Теория переходного состояния реферат

Обновлено: 05.07.2024

Скорость химической реакции увеличивается с повышением температуры. Приблизительно оценить влияние температуры на скорость реакции можно по правилу Вант-Гоффа:

при повышении температуры на каждые 10 градусов скорость реакции увеличивается в 2 ¸ 4 раза.

где g - температурный коэффициент Вант-Гоффа.

k (T1) и k (T2) – константы скорости реакции при температурах Т1 и Т2 .

Для биологических процессов важен определенный температурный интервал, вне которого процесс прекращается. В этом интервале увеличение температуры активизирует протекание жизненно важных процессов до оптимального, а последующее повышение температуры быстро снижает скорость процесса вплоть до прекращения жизнедеятельности организма. Это связано с необратимой тепловой денатурацией белков биологических тканей, а также с инактивацией ферментов (биологических катализаторов).

Более точно зависимость скорости реакции от температуры выражается уравнением Аррениуса. Уравнение Аррениуса в дифференциальной форме:

где kск константа скорости реакции

R – универсальная газовая постоянная: R=8,314 Дж/моль∙К

Еа - энергия активации.

Энергия активации - та избыточная энергия (по сравнению со средней энергией молекул), которой должны обладать сталкивающиеся молекулы, чтобы быть способными к химической реакции (рис.)

Активация вызывается повышением температуры, действием электрического поля, действием квантов света и т.д. Энергия активации Еа постоянна в данном температурном интервале и определяется механизмом реакции.

Теоретические представления о механизме химических реакций.

Понятие о теории активных соударений.

Для того чтобы произошла химическая реакция, необходимо, чтобы частицы столкнулись. Скорость реакции пропорциональна общему числу двойных столкновений в единицу времени в единице объема

где q – коэффициент пропорциональности.

В теории соударений используются следующие допущения:

1. Частицы бесструктурны – это шары с радиусом r;

2. В момент соударения молекулы ведут себя как упругие шары. Т.е. суммарная энергия молекул до и после соударения остается постоянной, но может перераспределяться между молекулами.

3. Реагируют только молекулы, которые обладают энергией активации.

4. Число двойных активных столкновений определяется соотношением:

где zобщ – общее число столкновений,

zакт – число активных столкновений,

- доля активных столкновений, равная множителю Больцмана . Он тем меньше, чем больше энергия активации.

5. Процесс превращения исходных веществ в продукты происходит мгновенно в момент соударения активных молекул.

6. Скорость реакции А+В=С

Роль стерического фактора:

Стерический фактор характеризует вероятность реакции между молекулами, энергия которых и учитывает необходимость определенной ориентации реакционноспособных молекул в момент столкновения.

откуда предэкспоненциальный множитель А=Рz0.

Недостатки теории активных соударений.

1) бесструктурность частиц – они рассматриваются как шары

2) элементарный акт рассматривается как мгновенный, в действительности это сложный процесс перераспределения связей, требующий определенного времени.

Теория активных соударений объясняет много разнообразных факторов, но не объясняет влияния на скорость реакции растворителя, давления, добавок инертных газов, не позволяет сделать теоретическую оценку стерического фактора.

Понятие о теории активированного комплекса (переходного состояния)

Теория основывается на квантовых представлениях о строении молекул и химической связи. Она должна решить следующие задачи:

1) рассмотреть энергетику взаимодействия реагирующих частиц с целью определения энергии активации;

2) рассчитать константы скорости химической реакции при известной энергии активации.

Рассмотрим бимолекулярную реакцию

Считается, что частицы уже активированы, т.е. рассматриваем сам элементарный акт реакции, происходящий во времени.

При сближении активированных молекул взаимодействие между ними начинается еще до столкновения – старая связь ослабевает, но еще не разрушена, при этом одновременно образуется новая связь. Таким образом, образуется трехатомный конгломерат (активированный комплекс), который находится в равновесии с исходными веществами и затем распадается на продукты.

Активированный комплекс устойчив во всех направлениях, кроме пути реакции. Т.е. активированный комплекс может распасться только на продукты реакции.

Путь или координата реакции – это взаимосвязанное изменение совокупности межъядерных расстояний при переходе от начальной конфигурации атомов к конечной, сопровождающееся минимальным изменением потенциальной энергии. Сечение поверхности потенциальной энергии вдоль пути реакции называется профилем пути реакции

Из хода кривой видно, что в процессе элементарного акта химического превращения система должна преодолеть потенциальный барьер, равный энергии активации. Истинная энергия активации представляет собой разность энергий активированного комплекса и исходных молекул, отсчитанных от нулевого колебательного уровня. Ее обозначают . Область состояния вблизи потенциального барьера можно рассматривать как переходное состояние. Для большинства элементарных реакций система, достигнувшая области переходного состояния, неизбежно перейдет в конечное состояние, т.е. перевалит через барьер.

Для определения необходимо построить поверхность потенциальной энергии U(q), т.е. знать зависимость потенциальной энергии от координаты реакции. Для этого необходимо решить уравнение Шредингера, что возможно только для простейших систем.

Расчет константы скорости элементарной реакции при заданной энергии активации основан на постулатах:

1. Распределение молекул по энергиям и скоростям подчиняется распределению Максвелла-Больцмана. Превращение активных комплексов в продукты реакции не нарушает этого распределения, т.е. доля активных частиц в ходе реакции не изменяется, и поэтому концентрацию активных комплексов можно вычислить из распределения Максвелла-Больцмана.

2. Реакция протекает адиабатически. Адиабатическое приближение состоит в том, что система взаимодействующих атомов делится на две подсистемы – медленную подсистему ядер и быструю подсистему электронов, которая успевает быстро, безынерционно перестроиться при изменении конфигурации ядер. Поэтому можно рассматривать только одну поверхность потенциальной энергии для ядер, которые и должны преодолеть энергетический барьер в ходе реакции.

3. Активированный комплекс находится в равновесии с исходными веществами

Активированный комплекс существует не при определенном значении межъядерных расстояний, а в каком-то интервале δ, следовательно, время жизни комплекса

Серьезным недостатком теории переходного состояния является отсутствие экспериментальных данных о строении активированного комплекса, что затрудняет ее применение. Несмотря на это, благодаря сравнительной простоте математического аппарата она является наиболее широко используемой теорией кинетики элементарных химических реакций, позволяет правильно объяснить и полуколичественно предсказать много закономерностей для кинетики химических реакций.

Катализ

Явление катализаэто изменение скорости реакции под действием некоторых веществ, которые к концу реакции остаются в химически неизменном виде.

1) положительный – под действием некоторых веществ скорость реакции увеличивается;

2) отрицательный: под действием некоторых веществ скорость реакции уменьшается, такие вещества называются ингибиторами;

3) автокатализ: катализатором являются продукты реакции;

4) гомогенный: катализатор и реагенты находятся в одной фазе (газ или раствор);

5) гетерогенный: катализатор и реагенты находятся в разных фазах;

6) ферментативный: катализатором является биологический фермент.

1) катализатор принимает участие в химической реакции, образуя промежуточные продукты, но в конце реакции выделяется в химически неизменном виде. Физическое состояние катализатора, входящего в активный комплекс, может существенно изменяться, например, уменьшатся размеры зерен твердого катализатора, изменится структура поверхностных слоев;

2) катализатор не смещает положение равновесия, а лишь увеличивает скорость прямой и обратной реакции в равной степени;

3) действие катализатора является специфичным (селективным);

4) катализатор увеличивает скорость реакции за счет уменьшения Еакт, ведет реакцию по пути с меньшим энергетическим барьером.

Гомогенный катализ

Рассмотрим схему реакции, протекающей без катализатора:

В присутствии катализатора реакция протекает в несколько стадий:

Это уравнение лежит в основе кинетики гомогенных каталитических реакций. Из уравнения видно, что скорость процесса прямо пропорциональна концентрации катализатора, исключение составляют лишь случаи, когда катализатор находится в большом избытке, в результате чего скорость процесса лимитируется не кинетическими, а физическими закономерностями, например, диффузией растворенного вещества к катализатору.

Энергетический профиль каталитической реакции представлен на рисунке 4.


Рис.4. Энергетические профили
реакций с катализатором и без него.
Е1 – энергия активации некаталитической реакции,
Е2 – каталитической реакции

В ранних исследованиях предполагалось, что поверхность катализатора энергетически однородна (Лэнгмюр). В дальнейшем была экспериментально доказана адсорбционная неоднородность поверхности. Возникло представление о том, что каталитически активны только определенные участки поверхности, на которых имеются адсорбционные центры. Здесь вещество способно образовать активное для протекания данного каталитического процесса промежуточное поверхностное соединения, благодаря чему понижается энергия активации реакции.

Гетерогенный катализ

В случае гетерогенного катализа реакции происходят на границе раздела фаз.

Гетерогенный катализ состоит из следующих стадий:

1. массоперенос реагентов к катализатору;

2. абсорбция – образование абсорбированного комплекса между реагентом и катализатором;

3. каталитическая реакция – образование продукта в основном адсорбированном состоянии;

4. десорбция продукта;

5. внутренний массоперенос (изнутри катализатора);

6. внешний массоперенос (из области реакции).

Для придания катализаторам большей избирательности, термической стойкости, механической прочности и активности их часто применяют в форме многокомпонентных систем: смешанных, на носителях, промотированных катализаторов.

Промоторы - это вещества, которые не обладают каталитическими свойствами, но добавление их к катализатору значительно увеличивает его активность.

Каталитические яды - это вещества, понижающие активность катализатора.

Активность катализаторов оценивают либо количеством вещества (в молях), реагирующих в единицу времени под воздействием единицы массы катализатора, или количеством вещества (в молях), реагирующих в единицу времени под воздействием единицы поверхности катализатора.

Ферментативный катализ

Ферментативными реакциями называются такие химические процессы в биологических системах, скорость которых регулируется веществами биологического происхождения. Это белковые молекулы, называемые ферментами или энзимами.

Ферментативный катализ играет огромную роль в жизнедеятельности организма. Широкое применение получили ферментные препараты при нарушениях функции желудочно-кишечного тракта, связанных с недостаточной выработкой пищеварительных ферментов (пепсин, панкреатин). При ожогах, гнойных ранах, гнойно-воспалительных заболеваниях легких, когда необходимо разрушить накопившиеся в большом количестве белковые образования, применяются протолитические ферменты, приводящие к быстрому гидролизу белков и способствующие рассасыванию гнойных скоплений. Для лечения инфекционных заболеваний используются препараты лизоцина, которые разрушают оболочку некоторых болезнетворных бактерий. Очень важные ферменты, которые рассасывают тромбы (сгустки крови внутри кровеносных сосудов) – плазмин, трипсин, химотрипсин, на их основе с разными добавками созданы различные лекарственные препараты – стрептокиназа, стрептаза, и т.п., широко применяемые в медицине.

Выделения ферментов в особый класс катализаторов обусловлен особыми свойствами этих веществ:

1) высокая специфичность;

2) эффективность действия;

3) биологические катализаторы образуются и разрушаются в процессе
жизнедеятельности организма.

По своей каталитической активности биологические катализаторы в тысячи раз превышают неорганические. Специфичность действия связана с особенностями структуры фермента и субстрата. Одни части каталитической системы выполняют функции, главным образом связанные с пространственной организацией системы, другие в этой организационной системе осуществляют собственно катализ. Т.е., как и при неферментативном катализе, в каталитической реакции участвует не вся белковая молекула в целом, а лишь определенные ее участки – активные центры фермента.

Простейшая схема ферментативного катализа включает обратимое образование промежуточного комплекса фермента (Е) с реагирующим веществом (субстратом S) и разрушение этого комплекса с образованием продуктов реакции (Р):

Течение химических реакций может быть заторможено присутствием некоторых веществ. Ингибиторы ферментативного катализа, способны образовывать комплексы с ферментом или фермент-субстратным комплексом.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.011)

Теория активных столкновений не в состоянии объяснить аномально медленное течение ряда реакций. Это объясняется тем, что она ограничивается чисто механическим рассмотрением столкновений молекул и не учитывает возможность последних участвовать во вращательном и колебательном движениях.

Кроме того, из термодинамических соображений следует, что стерический фактор должен быть связан с изменением энтропии в ходе химического превращения, так как меняется конфигурация размещения молекул в пространстве, что тоже не объясняет теория активных столкновений.

Развитию теории переходного состояния, называемой еще теорией активного комплекса, положили работы Эйринга и Поляни (1935 г.), в которых использованы основные представления теории активных столкновений и необходимость преодоления энергетического барьера в ходе химического превращения.

Основные положения теории: всякая химическая реакция протекает через образование некоторого активного комплекса. который затем распадается с образованием конечных продуктов химической реакции.

Так, например, реакцию А + ВС = АВ + С можно представить следующим образом:

Следовательно, в ходе этой реакции реагирующие частицы образуют вначале некоторый малоустойчивый комплекс атомов А, В и С, который распадается на частицы конечных продуктов реакции.

Современная физика позволяет оценить энергию реагирующей системы (W) как функцию расстояний между атомами (rAB и rBC). Так как энергия зависит от двух переменных, то ее изменение изображается в трехмерном пространстве W - rAB - r. Проекция этой диаграммы на плоскость с координатами rAB и rBC имеет вид, представленный рисунком 10.3.

Рис. 10.3. Энергетическая диаграмма.

Исходное состояние системы (т.а): атом А и молекула ВС, то есть rAB = , а r = r0’, характеризующее расстояние между центрами атомов В и С в молекуле ВС.

Конечное состояние системы (т. ): атом С и молекула АВ, то есть r = , а rАВ = r0”. Величина r0” - расстояние между центрами атомов А и В в молекуле АВ.

Точка b соответствует состоянию системы с разообщенными атомами А, В, С, а точка П состоянию, когда все три атома сближены и образуют как бы единую молекулу - активный комплекс.

Линии, нанесенные на диаграмму и обозначенные цифрами - изоэнергетические линии, поэтому исходное и конечное состояния находятся в энергетических “долинах”, а точка b - на энергетическом “плато”.

В процессе химической реакции система из трех атомов должна перейти из состояния т. а в состояние т. . Наиболее выгодный путь с наименьшими энергозатратами обозначен пунктирной линией - координатой реакции.

На этом пути имеется энергетический “перевал” - точка П, определяющая энергию образования активного комплекса или переходного состояния, для которого rAB = r. В переходном состоянии система обладает максимальной потенциальной энергией на наиболее выгодном пути реакции. Эта максимальная энергия и есть энергия активации химической реакции.

Таким образом, чтобы реакция произошла, энергия реагирующей системы должна позволить образоваться переходному состоянию. Вероятность осуществления химической реакции связывается с вероятностью образования переходного состояния, что открывает путь использования статистических методов для расчета скорости химической реакции.

В разработанной Эйрингом и Поляни теории переходного состояния принимается, что исходные продукты химической реакции находятся в равновесии с активными комплексами. Поэтому переходное состояние можно рассматривать как обыкновенную молекулу, имеющую кроме обычных трех степеней свободы поступательного движения четвертую степень свободы, связанную с движением вдоль пути (координаты) реакции.

Для рассмотренной выше реакции вида:

скорость реакции прямо пропорциональна произведению средней линейной концентрации активных компонентов на среднюю скорость их перемещения вдоль координаты реакции:

где - трансмиссионный коэффициент, учитывающий вероятность распада комплекса на ко-

Из (10.32) следует:

где - константа равновесия реакции образования активного комплекса.

Из молекулярно-кинетической теории следует:

где k - постоянная Больцмана;

h = 6,626 10 -34 Дж с, постоянная Планка.

то есть константа скорости реакции образования активного комплекса пропорциональна константе равновесия реакции его образования.

На основе термодинамического метода:

где - изменение энергии Гиббса при образовании активного комплекса в стандарт-

Учитывая, что , окончательно:

где и - изменения энтропии и энтальпии при образовании активного комплекса в

Уравнение (10.35) с учетом (10.37) примет вид:

Из уравнения (10.38) следует, что скорость химической реакции определяется изменением энергии Гиббса или Гельмгольца при переходе молекул исходных продуктов реакции в активный комплекс. Энергия активации в теории переходного состояния заменяется изменением энтальпии , а энтропийный сомножитель - энтропия активации, тесно связана со строением исходных молекул и активного комплекса. Например, разрушение сложных молекул и образование более простого активного комплекса ведет к росту “беспорядка” в системе и сопровождается повышением энтропии.




Зависимость скорости реакции не только от энергии активации, но и от энтропии активации, позволяет объяснить существование медленных реакций , имеющих малую энергию активации. быстрых реакций с большой энергией активации, различие скоростей реакции с одинаковыми энергиями активации.

Теория активного комплекса применима к реакциям, протекающим в растворах, тогда как теория столкновений хорошо описывает только реакции, протекающие в газовой фазе. Дело в том, что молекулы реагентов в жидкости находятся на более близком расстоянии, когда силы взаимодействия между ними нельзя считать малыми или даже отсутствующими, что часто допустимо в газах. В некоторых случаях растворитель не играет значительной роли, а в других, наоборот, сильно влияет на скорость реакции. Скорости реакций в растворах могут сильно отличаться от рассчитанных по теории активных столкновений как в ту, так и в другую сторону. Стерический фактор при этом может быть больше единицы как в реакциях между заряженными частицами, так и много меньше.

XI. Гетерогенные процессы.

Гетерогенными называются процессы, протекающие на поверхности раздела соприкасающихся фаз. К ним относятся химические процессы между веществами, находящимися в различных фазах, горение топлива, окисление металлов кислородом воздуха и многие физические процессы: растворение газов и твердых тел в жидкостях, кристаллизация чистых жидкостей и растворов и др.

Одна из особенностей гетерогенных процессов - зависимость их течения от размеров и состояния поверхности раздела фаз, а также от скорости их относительного движения.

Другая особенность состоит в многостадийности гетерогенных процессов. Кроме основного процесса - химической реакции, протекающей на самой поверхности раздела фаз, обязательны стадии подвода к этой поверхности исходных продуктов и отвод от нее конечных продуктов (стадии транспорта или массопереноса). Так как эти стадии последовательны, то скорость гетерогенного процесса определяется скоростью наиболее медленной стадии. Если определяющей стадией является сама химическая реакция, то говорят о кинетической области контроля процесса. Когда наиболее медленными стадиями являются стадии массопереноса путем диффузии, гетерогенный процесс считается протекающим в диффузионной области контроля.

Так как температура сильнее влияет на скорость химических процессов, чем на диффузию, то при изменении температуры гетерогенный процесс может перейти из кинетической области в диффузионную.

Диффузия, как один из способов массопереноса, имеет большое значение в гетерогенных процессах. Известны два закона диффузии.

Первый закон Фика утверждает, что масса вещества dm, переносимого диффузией в направлении некоторой оси x через перпендикулярную этому направлению площадку S за время , пропорциональна градиенту концентраций вдоль этого направления:

где D - коэффициент диффузии, м/с 2 .

Знак “минус” в (11.1) показывает, что диффузия направлена в сторону уменьшения концентрации.

На основании (11.1) можно установить скорость диффузии:

Зависимость концентрации от времени для фиксированного сечения устанавливается вторым законом Фика:

Диффузия имеет стационарный характер, когда концентрация изменяется только с расстоянием, а от времени не зависит:

где С0 соответствует координате x = 0.

Из (11.4) следует, что при стационарной диффузии концентрация линейно изменяется вдоль направления диффузии, а градиент концентраций записывается с помощью конечных величин:

где - конечное значение x.

Подставляя (11.5) в уравнение (11.2), можно определить скорость стационарной диффузии:

Иногда эту формулу записывают так:

где - коэффициент массопередачи.

Пусть гетерогенная реакция, включающая химическую реакцию первого порядка и протекающая стационарно, имеет лишь две последовательные стадии: собственно химическую реакцию и процесс диффузии, которым обеспечивается транспорт реагентов в зону химической реакции. Причем отвод конечных продуктов реакции осуществляется очень быстро и его можно не учитывать.

Вследствие стационарности данного процесса на поверхности раздела фаз не происходит накопления исходных или конечных продуктов, поэтому скорости обеих стадий одинаковы. Из условия стационарности следует:

Тогда скорость реакции вычислится:

где - диффузионное сопротивление;

Если k >> , то скорость гетерогенной реакции равна и определяется лишь величиной , характеризующей диффузию. Процесс протекает в диффузионной области контроля. Для случая >> k и суммарный процесс определяется химической стадией и протекает в кинетической области.

Более общим является влияние на скорость суммарного процесса обеих рассматриваемых стадий, роль которых зависит от особенностей реакции и внешних условий. Так, при понижении температуры и перемешивании влияние диффузии понижается.

Глава XII. Цепные реакции.

Цепными называются реакции. которые протекают с участием свободных атомов, радикалов или иных активных частиц, исчезающих и вновь возникающих в отдельных элементарных актах, и состоящие из большого числа повторяющихся стадий.

Изучение этих реакций имеет большое значение для исследования процессов горения, крекинга нефти, производства пластмасс, ядерных процессов. Теория цепных реакций разрабатывалась В. Нернстом, М. Боденштейном, С. Гиншелвудом, Н.Н. Семеновым и его школой.

Для цепных реакций наблюдается ряд закономерностей, не позволяющий объяснить механизм их протекания простой перегруппировкой атомов. К ним относятся зависимость скорости цепной реакции от размера, формы и материала сосуда, в котором находится реакционная смесь; зависимость скорости реакции от ничтожных добавок посторонних веществ; резкое увеличение скорости процесса для определенного интервала давлений и др.

Существование свободных радикалов обнаруживают, используя спектроскопические методы, метод электронного парамагнитного резонанса, химический метод и т.д.

Типичным примером цепной реакции служит реакция взаимодействия хлора с водородом на свету. Если хотя бы очень кратковременно подвергнуть смесь (Н2 + Сl2) интенсивному освещению, то происходит быстрая реакция образования HCl. Эта реакция начинается через некоторое время после начала освещения и продолжается после его прекращения.

Нернст предложил следующий механизм этой реакции. Сначала происходит взаимодействие фотонов с молекулами хлора, приводящее к образованию свободных радикалов - атомов хлора:

Реакции, в результате которых возникают первичные активные частицы, называются зарождением цепи.

Затем следует цепь элементарных реакций превращения исходных продуктов в конечные, протекающих с участием свободных радикалов (развитие цепи):

Эта группа реакций повторяется многократно.

В результате столкновения активных частиц происходит обрыв цепи:

Рассмотренная выше реакция синтеза HCl является примером простой цепи. В этом случае число первоначально возникших активных частиц не изменяется: взамен какой-либо одной активной частицы, вступившей в отдельную стадию, образуется новая активная частица, являющаяся продуктом этой стадии.

Если N0 - число активных частиц, возникающих в реакционном объеме в одну секунду, то скорость процесса с простой цепью определится из выражения:

где - вероятность гибели активной частицы;

Из (12.1) очевидно, что чем больше вероятность гибели активной частицы, тем меньше скорость цепной химической реакции.

Когда расход одной или нескольких активных частиц приводит к образованию большого числа таких же частиц, цепная реакция называется разветвленной. Примером разветвленной цепной реакции является реакция горения водорода:

Для зарождения цепи при высокой температуре достаточно прямого взаимодействия водорода с кислородом. Особенностью развития цепи является то, что поглощение одного атома , необходимого для осуществления этой группы реакций, приводит затем к образованию трех новых радикалов ( , и ). Такое размножение активных частиц - причина цепных взрывов.

Если - вероятность разветвления, то скорость цепной химической реакции с разветвленной цепью рассчитывается:

где - длина цепи.

Очевидно, что если , то имеется неограниченное увеличение скорости цепной химической реакции. Для реакций с неразветвленной цепью .

Рис. 12.1. Зависимость скорости цепной реакции от давления.

Весьма своеобразной является зависимость скорости разветвления цепных реакций от давления. Первоначально не идущая реакция с повышением давления может принять взрывной характер, но при еще больших давлениях опять прекратиться. Это объясняется тем, что при малых давлениях столкновения между частицами газа редки, а активные частицы, достигая стенок сосуда, поглощаются ими. С другой стороны, при слишком высоких давлениях часто происходят тройные столкновения, также приводящие к прекращению реакции. И лишь только в некотором интервале средних давлений обрывы цепей как на стенках сосуда, так и в объеме смеси малы и разветвленная цепь может вовлечь большое число молекул реагентов и даже протекать со взрывом (рис. 12.1).

Давления, при которых происходит резкое увеличение скорости цепных реакций, называются верхним и нижним пределами самовоспламенения или взрываемости.

Так как при малых давлениях решающее значение имеют обрывы на стенках, нижний предел воспламенения (Р1) заметно зависит от материала и размеров реакционного сосуда, но мало изменяется с температурой. Можно считать, что скорость цепной реакции пропорциональна квадрату диаметра со7суда.

Верхний предел воспламенения (Р2) мало зависит от формы сосуда, но сильно зависит от температуры и наличия примесей.

Качественная зависимость пределов взрываемости от температуры представлена на рис.12.2.

Точка 1 отвечает нижнему, а точка 2 - верхнему пределу взрываемости при температуре Т1.

Рис.12.2. Влияние температуры на пределы взрываемости

На рис. 12.2 показан, кроме того, и третий предел взрываемости (точка 3), который наблюдается для некоторых реакций. Третий предел чаще всего обусловлен развитием так называемого теплового взрыва. Он возможен для экзотермических реакций и связан с разогревом смеси вследствии недостаточного теплоотвода. Как известно, с повышением температуры скорость реакций возрастает, а поэтому увеличивается и количество выделяющейся энергии, что приводит к еще большему повышению температуры, а затем и к дальнейшему увеличению скорости реакции.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Основные положения теории переходных процессов

в электрических цепях

Орел 2009

Содержание

Условия возникновения переходных колебаний в электрических цепях

Законы коммутации и начальные условия

Сущность классического метода анализа переходных колебаний в электрических цепях

Библиографический список

Условия возникновения переходных колебаний в электрических цепях

Ранее мы анализировали установившийся (стационарный) режим колебаний, когда напряжение на элементах и ток ветвей изменялись по гармоническому закону на бесконечно большом интервале времени. К установившемуся режиму относятся также режим постоянного тока и режим обесточенной цепи.

На практике часто возникает необходимость анализа электрической цепи при переходе от одного стационарного состояния к другому.

Если цепь содержит только элементы активного сопротивления, то такой переход происходит мгновенно, так как эти элементы на запасают энергии.

При наличии в цепи реактивных элементов L и С для перехода от одного состояния к другому требуется некоторое конечное время. Это объясняется тем, что реактивные элементы могут запасать энергию, а затем отдавать ее.

Процесс перехода электрической цепи от одного установившегося состояния к другому установившемуся состоянию называется переходным (нестационарным) процессом.

Колебания, существующие при этом в цепи, называют переходными (нестационарными).

Частным случаем переходных колебаний являются свободные колебания. Они существуют в электрической цепи после прекращения внешнего воздействия за счет энергии, запасенной в реактивных элементах.

Таким образом, условиями возникновения переходных колебаний в электрической цепи являются:

– наличие в цепи реактивных элементов;

При этом под коммутацией понимают любые действия в цепи, приводящие к возникновению переходных процессов.

Приведем примеры коммутаций:

а) механическое соединение или разъединение на отдельных участках цепи. В теории считают, что такое действие осуществляется с помощью идеального ключа. На рисунке 1, а показан случай, когда идеальный ключ замыкается, а на рисунке 1, б – когда размыкается;

б) включение или выключение ЭДС или задающего тока источников.

а) Включение б) Выключение

На рисунке 2, а показано схемное обозначение включения постоянной ЭДС и постоянного тока, а на рисунке 2, б их выключение.

Такое воздействие принято называть ступенчатым (перепадом, или скачком напряжения или тока). В случае 2,б иногда говорят, что "гасится" источник постоянной ЭДС или источник постоянного тока. При этом сам источник (его внутреннее сопротивление) механически из схемы не исключается. Отметим, что ступенчатое воздействие является простейшей функцией. Нахождение реакции на такое воздействие является одной из важных задач в теории переходных процессов (аналогично задаче нахождения реакции цепи на гармоническое воздействие в стационарном режиме).

в) другие воздействия, например, в виде импульсов различной формы, включение и выключение источников гармонических колебаний и др.

Переходные процессы играют важную роль в технике связи.

Они используются для получения напряжения или тока специальной формы (остроконечные импульсы, пилообразное напряжение и т. п.).

С другой стороны, за счет переходных процессов могут возникать искажения формы сигналов, что является нежелательным. Анализ переходных процессов позволяет оценить эти искажения, а также другие характеристики, составляющие основу методов синтеза устройств, предназначенных для оптимальной обработки сигналов.

В технике связи переходные процессы учитывают при расчете усилителей дискретных сигналов, фазосдвигающих цепочек, линий задержки и других устройств.

При анализе переходных процессов необходимо применять особые правила – законы коммутации и начальные условия.

Законы коммутации и начальные условия

Будем считать, что коммутация происходит в момент для емкости;

а для индуктивности

) при ограниченных значениях

Изобразим схему для

При анализе переходных колебаний в электрических цепях применяются следующие методы для нахождения реакций:

– классический, основанный на составлении и решении дифференциальных уравнений;

– операторный, основанный на применении преобразования Лапласа;

– временной, использующий переходные и импульсные характеристики;

– частотный, базирующийся на спектральном представлении воздействия (преобразование Фурье).

Укажем, что последних три метода применимы только для линейных электрических цепей, поскольку в их основе лежит метод наложения (суперпозиции).

Сущность классического метода анализа переходных колебаний в электрических цепях

Переходные процессы в электрических цепях описываются уравнениями, составленными на основании законов Кирхгофа для мгновенных значений напряжений и токов. Эти уравнения для различных цепей после соответствующих преобразований могут быть приведены к какому-либо из следующих видов:

Первое уравнение – линейное, с постоянными коэффициентами , описывает нелинейную цепь и является, в отличие от первых двух, нелинейным дифференциальным уравнением.

Пусть на последовательный контур (рис. 5), находящийся при нулевых начальных условиях в момент

Составим уравнение по второму закону Кирхгофа:

Пусть все элементы цепи линейны. Тогда уравнение (1) преобразуется к виду:

Получено линейное, в общем случае неоднородное дифференциальное уравнение второго порядка, которое решается относительно .

и уравнение (1) будет иметь вид

Библиографический список

1. Белецкий А. Ф. Теория линейных электрических цепей. - М.: Радио и связь, 1986

2. Шалашов Г. В. Переходные процессы в электрических цепях. – Орел: ОВВКУС 1981

Химическая кинетика — это учение о химическом процессе, его механизме и закономерностях протекания во времени. При исследовании химических реакций, в частности, используемых в химической технологии, применяют как методы химической термодинамики, так и методы химической кинетики. Химическая термодинамика позволяет вычислить тепловой эффект данной реакции, а также предсказать, осуществима ли данная реакция и ее состояние равновесия, т. е. предел, до которого она может протекать. Для этого необходимо иметь данные о термодинамических параметрах всех компонентов только в начальном и конечном состояниях системы. Но для практики нужно знать не только возможность осуществления данной реакции, но и скорость ее протекания. Ответ на этот вопрос дает химическая кинетика. Для получения закономерностей должны быть известны не только начальное и конечное состояния системы, но и путь, по которому протекает реакция, а он обычно заранее неизвестен. Поэтому получить кинетические закономерности сложнее, чем термодинамические. Зная эти закономерности (математическую модель) изучаемой химической реакции и ее кинетические параметры, можно рассчитать ее скорость и оптимальные условия проведения в промышленном реакторе. С середины XX в. начала развиваться сначала так называемая линейная, а потом нелинейная термодинамика неравновесных процессов, в которую время входит как параметр. Химические реакции, как правило, являются сложными, т. е. протекают через ряд элементарных стадий. Элементарной стадией химической реакции называется сумма актов химического превращения при одновременном сближении (столкновении) нескольких (обычно двух) частиц; при этом энергия связей перераспределяется между атомами с образованием активированного комплекса с его последующим распадом и получением новых частиц.

В основе современной химической кинетики лежат две теории: теория активных столкновений (ТАС) и теория активированного (переходного) комплекса (ТАК).

1. Теория активных столкновений

(теория бинарных соударений) ТАС

Основные предпосылки:

1. Молекулы представляют в виде шариков.

2. Для того, чтобы произошло взаимодействие, необходимо столкновение.

3. Процесс протекает только в том случае, если энергия столкновения больше или равна определенному значению энергии, которая называется энергией активации.

В основу этой теории положено два учения: молекулярно-кинетическая теория и теория Больцмана.
Вывод уравнения ТАС.
z – общее число столкновений в единицу времени.

Д – эффективный диаметр молекул;

n – число молекул в единице объема;

M – молекулярная масса.

С помощью закона Больцмана определяем количество активных столкновений z, т.е. таких, в которых энергия превышает энергию активации:

Тогда доля активных столкновений составит:

Рассмотрим бимолекулярную газовую реакцию типа: 2А, где Р – продукты реакции. Например, это может быть разложение йодистого водорода:

Теперь заметим, что в результате каждого активного столкновения расходуется две молекулы исходного вещества. Поэтому количество прореагировавших молекул в единице объема будет равна удвоенному количеству активных столкновений в то же время и в том же объеме:

Отсюда видно, что скорость реакции зависит от квадрата концентрации.

Сравнение этих уравнений позволяет установить физический смысл предэкспоненциального множителя k, который оказывается пропорциональным общему количеству столкновений всех молекул в единице объема за единицу времени.

В общем виде уравнение Аррениуса для всех типов реакций часто пишут в виде:

k=z уравнение Аррениуса

Константа, рассчитанная по этому уравнению, не дает совпадения с экспериментальными данными. Для корректировки в это уравнение вводят стерический фактор р.

Тогда уравнение Аррениуса с точки зрения ТАС запишется следующим образом:

Считается, что стерический фактор отличается от единицы потому, что для осуществления реакции необходима определенная ориентация реагирующих молекул.

В этом уравнении Е – энергия активации, рассчитанная по ТАС, абсолютная (истинная) энергия активации, а экспериментальная – эффективная энергия активации.

Факты, которые не объясняет ТАС:

1. Не дает метода теоретического расчета энергии активации.

2. Не объясняет протекания в растворах.

3. Не объясняет природы стерического фактора.
Мономолеклярные реакции с точки зрения ТАС. Теория Линдемана
В элементарном акте мономолекулярной реакции участвует всего одна молекула. В соответствии с теорией активных столкновений реакция начинается со встречи двух активных молекул. Количество столкновений пропорционально квадрату концентраций. Поэтому, казалось бы, что мономолекулярные реакции, как и бимолекулярные, должны иметь порядок, равный двум. Но многие мономолекулярные реакции описываются уравнением первого порядка, причем порядок реакции может изменяться при изменении концентрации (давления) и быть дробным.

Объяснение механизмов газовых мономолекулярных реакций дано Линдеманом. Он предположил, что после столкновения активные молекулы могут не только распадаться на продукты реакции, но и дезактивироваться. Механизм реакции представляется двухстадийным:

A– активная молекула.

На первом этапе происходит перераспределение энергии, в результате чего одна молекула становится активной, а другая дезактивируется.

На второй стадии оставшиеся активные молекулы мономолекулярно превращаются в продукты реакции.

Рассмотрим стационарный процесс:

Выразим концентрацию активной частицы А * : . Подставим это выражение в выражение скорость определяющей стадии (вторая стадия):

уравнение Линдемана
Анализ уравнения Линдемана:

1. СА – очень маленькая. В этом случае промежутки между столкновениями молекул настолько велики, что дезактивация происходит редко. Распад активных молекул на продукты происходит без затруднений; лимитирующей стадией является стадия активации. В связи с этим в уравнении Линдемана пренебрегаем в знаменателе относительно k3 ( >k3).

; n=1 (реакция первого порядка)

3. СА – средняя. В этом случае мономолекулярные реакции могут иметь дробный порядок (1 2. Теория активированного комплекса (ТАК)

или теория переходного состояния (ТПС)
Более совершенной является теория переходного состояния, в которой в качестве условия возможности протекания реакции рассматривается не столкновение двух молекул, а образование ими непрочного промежуточного комплекса, что позволяет сразу учесть необходимость определенной ориентации реагирующих молекул. Энергия системы зависит от взаимного расположения (конфигурации) атомов и сил взаимодействия между ними. Сама химическая реакция рассматривается как переход от начальной конфигурации атомов (исходные вещества) к конечной (продукты реакции) при непрерывном изменении соответствующих координат (межатомных расстояний, валентных углов). В ходе этого процесса непрерывно изменяется энергия всей системы, при этом всегда образуется некоторая промежуточная конфигурация атомов, соответствующая максимуму потенциальной энергии системы, - эту конфигурацию и называют активным ( промежуточным ) комплексом. Активный комплекс не является, в отличие от обычной молекулы, устойчивой частицей, так как соответствует максимуму, а не минимуму потенциальной энергии.

Основные положения теории:

1. В ходе процесса молекулы постепенно приближаются друг к другу, в результате чего меняются межъядерные расстояния.

2. В ходе реакции образуется активированный комплекс, когда один из атомов становится как бы обобществленным, и межъядерное расстояние становится одинаковым.

3. Активированный комплекс превращается в продукты реакции.

Например, реакцию разложения йодоводорода можно представить следующим образом:


Сначала две молекулы HJ расположены достаточно далеко друг от друга. При этом существует взаимодействие лишь между атомами в молекуле. После сближения на достаточно короткое расстояние начинают возникать связи между атомами, входящими в состав разных молекул, и связи H – J становятся более слабыми. В дальнейшем они ещё более ослабевают и полностью разрываются, а новые связи H – H и J – J, наоборот, упрочняются. В результате происходит перегруппировка атомов и вместо исходных молекул НJ образуются молекулы Н2 и J2. В процессе сближения и перегруппировки атомов молекулы образуют некоторый малоустойчивый активированный комплекс из двух молекул водорода и двух молекул йода; комплекс существует очень недолго и в дальнейшем распадается на молекулы продуктов. На его образование необходима затрата энергии, равная энергии активации.

Представление об активированном комплексе и об энергии активации подтверждается с помощью энергетических диаграмм, построение которых используется в ТАК.

Активированный комплекс всегда имеет избыток энергии по сравнению с энергией реагирующих частиц.
А–В+D → A+B–D


переходное состояние

Е1 – энергия связи BD без А.

Е2 – энергия связи АB без D.

Е3 – энергия связи переходного состояния.

Е4 – энергия свободных атомов.

Е3 – Е2 = Е активации прямой реакции.

Е2 – Е1 = ∆Н тепловой эффект реакции.

Е4 – Е2 – энергия разрыва связи АВ.

Е4 – Е1 – энергия разрыва связи ВD.
Так как энергия разрыва связей Е4 >> Е активации, то реакция протекает с образованием активированного комплекса без предварительного разрыва связей.
Вывод основного уравнения ТАК.
Скорость процесса определяется скоростью прохождения активированным комплексом расстояния .


– время жизни активированного комплекса.

– концентрация активированного комплекса.

, где – средняя скорость прохождения АК через барьер.

– масса комплекса; Т – температура, К.

Тогда время жизни комплекса равно:

Скорость процесса: . Подставим в это выражение значение времени жизни комплекса :

– скорость реакции.
В уравнение вводится трансмиссионный коэффициент , показывающий, какая доля активированных комплексов переходит в продукты реакции.

Рассмотрим бимолекулярную реакцию с позиции ТАК:

Скорость процесса описывается кинетическим уравнением второго порядка: .

Выразим константу скорости:

– выражение константы равновесия.

Константу равновесия процесса образования продуктов реакции и исходных веществ можно представить следующим образом:

к* – константа равновесия процесса образования активированного комплекса;

h – постоянная Планка.

Подставим это выражение в выражение константы скорости бимолекулярной реакции:

уравнение Эйринга

Это уравнение позволяет связать кинетические параметры с термодинамическими.

1. Вводится понятие теплоты и энтропии активации.

2. С помощью этого уравнения можно рассчитать абсолютные скорости химического процесса.
Физический смысл энтропии активации.
Энтропия активации S* – это изменение энтропии при образовании активированного комплекса.

∆S* не связана с ∆S реакции.

Константа скорости реакции может быть выражена через термодинамические параметры:

– подставим это выражение в уравнение Эйринга

основное уравнение ТАК

Физический смысл энтальпии активации.
Прологарифмируем уравнение Эйринга:

Возьмем дифференциал по температуре Т:

– связь между экспериментальной Еакт. и энтальпией активации.

Сопоставляя эти уравнения, можно заметить, что энтальпия активации есть ни что иное, как энергия активации; – энтропия активации численно равна предэкспоненциальному множителю и произведению pz.

д. б. k1 k2 здесь играет роль энтропийный фактор

Ингибитор влияет на энтропийный фактор.

1. Химическая реакция всегда протекает с несоизмеримо меньшей скоростью, чем это соответствует расчету с предположением результативности каждого соударения.

2. Для сходных реакций при одинаковых температурах и концентрациях число соударений приблизительно одинаково, а скорость может отличаться в десятки тысяч раз.

3. Число соударений с изменением температуры на 10 град изменяется на 2-3%, однако скорость реакции изменяется в 2-4 раза.

Недостатки: не может быть объяснена резкая температурная зависимость скорости реакции. Не позволяет рассчитывать значение энергии активации исходя из параметров молекул реагирующих веществ.

Теория активного комплекса применима к реакциям, протекающим в растворах, тогда как теория столкновений хорошо описывает только реакции, протекающие в газовой фазе. Дело в том, что молекулы реагентов в жидкости находятся на более близком расстоянии, когда силы взаимодействия между ними нельзя считать малыми или даже отсутствующими, что часто допустимо в газах.

В основе теории переходного состояния используются следующие положения (постулаты теории).

Столкновение частиц приводит к образованию связи между ними.

Неустойчивое состояние, в котором существуют связи между всеми частицами, называется переходным состоянием. Его также представляют как комплекс, временно образуемый взаимодействующими частицами, и называют активным комплексом.

Образование и распад активного комплекса происходит только в одном направлении (см. рис. 12 - 3).

Порядок образования и распада комплекса таков. Взаимодействующие частицы движутся друг к другу до тех пор, пока между ними не возникнет дополнительная связь, образование которой приводит к ослаблению связи, уже существующей в одной из взаимодействующих молекул. Затем частицы начинают расходиться. Ослабленная ранее существовавшая связь исчезает, а возникшая при сближении частиц новая связь остается.


Рис. 12 - 3. Образование и распад активного комплекса.

Данный постулат запрещает распад активного комплекса на исходные частицы. Он может распадаться только с образованием продуктов реакции.

Образование активного комплекса не приводит к нарушению распределения частиц по скоростям и энергиям Максвелла - Больцмана.

Предполагается, что смещение электронных орбиталей в частицах при образовании активного комплекса происходит во много раз быстрее, чем движение атомных ядер.

Этот постулат теории переходного состояния называется принципом адиабатности. Он лежит в основе расчетов энергии взаимодействующих частиц, так как предполагает, что электроны всегда успевают принять наиболее устойчивую конфигурацию для задаваемого расстояния между центрами атомов.

Покажем, как могут быть использованы вышеприведенные постулаты для вывода основного уравнения теории переходного состояния.

Пусть протекает, как показано на рис. 12 - 3, реакция:

Формально скорость этой реакции определяется уравнением:


. (12 - 26)

С другой стороны, скорость образования продуктов реакции определяется числом распадающихся в единицу времени активных комплексов по схеме:

Так как распад комплекса является мономолекулярной реакцией, то для ее скорости можно записать следующее выражение:


. (12 - 27)


Используя уравнение (9 - 20), связывающее константу скорости необратимой реакции первого порядка со средним временем жизни превращаемого вещества , равенство (12 - 27) можно представить следующим образом:


. (12 - 28)

Сравнивая равенства (12 - 26) и (12 - 28), получим:


. (12 - 29)

Уравнение (12 - 29) является основным уравнением для расчета константы скорости реакции. Однако оно может получить окончательную форму, если выразить входящие в него величины через энергетические характеристики.

Среднее время жизни комплекса можно оценить, используя второй постулат теории.

Так как образование и распад комплекса происходят только в одном направлении, то его существование можно представить в виде одного колебательного цикла по новой связи. Энергия таких колебаний равна:


, (12 - 30)

где h - постоянная Планка.

Энергия, необходимая для возбуждения колебаний, равна кинетической составляющей сталкивающихся частиц. При движении частиц вдоль одной оси она равна:


, (12 - 31)

где  - постоянная Больцмана.

Из равенства кинетической энергии и энергии колебаний следует:


. (12 - 32)

Частота колебаний представляет собой величину, обратную периоду одного колебания, а принимая во внимание, что комплекс существует только в течение одного колебательного цикла, имеем:


. (12 - 33)


. (12 - 34)


. (12 - 35)


.



. (12 - 36)

Таким образом, уравнение для константы скорости реакции приобретает вид:


. (12 - 37)

Для расчета изменения энергии системы при переходе из исходного состояния в переходное необходимо найти зависимость энергии системы от расстояний между атомами. В рассматривавшемся случае образования активного комплекса из исходной молекулы XY и частицы Z независимыми переменными служат расстояния между центрами атомов в паре X и Y, которые обозначим rXY, и расстояние между центрами атомов Y и Z, которое обозначим rYZ. Энергия системы является функцией этих переменных:


В системе трех координат эта зависимость передается поверхностью. Для представления зависимости энергии от расстояний rXY и rYZ на плоскости используется такой же метод, что и при построении топографических карт, а именно: проводятся равноотстоящие друг от друга плоскости, перпендикулярные оси энергии, а линии пересечения этих плоскостей с поверхностью наносятся на плоскость чертежа. На рис. 12 - 4 показан пример построения энергетической диаграммы по этому методу.


Рис. 12 - 4. Энергетическая диа­грамма трехатомной системы.

Для построения диаграммы рассчитывают потенциальную энергию системы для различных сочетаний расстояний rXY и rYZ. При этом используется четвертый постулат теории (принцип адиабатности), в соответствии с которым расчеты проводятся для систем с равновесными электронными конфигурациями. Молекула XY имеет минимум энергии при расстоянии между атомами, равном длине связи. Увеличение или уменьшение этого расстояния приводит к возрастанию энергии в отдельной молекуле. То же относится и к молекуле YZ. Следовательно, на диаграмме должны быть две области с пониженными значениями энергии А и В (их образно называют долинами). Области А и В отделены друг от друга участком небольшого подъема энергии С (его образно называют перевалом).

На типичной энергетической диаграмме (рис. 12 - 4) имеется несколько особых точек. Первая из них a отвечает исходному состоянию системы (состоянию до начала реакции). В этом состоянии расстояние между центрами атомов X и Y должно быть равно нормальной длине связи в устойчивом состоянии молекулы XY. Расстояние между центрами атомов Y и Z должно быть очень большим, так как частица Z еще не вступила во взаимодействие с молекулой XY. Еще одна характерная точка b отражает конечное состояние системы (состояние после реакции). Ей соответствует расстояние между центрами атомов Y и Z, равное длине связи во вновь образовавшейся молекуле, и большое расстояние между отделившейся частицей X и атомом Y. Третьей важнейшей точкой на энергетической диаграмме является точка перевала с. Именно в точке перевала существует полностью сформировавшийся активный комплекс.

Из изложенного следует, что химическое превращение согласно теории переходного состояния представляет собой переход из точки а в точку b через точку с. Такой переход происходит при минимальных значениях энергии (на энергетической диаграмме ему соответствует движение из точки а по дну долины А до перевала с, а затем спуск в долину В и движение до точки b). Он называется путем реакции и показан пунктирной линией.

Если разрезать пространственную энергетическую диаграмму по пути реакции перпендикулярно плоскости rXY - rYZ, то в разрезе получится линия, длина которой соответствует длине пути реакции, а ордината - энергии системы. Назовем линию в этих координатах профилем пути реакции (рис. 12 - 5).


Рис. 12 - 5. Энергетический профиль пути реакции.

Разность между энергией системы в переходном состоянии и энергией в исходном состоянии Е1, как показано на рис. 12 - 5, представляет собой классическую энергию активации прямой реакции. Разность энергий в состоянии активного комплекса и конечном состоянии Е−1, равна энергии активации обратной реакции. Разность между энергиями активации прямой и обратной реакций соответствует тепловому эффекту реакции Н.

Таким образом, энергия активации в теории переходного состояния имеет четкую трактовку как величина энергетического барьера, равная разности энергий в переходном и исходном состояниях.

Как уже неоднократно отмечалось, все расчеты потенциальной энергии системы возможны лишь в том случае, когда электроны имеют равновесные конфигурации. В ходе реакции принцип адиабатности нарушается. Поэтому расчетное значение энергии оказывается завышенным. Для учета расхождения между расчетными и реальными значениями энергии в состоянии активного комплекса вводится поправочный коэффициент, который называется трансмиссионным коэффициентом . С введением этой поправки основное уравнение теории переходного состояния принимает окончательный вид:


. (12 - 38)

Теория переходного состояния применима не только к химическим превращениям, но и к другим кинетическим процессам: диффузии, вязкому течению, электрической проводимости растворов. Предполагается, что движение частиц в жидкости связано с преодолением энергетического барьера, величина которого равна энергии активации.

Читайте также: