидрированием или фракция 195−300°С газойля каталитического крекинга с последующей гидродеароматизацией. Обладает высокой плотностью (0,845 г/см.), высокой температурой вспышки, большой теплотой сгорания (36 МДж/л), малым содержанием серы (0,05%) и ароматических углеводородов (5−8%). Имеет высокую термостабильность.

Т-7. Вторичное гидроочищенное топливо. Введено в 1966 г. для сверхзвуковой авиации с целью использования в гражданских самолетов, но несомненно пригодно как топливо для военных самолетов. Вырабатывалось из малосернистых нефтей. Термостабильно.

Т-8 В. Впервые введено в 1968 г. специально для первого отечественного сверхзвукового гражданского самолета ТУ-144. Прямогонная фракция.

170−280°С с последующей каталитической гидродеароматизацией. Имеет хорошую термостабильность и малую испаряемость. Используется также для военной сверхзвуковой авиации и другой техники.

РТ. Впервые введено в 1970 г. для дозвуковых самолетов. Фракция.

135−280°С первичной перегонки нефти с последующей гидроочисткой. Содержит смазывающие присадки. Высокая термостабильность. Потенциально может использоваться, когда требуется повышенная выработка реактивных топлив.

Таким образом, в настоящее время вырабатываются реактивные топлива:

дозвуковые Т-1 и ТС-1 (аналог СШАJP-4);

переходное РТ, которое может использоваться как для звуковых самолетов, так и для сверхзвуковых (аналог CШA-JP-5);

сверхзвуковые Т-6 и Т-8 В.

ракетные (марки определяются соответствующими ТУ).

4. ОСНОВНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА РЕАКТИВНЫХ ТОПЛИВ..

Фракционный состав определяется в основном нормами на плотность, вязкость и температуру начала кристаллизации. Но в стандартах указаны предельные значения температур кипения (см. табл. 1.) [19, "https://referat.bookap.info"].

Американское топливо JP-4 имеет пределы кипения 120−250 °С.

В зависимости от конкретной нефти состав подбирается таким, чтобы были в норме плотность, вязкость и температура начала кристаллизации.

В табл.1 приведены нормы на показатели качества всех марок реактивных топлив.

Таблица 1. Характеристики реактивных топлив.

Авиационное топливо - горючее вещество, вводимое вместе с воздухом в камеру сгорания двигателя летательного аппарата для получения тепловой энергии в процессе окисления кислородом воздуха (сжигания).

Делится на 2 типа - авиационный бензин и керосин.

Бензин применяются, как правило, в поршневых двигателях, керосин - в турбореактивных.

Также известны разработки дизельных поршневых авиационных моторов, которые использовали дизельное топливо, а в настоящее время - керосин.

На данный момент из-за прогрессирующего дефицита нефти ищутся способы для замены нефтяного авиационного топлива, в том числе рассматриваются варианты топлив: синтетическое, криогенное (включая жидкий водород), криогенное метановое топливо (КМТ) и другие.

Любой авиационный двигатель рассчитывается под определенный тип (сорт) топлива, на котором он выдает требуемые параметры по мощности, приемистости, надежности, ресурсу, и рекомендуемые аналоги топлива, на которых допускается, как правило, ограниченная эксплуатация, с потерей ряда характеристик двигателя.

Авиационный бензин

Основная область применения авиационного бензина - топливо высоконагруженных поршневых двигателей внутреннего сгорания.

Основной способ производства авиационного бензина - прямая перегонка нефти, каталитического крекинга или риформинга без добавки или с добавкой высококачественных компонентов, этиловой жидкости и различных присадок.

Для авиабензина основными показателями качества являются:

детонационная стойкость (определяет пригодность бензина к применению в двигателях с высокой степенью сжатия рабочей смеси без возникновения детонационного сгорания);

фракционный состав (говорит об испаряемости бензина, что необходимо для определения его способности к образованию рабочей топливовоздушной смеси; характеризуется диапазонами температур выкипания (40-180(°)С) и давлений насыщенных паров (29-48 кПа));

химическая стабильность (способность противостоять изменениям химического состава при хранении, транспортировке и применении).

Классификация авиационного бензина основывается на их антидетонационных свойствах, выраженных в октановых числах и в единицах сортности.

Сорта советского авиационного бензина ранее маркировались по системе: буква Б и через дефис - цифра, обозначающая октановое число.

Как пример, в СССР в 1950 х гг. выпускались авиационные бензины - Б-59, Б-70, Б-74, Б-78б и Б-78г, причем 2 последних несколько различались по химическому составу, что обозначали литеры после цифры: б - это из бакинских месторождений нефти, а г - из грозненских.

В дальнейшем для повышения октанового числа в бензин вводилась антидетонационная присадка:

продукт Р-9 (тетраэтилсвинец - 55%, бромистый этил - 35%, монохлорнафталин - 10%, красный краситель);

продукт В-20 (тетраэтилсвинец - 55%, бромистый этил - 35%, дихлорэтан - 10%, синий краситель);

Присадка добавлялось по объёму от 1 до 4 см 3 /литр.

Бензин с присадкой имел маркировку:

на основе Б-59: 1Б-59(73), 2Б-59(78), 3Б-59(81), 4Б-59(82)

на основе Б-70: 1Б-70(80), 2Б-70(85), 3Б-70(87), 4Б-70(88)

на основе Б-74: 1Б-74(85), 2Б-74(88), 3Б-74(90), 4Б-74(92)

где цифра перед буквой Б означает объём количества присадки в см3 на литр бензина. В скобках число показывает итоговое октановое число смеси бензина с присадкой.

Также готовились топливные смеси, с добавлением в бензин бензолов и изооктанов, с октановым числом 95:

Смесь №1: 60% Б-70, 20% изооктана и 20% неогексана.

Смесь №2: 60% Б-70, 20% алкилбензола и 20% неогексана.

Смесь №3: 60% Б-70, 32% изооктана и 8% изопентана.

С распространением турбореактивных двигателей производство авиационного бензина было значительно сокращено.

К концу 20 го века в производстве оставались этилированный бензин Б-91/115 и Б-95/130, которые маркируются по ГОСТ 1012-72 через дробь: в числителе - октановое число или сортность на бедной смеси, в знаменателе - сортность на богатой смеси.

Затем производство этого бензина в России было полностью прекращено, а парк легкомоторной авиации начал использовать автомобильный бензин АИ-95 или импортный бензин AVGAS 100LL (с осени 2016 года 100LL производится в РФ по ГОСТ Р 55493-2013).

Также осталось производство бензина Б-70, который долгое время применялся в качестве горючего для турбостартеров двигателей самолётов типа Ту-16, Ту-22, МиГ-21 и ряда др.

В настоящее время этот бензин в основном применяется при техническом обслуживании техники в качестве растворителя.

Реактивное топливо

Керосин - фракция нефти, выкипающая в основном в интервале температур 200-300°С

Реактивное топливо, топливо для авиационных реактивных двигателей - это как правило, керосиновые фракции, получаемые прямой перегонкой из малосернистых (например, Т-1) и сернистых (ТС-1) нефтей.

В настоящее время прямоперегонного авиационного топлива мало, широко применяется гидроочистка и добавка присадок.

Керосин применяется для бытовых целей как печное и моторное топливо, растворитель лаков и красок.

Реактивное топливо применяется в качестве горючего для газотурбинных двигателей самолётов и вертолётов гражданской и военной авиации, и кроме того, топливо на борту воздушного судна также может использоваться в качестве теплоносителя или хладагента (топливно-воздушные и топливно-масляные радиаторы), и в качестве рабочей жидкости гидросистем (например, управление сечением реактивного сопла двигателя).

Также реактивное топливо широко применяются как растворитель при техническом обслуживании воздушных судов, при очистке от загрязнений ручным либо машинным способом (например, в ультразвуковой установке для очистки фильтров в качестве рабочей жидкости применяется авиакеросин).

Авиационное реактивное топливо проходит в общей сложности до 8 ступеней контроля качества, а в Российской Федерации, кроме того, и приемку военным представителем.

  • массовая и объемная теплота сгорания;
  • термостабильность топлива;
  • давление насыщенных паров;
  • кинематическая вязкость;
  • совместимость с конструкционными и уплотнительными материалами;
  • нагарные и противоизносные свойства;
  • электропроводность;
  • серность;
  • кислотность.

Реактивное топливо вырабатывается в основном из среднедистиллятных фракций нефти, выкипающих при температуре 140-280 С° (лигроино-керосиновых).

Широкофракционные сорта реактивного топлива изготовляются с вовлечением в переработку бензиновых фракций нефти.

Для получения некоторых сортов реактивных топлив (Т-8В, Т-6) в качестве сырья применяются вакуумный газойль и продукты вторичной переработки нефти.

  • парафиновые;
  • нафтеновые;
  • ароматические.

Кроме углеводородов в реактивном топливе в незначительных количествах присутствуют сернистые, кислородные, азотистые, металлорганические соединения и смолистые вещества.

Их содержание в реактивных топливах Регламентируется стандартами.

В России и странах СНГ, эксплуатирующих советскую авиатехнику, используются следующие типы авиационного топлива:

- ТС-1 в РФ производится по ГОСТ 10227-86 с изм. 1-6. - прямогонная фракция 150-250 С°, либо смесь прямогонных и гидроочищенных фракций (основным ограничением является содержание общей серы и меркаптановой не более 0,2 % и 0,003 %).

Самый массовый вид авиационного топлива на территории РФ и постсоветском пространстве, предназначенный для всех старых типов турбовинтовых и дозвуковых турбореактивных двигателей, также на нём эксплуатируются самолёты зарубежных производителей.

По своим характеристикам и области применения примерно соответствует зарубежному керосину Jet-A.

Является резервным по отношению к топливу РТ.

- РТ - высококачественное топливо, нефтяная фракция 135-280 С° с полной гидроочисткой.

Содержание серы: общей - 0,1 %, меркаптановой - 0,001 %.

В процессе производства в него вводятся антиокислительная и антиизносная присадки.

Предназначено для турбореактивных дозвуковых и некоторых сверхзвуковых самолётов (Су-27, Ту-22М3 и др.), а также в качестве резерва топлива ТС-1.

Зарубежных аналогов для данного топлива нет.

-Т-6 и Т-8В - термостойкое реактивное топливо для двигателей некоторых сверхзвуковых самолетов (например, МиГ-25).

Производятся по очень сложной технологии с гидроочисткой и введением присадок.

Читайте также: