Технические характеристики конструктивные особенности автомобиля реферат

Обновлено: 05.07.2024

По-простому активная составляющая конструктивной безопасности транспортного средства – это те системы автомобиля, которые помогают в предотвращении аварии.

Безотказность

Безотказность узлов, агрегатов и систем автомобиля является определяющим фактором активной безопасности. Особенно высокие требования предъявляются к надежности элементов, связанных с осуществлением маневра – тормозной системе, рулевому управлению, подвеске, двигателю, трансмиссии и так далее. Повышение безотказности достигается совершенствованием конструкции, применением новых технологий и материалов.

Компоновка автомобиля

Компоновка автомобилей бывает трех видов:

  1. Переднемоторная – компоновка автомобиля, при которой двигатель расположен перед пассажирским салоном. Является самым распространенной и имеет два варианта: заднепроходною (классическую) и переднеприводную. Последний вид компоновки – переднемоторная переднеприводная – получил в настоящее время широкое распространение благодаря ряду преимуществ перед приводом на задние колеса:
  • лучшая устойчивость и управляемость при движении на большой скорости, особенно по мокрой и скользкой дороге;
  • обеспечение необходимой весовой нагрузки на ведущие колеса;
  • меньшему уровню шума, чему способствует отсутствие карданного вала.

В тоже время переднеприводные автомобили обладают и рядом недостатков:

  • при полной нагрузке ухудшается разгон на подъеме и мокрой дороге;
  • в момент торможения слишком неравномерное распределение веса между осями (на колеса передней оси приходится 70%-75% веса автомобиля) и соответственно тормозных сил;
  • шины передних ведущих управляемых колес нагружены больше соответственно больше подвержены износу;
  • привод на передние колеса требует применение сложных узлов – шарниров равных угловых скоростей;
  • объединение силового агрегата (двигатель и КПП) с главной передачей усложняет доступ к отдельным элементам.
  1. Компоновка с центральным расположением двигателя – двигатель находится между передней и задней осями, для легковых автомобилей является достаточно редкой. Она позволяет получить наиболее вместительный салон при заданных габаритах и хорошее распределение по осям.
  2. Заднемоторная – двигатель расположен за пассажирским салоном. Такая компоновка была распространена на малолитражных автомобилях. При передаче крутящего момента на задние колеса она позволяла получить недорогой силовой агрегат и распределение такой нагрузки по осям, при которой на задние колеса приходилось около 60% веса. Это положительно сказывалось на проходимости автомобиля, но отрицательно на его устойчивости и управляемости, особенно на больших скоростях. Автомобили с этой компоновкой, в настоящее время, практически не выпускаются.

Тормозные свойства

Возможность предотвращения ДТП чаще всего связана с интенсивным торможением, поэтому необходимо, чтобы тормозные свойства автомобиля обеспечивали его эффективное замедление в любых дорожных ситуациях.

Для выполнения этого условия сила, развиваемая тормозным механизмом, не должна превышать силы сцепления с дорогой, зависящей от весовой нагрузки на колесо и состояния дорожного покрытия. Иначе колесо заблокируется (перестанет вращаться) и начнет скользить, что может привести (особенно при блокировке нескольких колес) к заносу автомобиля и значительном увеличении тормозного пути. Чтобы предотвратить блокировку, силы, развиваемые тормозными механизмами, должны быть пропорциональны весовой нагрузки на колесо. Реализуется это с помощью применения более эффективных дисковых тормозов.

На современных автомобилях используется антиблокировочная система (АБС), корректирующая силу торможения каждого колеса и предотвращающая их скольжение.

Зимой и летом состояние дорожного покрытия разное, поэтому для наилучшей реализации тормозных свойств необходимо применять шины, соответствующие сезону.

Тяговые свойства

Тяговые свойства (тяговая динамика) автомобиля определяют его способность интенсивно увеличивать скорость движения. От этих свойств во многом зависит уверенность водитель при обгоне, проезде перекрестов. Особенно важное значение тяговая динамика имеет для выхода из аварийных ситуаций, когда тормозить уже поздно, маневрировать не позволяют сложные условия, а избежать ДТП можно, только опередив события.

Так же как и в случае с тормозными силами, сила тяги на колесе не должна быть больше силы сцепления с дорогой, в противном случае оно начнет пробуксовывать. Предотвращает это противобуксовочная система (ПБС). При разгоне автомобиля она притормаживает колесо, скорость вращения которого больше, чем у остальных, а при необходимости уменьшает мощность, развиваемую двигателем.

Устойчивость автомобиля

Устойчивость – способность автомобиля сохранять движение по заданной траектории, противодействуя силам, вызывающих его занос и опрокидывание в различных дорожных условиях при высоких скоростях.

Различают следующие виды устойчивости:

  • поперечная при прямолинейном движении (курсовая устойчивость).

Ее нарушение проявляется в рыскании (изменении направления движения) автомобиля по дороге и может быть вызвано действием боковой силы ветра, разными величинами тяговых или тормозных сил на колесах левого или правого борта, их буксованием или скольжением, большим люфтом в рулевом управлении, неправильными углами установки колес и т.д.:

Ее нарушение приводит к заносу или опрокидывании под действием центробежной силы. Особенно ухудшает устойчивость повышение положения центра масс автомобиля (например, большая масса груза на съемном багажнике на крыше):

Ее нарушение проявляется в буксовании ведущих колес при преодолении затяжных обледенелых или заснеженных подъемов и сползании автомобиля назад. Особенно это характерно для автопоездов.

Управляемость автомобиля

Управляемость – способность автомобиля двигаться в направлении, заданном водителем.

Одной из характеристик управляемости является поворачиваемость – свойство автомобиля изменять направление движения при неподвижном рулевом колесе. В зависимости от изменения радиуса поворота под воздействием боковых сил (центробежной силы на повороте, силы ветра и т.д.) поворачиваемость может быть:

  • недостаточной – автомобиль увеличивает радиус поворота;
  • нейтральной – радиус поворота не изменяется;
  • избыточной – радиус поворота уменьшается.

Различают шинную и креновую поворачиваемость.

Шинная поворачиваемость связана со свойством шин двигаться под углом к заданному направлению при боковом уводе (смещение пятна контакта с дорогой относительно плоскости вращения колеса). При установке шин другой модели поворачиваемость может измениться и автомобиль на поворотах при движении с большой скоростью поведет себя иначе. Кроме того, величина бокового увода зависит от давления в шинах, которое должно соответствовать указанному в инструкции по эксплуатации автомобиля.

Креновая поворачиваемость связана с тем, что при наклоне кузова (крене) колеса изменяют свое положение относительно дороги и автомобиля (в зависимости от типа подвески). Например, если подвеска двухрычажная, колеса наклоняются в стороны крена, увеличивая увод.

Информативность

Информативность – свойство автомобиля обеспечивать необходимой информацией водителя и остальных участников движения. Недостаточная информация от других транспортных средств, находящихся на дороге, о состояния дорожного покрытия и т.д. часто становится причиной аварии. Внутренняя обеспечивает возможность водителю воспринимать информацию, необходимую для управления автомобилем.

Она зависит от следующих факторов:

  • обзорность должна позволять водителю своевременно и без помех получать всю необходимую информацию о дорожной обстановке. Неисправные или неэффективно работающие омыватели, система обдува и обогрева стекол, стеклоочистители, отсутствие штатных зеркал заднего вида резко ухудшают обзорность при определенных дорожных условиях.
  • расположение панели приборов, кнопок и клавиш управления, рычага переключения скоростей и т.д. должно обеспечивать водителю минимальное время для контроля показаний, воздействий на переключатели и т.д.

Внешняя информативность – обеспечение других участников движения информацией от автомобиля, которая необходима для правильного взаимодействия с ними. В нее входят система внешней световой сигнализации, звуковой сигнал, размеры, форма и окраска кузова. Информативность легковых автомобилей зависит от контрастности их цвета относительно дорожного покрытия. По статистике автомобили, окрашенные в черный, зеленый, серый и синий цвета, в два раза чаще попадают в аварии из-за трудности их различения в условиях недостаточной видимости и ночью.

Неисправные указатели поворотов, стоп-сигналы, габаритные огни не позволят другим участникам дорожного движения вовремя распознать намерения водителя и принять правильное решение.

Комфортабельность

Комфортабельность автомобиля определяет время, в течение которого водитель способен управлять автомобилем без утомления. Увеличению комфорта способствует использование АККП, регуляторов скорости (круиз-контроль) и т.д. В настоящее время выпускаются автомобили, оборудованные адаптивным круиз-контролем. Он не только автоматически поддерживает скорость на заданном уровне, но и при необходимости снижает ее вплоть до полной остановки автомобиля.

Характеристика пассивной безопасности автомобиля

Кузов

Он обеспечивает приемлемые нагрузки на тело человека от резкого замедления при ДТП и сохраняет пространство пассажирского салона после деформации кузова.

Конструкция кузова предусматривает, что при столкновении части кузова деформируются как бы по отдельности. Плюс к этому в конструкции использованы высоконапряженные металлические листы. Это делает машину более жесткой, а с другой стороны позволяет ей быть не такой тяжелой

Ремни безопасности

Чтобы ремень нормально отработал своё предназначение, он должен плотно прилегать к телу.

Ремни безопасности – это одно из самых действенных средств защиты при аварии.

Поэтому легковые автомобили должны оборудоваться ремнями безопасности, если для этого предусмотрены места крепления. Защитные свойства ремней во многом зависят от их технического состояния. К неисправностям ремней, при которых не допускается эксплуатация автомобиля, относятся видимые невооружённым глазом надрывы и потёртости тканевой ленты лямок, ненадёжная фиксация языка лямки в замке или отсутствие автоматического выброса языка при отпирании замка.

У ремней безопасности инерционного типа лента лямки должна свободно втягиваться в катушку и блокироваться при резком движении автомобиля со скоростью 15 – 20 км/ч. Замене подлежат ремни, испытавшие критические нагрузки во время ДТП, в которых кузов автомобиля получил серьёзные повреждения.

Подушки безопасности

Одной из распространённых и действенных систем безопасности в современных автомобилях (после ремней безопасности) являются воздушные подушки. Они начали широко использоваться уже в конце 70-х годов, но лишь десятилетие спустя они действительно заняли достойное место в системах безопасности автомобилей большинства изготовителей.

Они размещаются не только перед водителем, но и перед передним пассажиром, а также с боков (в дверях, стойках кузова и т.д.). Некоторые модели автомобилей имеют их принудительное отключение из-за того, что люди с больным сердцем и дети могут не выдержать их ложного срабатывания.

Сегодня надувные подушки безопасности – обычное дело не только на дорогих машинах, но и на маленьких (и относительно недорогих) автомобильчиках. Зачем же нужны подушки безопасности? И что они из себя представляют?

Разработаны подушки безопасности, как для водителей, так и для пассажиров на переднем сиденье. Для водителя подушка устанавливается обычно на рулевом управлении, для пассажира – на приборной панели (в зависимости от конструкции).

Передние подушки безопасности срабатывают при получении аварийного сигнала от блока управления. В зависимости от конструкции, степень наполнения подушки газом может варьироваться. Предназначение передних подушек – защита водителя и пассажира от травмирования твёрдыми предметами (кузов двигателя и др.) и осколками стёкол при фронтальных столкновениях.

Боковые подушки предназначены для уменьшения повреждения людей, находящихся в автомобиле при боковом ударе. Они устанавливаются на дверях, либо в спинках сидений. При боковом столкновении внешние датчики посылают сигналы в центральный блок управления подушками безопасности. Это делает возможным срабатывание как некоторых, так и всех боковых подушек.

Исследования влияния надувных подушек безопасности на вероятность гибели водителя при лобовых столкновениях показали, что таковая уменьшается на 20-25%.

В случае, если подушки безопасности сработали, или были каким-либо образом повреждены, они не могут быть отремонтированы. Вся система подушек безопасности подлежит замене.

Воздушная подушка водителя имеет объём от 60 до 80 литров, а переднего пассажира – до 130 литров. Нетрудно представить, что при срабатывании системы, объём салона уменьшается на 200-250 литров в течение 0,04 сек(см. рисунок), что даёт немалую нагрузку на барабанные перепонки. Кроме того, вылетающая со скоростью более 300 км/ч подушка, таит в себе немалую опасность для людей, если они не пристёгнуты ремнём безопасности и ничто не задерживает инерционное движение тела навстречу подушке.

Существует статистика, говорящая о влиянии надувных подушек безопасности на травматизм при аварии. Что же нужно делать, чтобы уменьшить вероятность травмы?

Если в машине имеется подушка безопасности, не стоит размещать повернутые назад детские сиденья на сиденье автомобиля, где эта подушка безопасности находится. При надувании подушка безопасности может сдвинуть сиденье и нанести травму ребенку.

Подушки безопасности на пассажирском месте повышают вероятность гибели детей до 13 лет, сидящих на этом месте. Ребёнок ниже 150 см роста может получить удар в голову воздушной подушкой, открывающейся со скоростью 322 км/ч.

Подголовники

Эффективная защита при использовании подголовника может быть достигнута, если он находится точно на линии центра головы на уровне ее центра тяжести и не далее 7 см от задней ее части. Помните, что некоторые опции сидений изменяют размер и положение подголовника.

Травмобезопасный рулевой механизм

Травмобезопасное рулевое управление является одним из конструктивных мероприятий, обеспечивающих пассивную безопасность автомобиля – свойство уменьшать тяжесть последствий дорожно-транспортных происшествий. Рулевой механизм рулевого управления может нанести серьёзную травму водителю при лобовом столкновении с препятствием при смятии передней части автомобиля, когда весь рулевой механизм перемещается в сторону водителя.

Водитель также может получить травму от рулевого колеса или рулевого вала при резком перемещении вперёд вследствие лобового столкновения, когда при слабом натяжении ремней безопасности перемещение составляет 300…400 мм. Для уменьшения тяжести травм, получаемых водителем при лобовых столкновениях, которые составляют около 50% всех дорожно-транспортных происшествий, применяют различные конструкции травмобезопасных рулевых механизмов.

С этой целью кроме рулевого колеса с утопленной ступицей и двумя спицами, позволяющих значительно снизить тяжесть наносимых травм при ударе, в рулевом механизме устанавливают специальное энергопоглащающее устройство, а рулевой вал часто выполняют составным. Все это обеспечивает незначительное перемещение рулевого вала внутрь кузова автомобиля при лобовых столкновениях с препятствиями, автомобилями и другими транспортными средствами.

Основными элементами колеса в сборе являются обод с диском и пневматическая шина, которая может быть бескамерной или состоять из покрышки, камеры и ободной ленты.

Запасные выходы

Люки крыши и окна автобусов могут быть использованы в качестве запасных выходов для быстрой эвакуации пассажиров из салона при ДТП или пожаре. С этой целью внутри и снаружи пассажирского помещения автобусов предусмотрены специальные средства для открытия аварийных окон и люков. Так, стекла могут устанавливаться в оконные проёмы кузова на двух замковом резиновом профиле, имеющем замковый шнур. При возникновении опасности необходимо выдернуть замковый шнур с помощью скобы, прикреплённой к нему, и выдавить стекло. Некоторые окна подвешиваются в проеме на петлях и снабжаются ручками для их открывания наружу.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Вопрос 1 (24) Вычертите и объясните принципиальную схему смазочной системы автомобильного двигателя

Вопрос 2 (47) Вычертите схему и объясните работу пневматического усилителя привода сцепления

Вопрос 3 (68) Вычертите основные типы подвесок автомобиля. Опишите назначение и основные части подвески

Вопрос 4 (90) Опишите основные типы специализированного подвижного состава

Вопрос 1 (24) Вычертите и объясните принципиальную схему смазочной системы автомобильного двигателя

В современном автомобильном двигателе существует множество деталей, которые необходимо смазывать для уменьшения трения между ними и их изнашивания, охлаждения трущихся поверхностей, уплотнения зазоров (например, между поршнем и цилиндром), защиты от коррозии, удаления продуктов износа.

В качестве смазки используют главным образом масла нефтяного происхождения, однако все большее внимание уделяется и синтетическим маслам.

Детали системы смазки

Рис. 1. Детали системы смазки

1. Масляный картер; 2. Маслоприемник; 3. Кронштейн масляного фильтра; 4. Перепускной клапан масляного фильтра; 5. Масляный фильтр; 6. Армированные шланг; 7. Масляный радиатор; 8. Нижняя крышка блока цилиндра; 9. Ведущая шестерня масляного насоса; 10. Ведомая шестерня масляного насоса; 11. Крышка масляного насоса; 12. Редукционный клапан; 13. Форсунки для охлаждения днища поршня; 14. Маслосливная пробка

Принципиальная схема смазочной системы двигателя

Двигатель имеет систему смазки под давлением, создаваемым шестеренчатым насосом с приводом непосредственно от коленчатого вала. Кроме масляного насоса, в состав системы смазки включены масляный фильтр и масляный радиатор, а также форсунки, установленные в основании каждого цилиндра, через которые разбрызгивается масло для охлаждения днищ поршней.

Рис. 2. Принципиальная схема смазочной системы двигателя автомобиля

Сменный фильтрующий элемент снабжен встроенным перепускным клапаном. При эксплуатации в нормальных условиях фильтрующий элемент подлежит замене примерно через каждые 10000 км пробега, при эксплуатации в тяжелых условиях – через каждые 6000 км пробега.

Система смазки включает в себя отводную магистраль с перепускным клапаном, направляющим масло к масляному радиатору. Благодаря этому обеспечивается непрерывный подвод масла к трущимся деталям двигателя в случае засорения и непроходимости масляного радиатора. Открытие перепускного клапана, установленного на боковой стороне двигателя, определяется только температурой масла. При открытом клапане это позволяет сократить время, необходимое для разогрева масла при запуске холодного двигателя.

Вопрос 2 (47) Вычертите схему и объясните работу пневматического усилителя привода сцепления

Усилитель состоит из силового цилиндра и клапана управления. Сжатый воздух подается в усилитель от пневматической системы автомобиля. В рабочей полости силового цилиндра установлен поршень, который шарнирно соединен с телескопическим штоком, действующим на вилку тяги выключения сцепления. Сжатый воздух в цилиндр поступает через клапан управления. Он состоит из корпуса пластинчатого клапана, толкателя и возвратной пружины. Толкатель упирается в поводок двуплечего рычага, соединенного тягой с рычагом привода выключения сцепления.

При нажатии на педаль выключения сцепления двуплечий рычаг перемещает толкатель влево и пластинчатый клапан открывает доступ сжатому воздуху из баллона в рабочую полость силового цилиндра усилителя по резиновому шлангу . Давлением сжатого воздуха поршень в силовом цилиндре перемещается вправо и через шток передает усилие тяги выключения сцепления.

Таким образом, для выключения сцепления используется дополнительное усилие, облегчающее работу водителя. Когда водитель отпускает педаль сцепления, оттяжная пружина заставляет толкатель тяги и двуплечий рычаг занять исходное положение. Пластинчатый клапан перемещаясь вправо, прекращает доступ сжатого воздуха в силовой цилиндр и сообщает его с атмосферой. Поршень в силовом цилиндре вновь занимает крайнее левое положение.

Пневматический усилитель (рис. 3), установленный в гидравлическом приводе сцепления, состоит из трех основных частей: источника энергии (в данном случае компрессора и ресиверов со сжатым воздухом),

исполнительного механизма — исполнительного цилиндра 13 и распределительного устройства 6, управляющего работой цилиндра 13.

Корпус пневмоусилителя выполнен из двух частей 12 и 18, между которыми установлена мембрана 10 следящего устройства. К последнему относятся также поршень 3, клапан 4, седло 5, выпускной 7 и впускной 8 клапаны.

Исполнительный цилиндр 16 гидравлического привода встроен в корпус пневмоусилителя. Жидкость от главного цилиндра, шток которого соединен с педалью сцепления, подводится в исполнительный цилиндр с комбинированным уплотнением 2 и к торцу поршня 3 через отверстие 14. Сжатый воздух подводится к клапану 8 через отверстие 9. Когда педаль отпущена, клапан 8 закрыт, а клапан 7 открыт.

Клапан 4 позволяет сжатому воздуху выходить из пневмоусилителя, когда открывается клапан 7, предохраняя пневмоусилитель от попадания снаружи пыли, грязи, влаги.

Вопрос 3 (68) Вычертите основные типы подвесок автомобиля. Опишите назначение и основные части подвески

Подвеска предназначена для смягчения и гашения колебаний передаваемых от неровностей дороги на кузов автомобиля.

Благодаря подвеске колес кузов совершает вертикальные, продольные, угловые и поперечно-угловые колебания. Все эти колебания определяют плавность хода автомобиля.

Подвеска может быть зависимой и независимой (см. рис. 4)

Рис. 4. Основные типы подвесок автомобиля: а) зависимая подвеска б) независимая подвеска

Зависимая подвеска (рис. 4-а), это когда оба колеса одной оси автомобиля связаны между собой жесткой балкой (задние колеса). При наезде на неровность дороги одного из колес, второе наклоняется на тот же угол.

Независимая подвеска (рис. 4-б), это когда колеса одной оси автомобиля не связаны жестко друг с другом (передние колеса). При наезде на неровность дороги, одно из колес может менять свое положение, не изменяя при этом положения второго колеса.

Устройство задней подвески на примере автомобиля волга газ 31105

Задняя подвеска автомобиля волга газ 31105 выполнена на продольных листовых рессорах, с двумя гидравлическими амортизаторами и стабилизатором поперечной устойчивости. Листы рессоры разного размера, собраны в пакет по пять штук (плоской стороной вверх, выпуклой — вниз) и стянуты центровым болтом. Три верхних листа рессоры ближе к концам скреплены двумя хомутами. Между листами рессор установлены противоскрипные прокладки. Дополнительно установлен еще один хомут, стягивающий четыре листа в задней части рессоры. Для крепления рессоры к кузову автомобиля волга газ 31105 концы верхнего (коренного) листа загнуты в кольца — проушины. Передняя проушина коренного листа рессоры с запрессованным в нее сайлентблоком крепится болтом к кронштейну заднего лонжерона. Задняя проушина крепится к лонжерону через серьгу, компенсирующую изменения расстояния между концами рессоры. Подвижность серьги обеспечивают резиновые втулки, вставленные в проушину рессоры и отверстие лонжерона. К рессорам на стремянках (по две на каждую рессору), через обоймы с резиновыми подушками, прикреплен задний мост.

Подушки снижают передачу вибраций от моста на кузов автомобиля газ 31105. Стремянки также удерживают два резиновых буфера хода сжатия, которые ограничивают ход заднего моста вверх. Амортизатор — телескопический, двухтрубный, разборный. Нижним концом корпуса (проушиной) амортизатор закреплен на пальце подкладки рессоры, а верхним (штоком) связан с усиленной площадкой днища кузова газ 31105. Соединения амортизатора с подкладкой рессоры и кузовом машины газ 31105 выполнены эластичными: внизу — на резиновых втулках, сверху — на резиновых подушках. Штанга стабилизатора поперечной устойчивости автомобиля газ 31105 изготовлена из пружинной стали. Штанга стабилизатора с помощью металлических скоб через резиновые подушки прикреплена к задним лонжеронам кузова автомобиля газ 31105. На концах штанга стабилизатора закреплены наконечники с запрессованными в них сайлентблоками, через которые штанга соединена с задним мостом. Для этого к кожухам полуосей приварены кронштейны.

Вопрос 4 (90) Опишите основные типы специализированного подвижного состава

К специализированному подвижному составу автомобильного транспорта относятся одиночные автомобили и автопоезда, предназначенные для перевозки определенных видов грузов в специфических дорожных и климатических условиях.

Специализация подвижного состава осуществляется путем оборудования автомобилей, прицепов и полуприцепов специальными приспособлениями для перевозки отдельных видов грузов (длинномерных, тяжеловесных, строительных деталей и др.), закрытыми кузовами (фургоны, цистерны), погрузочно-разгрузочными механизмами (самосвалы, самопогрузчики), а также агрегатами и устройствами для повышения проходимости и механизации погрузки и разгрузки.

Основные типы специализированного подвижного состава:

Автомобили - фургоны, в т.ч. для перевозки хлеба и хлебобулочных изделий, а также тары из-под указанных изделий

Автомобили - фургоны с изотермическими кузовами

Автомобили - цистерны, в т.ч. для перевозки молока на длительные расстояния

Автомобили - цистерны для перевозки битума в горячем состоянии

Автомобили, оборудованные грузоподъемными устройствами (дополнительно к установленным надбавкам) и съемными кузовами

Автомобили, прицепы и полуприцепы, оборудованные стандартными тентами

Автомобили - лесовозы, металловозы, скотовозы и другие типы специализированного подвижного состава.

Специализированный подвижной состав автомобильного транспорта имеет преимущества по сравнению с универсальным подвижным составом:

большая сохранность количества и качества грузов в процессе перевозки (изотермические фургоны, цистерны);

более высокая механизация процессов погрузки и разгрузки (самосвалы, самопогрузчики, цистерны с пневматической разгрузкой);

возможность перевозки специфических грузов (жидких, длинномерных, тяжеловесных и др.);

снижение затрат на тару (фургоны);

исключение дополнительных операций при перевозке грузов (готовое платье и др.);

повышение безопасности и улучшение санитарно-гигиенических условий перевозки некоторых грузов (цистерны) для перевозки химических продуктов, пылевидных грузов (цементовозы).

Автомобиль в ваших руках (советы бывалых водителей) / Под ред. А.А. Пермякова. — Ижевск: Акцент, 1996. — 248с.

Галимзянов Р.К. Торможение автомобиля: Учеб. пособие. - Челябинск: Издательство ЮУрГУ, 2000. — 44с.

Горнушкин Ю.Г. Практические советы владельцу автомобиля. — 2. изд., перераб. и доп. — М.: Патриот, 1991. — 208с.

Мравинский И.М. Ваш первый автомобиль: Покупка, уход, профессиональные приемы вождения. — М. : Транспорт, 1996. — 109с.

Родичев В.А. Легковой автомобиль: Учеб. пособие для учреждений нач. проф. образования. - М.: ПрофОбрИздат, 2001. – 85 с.

Суславичюс Л. Этот многоликий автомобиль. - М.: Трансорот, 1993. – 223с.

Шайдуллин Б.А. Ваш друг - автомобиль: 400 практ. советов по уходу за двигателем - Пермь: Урал-Пресс, 1993. – 304 с.








Конструкция кузова автомобиля должна отвечать многим требованиям. С одной стороны, необходимо снижать его массу и улучшать аэродинамические качества, с другой стороны все большее значения приобретают факторы пассивной безопасности автомобиля. Чтобы удовлетворить противоречивые требования используются следующие направления совершенствования конструкции:

-использование алюминиевых и магниевых сплавов;

-применение высокопрочного листового материала;

-оптимизация толщины панелей;

-новые технологии соединения деталей;

-достижение, по возможности, наименьших зазоров в соединениях.

Общая конструкция кузова легкового автомобиля показана на рис.1.17.


Рис.1.17. Кузов легкового автомобиля:

1 – подоконная балка; 2 –передняя балка крыши; 3 – лонжерон крыши; 4 – задняя балка крыши; 5 – задняя стойка кузова; 6 – задняя панель; 7 – пол в задней части кузова; 8 – задний лонжерон; 9 – средняя стойка кузова; 10 – поперечина под задним сиденьем; 11 –передняя стойка; 12 – поперечина под сиденьем водителя; 13 – порог; 14 – надколесная ниша; 15 – поперечная балка опор двигателя; 16 – передний лонжерон; 17 – поперечина передняя; 18 - поперечина радиатора

Для выдерживания внешних нагрузок в легковых автомобилях используется преимущественно несущие кузова. Несущий кузов достаточно легкий, однако благодаря целостной конструкции обладает значительной жесткостью на кручение и на изгиб. Он представляет собой сочетание тонких стальных штампованных листов различной формы, соединенных вместе точечной сваркой.

Шумы и вибрации от силового привода и от шасси могут легко передаваться на несущий кузов, который выступает в роли акустической камеры и усиливает их. Поэтому при ремонте автомобилей, поврежденных при столкновении, следует уделять особое внимание шумо- и виброизоляции.

Наряду с изготовленными из алюминия литыми деталями, прессованными профилями и листовыми деталями на некоторых конструкциях кузова, например Audi TT Coupe, используются стальные кузовные детали, которые в совокупности и образуют структуру кузова (рис. 1.20).


Рис. 1.20. Кузов автомобиля Audi TT Coupe

Благодаря применению стальных кузовных элементов в задней части автомобиля достигается оптимальная развесовка по осям. Проблемой при изготовлении таких кузовов является соединение изготовленной из листовой стали задней части автомобиля с алюминиевыми деталями кузова. К соединениям алюминиевых и стальных узлов кузова предъявляются высокие требования по прочности и антикоррозийной защите. Термические методы соединений, как например, сварка MIG, здесь неприменимы, поскольку этим способом нельзя создать соединения, обладающие соответствующей статической и динамической прочностью и не служащие источником контактной коррозии. Чтобы удовлетворить поставленным требованиям, используются нетермические методы соединений, как например, заклепки со специальным покрытием и специальные болты в комбинации со склеиванием (рис. 1.21).


Рис. 1.21 Методы соединений алюминиевых и стальных деталей кузова:

1 – клей; 2 – заклепка; 3 – болт

Основой антикоррозийной защиты на местах соединений алюминия и оцинкованной стали, подверженных коррозии, является использование клеящих веществ на кузовных деталях. Благодаря этому создается изолирующий слой, препятствующий возникновению коррозийных процессов в месте контакта. Дополнительно все разнородные соединения после катафорезного погружного окрашивания покрываются обрабатываются воском.

В связи с все более широким применением в качестве материала кузова алюминия и при соединении деталей из алюминия и стали все большее применение находит метод соединения кузовных деталей с помощью заклепок (рис.1.23, а ), штифтов (рис. 1.23, б), и винтов (рис. 1.23, в). Такой метод является более дешевым и прочным относительно просечки и точечной электросварки.


Рис. 1.23. Процесс установки заклепки и штифта при изготовлении кузова:

1 – пуансон; 2 – заклепка; 3 – матрица; 4 – соединяемые детали; 5 – штифт; 6 – винт

Штифтовое соединение представляет собой соединение, устойчивое к изменению формы под воздействием силы, образованное частичным продавливанием скрепляемых деталей с последующим свариванием их давлением. Полученное таким образом соединение обладает, однако, меньшей прочностью по сравнению, например, с заклепочными соединениями.

Заклепки используются в различных частях кузова автомобиля, но преимущество для соединения листовых деталей, прессованных профилей и их комбинаций. Штифты используется на навесных деталях, например, дверях, капоте, крышке багажного отсека, или задней арки колеса. Размеры заклепок и штифтов выбираются в соответствии с размерами соединяемых деталей.

При использовании винтов возможно создание любых соединений материалов, даже при одностороннем доступе. Винт со специальным покрытием заворачивается под давлением через отверстие в верхнем из соединяемых слоев. Отверстие в нижнем слое при этом отсутствует.

Так как в конструкции широко используются стальные листы, необходимо принимать меры по защите от коррозии, особенно в нижней части кузова.

Для защиты кузова от коррозии при изготовлении кузова применяются следующие меры:

-снижение до минимума фланцевых со­единений, острых кромок и углов;

-устранение зон, где могут скапливаться пыль и влага;

-выполнение отверстий для предвари­тельной антикоррозионной обработки и обработки методом электрофореза;

-обеспечение доступности к элементам кузова для ввода ингибиторов коррозии;

-обеспечение вентиляции полых эле­ментов;

-предотвращение проникновения пыли и влаги в скрытые полости;

-выполнение дренажных отверстий;

-снижение до минимума зон, подвергаю­щихся воздействию ударов камней;

-покрытие нижней части кузова и тех частей кузова, которые в наибольшей степени подвержены кор­розии (двери и силовые элементы в пе­редней части автомобиля) специальными защитными средствами.

Кузов проектируется таким образом, чтобы выдерживать нагрузки во время движения и обеспечивать безопасность пассажиров в случае столкновения. Он должен сминаться и поглощать максимальное количество энергии в случае серьезного столкновения и сводить к минимуму вероятность получения травм пассажирами. Поэтому кузов проектируют таким образом, чтобы при столкновениях передняя и задняя части кузова относительно легко деформировались, поглощая энергию удара, и одновременно с этим были прочными, защищая пассажирский салон.

Для повышения жесткости и способности поглощать энергию удара кузов автомобиля изготавливается из деталей, имеющих различную форму сечения. При столкновении напряжения концентрируются в зоны деформации (сминаемые участки) (рис.1.24,а) и поднимающиеся участки (рис.1.24,б). В результате столкновения энергия удара проходит через весь кузов и деформирует менее прочные элементы. Для повышения уровня защиты пассажиров в передней и задней частях кузова широко применяются зоны, поглощающие энергию удара. Энергию удара поглощают лонжероны и верхние усилители брызговиков крыльев, а также верхние боковые панели моторного отсека. Лонжероны в задней части кузова проектируются таким образом, чтобы поглотить энергию удара и защитить топливный бак.


Рис. 1.24. Задняя часть кузова переднеприводного легкового автомобиля, с зонами, поглощающими энергию удара

Во многих случаях для повышения жесткости кузова применяется лазерная сварка. Это полностью автоматический процесс получения высокопрочных сварочных соединений. Особенно это важно при соединении внешних панелей кузова, где требуется чистота сварочного шва, высокая прочность и небольшой перехлест панелей.

Преимущества лазерной сварки:

-минимальная последующая обработка;

-хорошее состояние поверхности под покраску;

-высокая прочность шва;

Структура передней части современных легковых автомобилей разработана таким образом, чтобы в случае легкого ДТП (скорость до 15 км/ч) необходимо было менять только поперечину бампера 5 и прикрепленные к ней поглотители энергии деформации 1 (рис.14.26 А). Если повреждения структуры автомобиля более значительны, тогда может возникнуть необходимость замены лонжеронов, для этого также следует отвернуть болтовое соединение. Все значительные повреждения в передней части автомобиля могут быть устранены только сваркой соответствующих оригинальных деталей.


Рис. 14.26А Нижняя часть легкового автомобиля Audi:

1 – поглотитель энергии; 2 – лонжерон 1; 3 – лонжерон 2; 4 – болтовое соединение; 5 – поперечина бампера

Для снижения массы кузова, при сохранении его прочности, в современных автомобилях применяют высокопрочную сталь, доля которой в верхней и нижней частях кузова составляет 50…60%. Применение высокопрочной листовой стали позволяет снизить массу применяемых деталей кузова на 25%.

Стальной листовой материал современных автомобилей подвергается электролитиче­скому или термическому цинкованию. Соединение отдельных деталей кузова производится с помощью лазерной сварки, обеспечивающей абсолютно гладкие швы.

Фланцы, подверженные активному коррозион­ному воздействию, обрабаты­ваются специальными пастами (поливинилхлорид или эпоксидная смола) в зо­не расположения точечных швов.

Перспективным направлением в развитии автомобильных кузовов является применение алюминия и в 2005 году масса алюминиевых деталей на один автомобиль в Европе составляет 130 кг. Среди новых материалов, активно завоевывающих автомобилестроение, следует назвать пеноалюминий – чрезвычайно легкий, жесткий, с высоким энергопоглощением при столкновении. Металлические пенистые структуры обладают и высокими характеристиками, обеспечивающими шумоизоляцию и термостойкость, однако стоимость деталей из такого материала выше, чем у стальных, примерно на 20%.

Замены металлических узлов и деталей на пластиковые позволили уменьшить стоимость их производства. В результате уже на нынешнем этапе создаются условия для снижения себестоимости автомобиля на 20 … 30%.

В настоящее время 48% всех пластмассовых деталей в легковом автомобиле приходятся на долю внутренней отделки кузова. Однако пластмассы применяются и в других агрегатах автомобилей – например, самоклеящиеся листовые материалы для повышения жесткости и прочности кузова из тонких стальных листов, оконные стекла из поликарбоната, которые на 40% легче, всасывающие патрубки из полиамида на двигателях.

Для повышения стабильности движения автомобиля на высоких скоростях в кузовах отдельных автомобилей, например Audi TT, устанавливается выдвигаемый задний спойлер (рис.) . На скорости 120 км/ч спойлер автоматически выдвигается, на скорости 80 км/ч – возвращается в исходное положение. На скорости ниже 120 км/ч выдвинуть спойлер можно вручную, при помощи выключателя в центральной консоли.

Модуль заднего спойлера и сам спойлер установлены в крышке багажного отсека. Модуль заднего спойлера с приводным блоком, приводным валом и поворотными механизмами (шарнирами) прикреплен при помощи саморегулирующихся элементов к стальному спойлеру, выдержанному в цветах автомобиля.

Транспортное средство — это устройство для перевозки грузов или людей.

Автомобиль — самоходная машина с энергетической установкой, имеющая не менее трех колес, перевозящая груз на себе и предназначенная в основном для движения по дорогам.

На рисунке представлен общий вид колесного тягача. Это полноприводная колесная машина, имеющая привод ко всем колесам и обладающая большой силой тяги и высокой проходимостью — способностью двигаться в различных условиях.

Общий вид колесного тягача

Рис. Общий вид колесного тягача

Быстроходнее гусеничные машины в отличие от гусеничных тракторов развивают скорость 35 …70 км/ч и более.

Транспортное средство в составе тягача и буксируемых им прицепов или полуприцепов образует автомобильный поезд, причем вертикальные усилия от прицепа и перевозимого на нем груза не передаются на тягач, а от полуприцепа и перевозимого на нем груза передаются не полностью через специальное (седельное) устройство.

Основными частями транспортного средства являются:

  • двигатель, включающий в себя кривошипно-шатунный и газораспределительный механизмы, смазочную систему, системы охлаждения, питания, зажигания (у карбюраторных двигателей) и пуска;
  • трансмиссия — сцепление (главный фрикцион), коробка передач, раздаточная коробка, карданная и главная передачи, дифференциал (у колесных машин) и полуоси (у колесных машин);
  • ходовая часть — рама (корпус), подвеска и движитель (колесный, гусеничный);
  • механизмы управления — рулевое управление (механизмы поворота) и тормозная система;
  • кузов — кабина для экипажа, капот и оперение;
  • вспомогательное оборудование — электро- и пневмооборудование, лебедка, коробка отбора мощности и сцепные устройства.

Двигатель преобразует тепловую энергию сгорающего топлива в механическую, в результате чего вращается коленчатый вал двигателя и через ряд механизмов приводятся во вращение ведущие колеса ТС.

Трансмиссия служит для передачи мощности двигателя на ведущие колеса и распределения при изменении величины и направления вращающего момента и частоты вращения ведущих колес.

Ходовая часть предназначена для установки всех механизмов ТС, восприятия сил, действующих на него, и обеспечения поступательного движения ТС.

Механизмы управления служат для удержания ТС на месте, изменения направления и скорости его движения.

Трансмиссию, ходовую часть и механизмы управления часто объединяют под общим названием — шасси.

Читайте также: