Связь напряженности с потенциалом эквипотенциальные поверхности реферат

Обновлено: 13.06.2024

В лабораторную работу необходимо внести исправления. Замечания в тексте работы.

Так выделяются несущественные замечания и подсказки.

Работа не зачтена .

Прошу текст лабораторной работы не изменять. Работу над ошибками выполнить в конце файла.

Работу проверил А. И. Стрельцов

Лабораторная работа выполнена правильно. Замечаний нет.

Работа зачтена .

Работу проверил А. И. Стрельцов

Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

Межрегиональный центр переподготовки специалистов

Изучение характеристик электростатического поля

Проверил : А. И. Стрельцов

1. Цель работы

Исследовать электростатическое поле, графически изобразить сечение эквипотенциальных поверхностей и силовые линии для некоторых конфигураций поля.

2. Основные теоретические сведения

Любое заряженное тело создает в пространстве вокруг себя электромагнитное поле и взаимодействует с внешним электромагнитным полем. Поле, создаваемое неподвижными зарядами, называется электростатическим. Знание характеристик электрического поля требуется при работе с линиями связи, антеннами, резонаторами, полупроводниковыми приборами и другими устройствами.

Электростатическое поле в каждой точке пространства характеризуется двумя величинами: напряженностью и потенциалом. Силовая характеристика поля- напряженность- векторная величина, численно равная силе, действующей на единичный положительный точечный заряд, помещенный в данную точку поля:

Из определения следует, что сила, действующая со стороны электрического поля на точечный заряд, равна:

Единица измерения напряженности электрического поля [Вм].

Энергетическая характеристика электрического поля- потенциал - скалярная величина, численно равная потенциальной энергии единичного точечного положительного заряда, помещенного в данную точку поля:

Потенциал измеряется в вольтах: [1В= 1Дж1Кл]. Потенциал определяется с точностью до произвольной постоянной ( как и потенциальная энергия) и может принимать положительные и отрицательные значения. Физический же смысл имеет величина- разность потенциалов. Разность потенциалов связана с работой сил электрического поля по перемещению точечного заряда следующим образом:

где j1 и j2 - потенциалы начальной и конечной точек положения заряда q. Напомним, что введение понятий потенциала и потенциальной энергии заряда в электрическом поле связано с тем, что работа по перемещению заряда в электрическом поле не зависит от траектории перемещения, а определяется лишь начальным и конечным положением заряда. В соответствии с (4) эта работа определяется разностью потенциалов начальной и конечной точек.

Найдем взаимосвязь между характеристиками электростатического поля- напряженностью и потенциалом. Для этого рассчитаем работу при малом перемещении точечного заряда q в электрическом поле. По определению, элементарная механическая работа

В соответствии с (4) эта же работа равна

Сопоставляя формулы (5) и (6) и учитывая формулу для силы (2) получим

Спроецировав выражение (7) на оси координат, получим:

Из формул (8) легко “сконструировать” вектор напряженности электрического поля:

Выражение в скобках называется градиентом потенциала и сокращенно записывается так:

Градиент функции- это вектор, характеризующий скорость пространственного изменения функции и направленный в сторону максимального возрастания этой функции. Как видно из формулы (10), вектор напряженности электрического поля направлен в сторону, противоположную максимальному возрастанию потенциала.

Отметим, что во многих практических задачах требуется знание напряженности электрического поля. Однако, легче рассчитать скалярную величину- потенциал, а затем по формуле (10) вычислить вектор напряженности электрического поля. Формула (10) упрощается, если электрическое поле однородно, обладает аксиальной или центральной симметрией:

где r- направление изменения электрического поля.

Электростатическое поле удобно изображать графически в виде силовых линий и эквипотенциальных поверхностей. Условились силовые линии электрического поля проводить таким образом, чтобы касательная к силовой линии в данной точке совпадала с направлением вектора напряженности электрического поля в данной точке, а число силовых линий, приходящихся на единичную перпендикулярную к ним площадку, равнялось модулю вектора E .

Эквипотенциальные поверхности- поверхности, во всех точках которых потенциал имеет одинаковое значение. Эквипотенциальные поверхности целесообразно проводить так, чтобы разность потенциалов между соседними поверхностями была бы для всех поверхностей одинаковой. Тогда по густоте эквипотенциальных поверхностей можно судить о значении напряженности поля в разных точках. Величина напряженности больше там, где эквипотенциальные поверхности расположены ближе друг к другу. В качестве примера на рис.1 приведено двумерное изображение электростатического поля.

Поскольку работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю, то исходя из формул (6) и (7) можно показать, что в каждой точке вектор напряженности электрического поля перпендикулярен эквипотенциальной поверхности и направлен в сторону уменьшения потенциала. Т.е. силовые линии перпендикулярны эквипотенциальным поверхностям.

Если заряженные тела погрузить в проводящую среду, то в ней потечет электрический ток. Чтобы ток не прекращался, требуется непрерывное возобновление исходных зарядов путем подключения тел к внешнему источнику. В каждой точке среды ток характеризуется плотностью тока j - величиной тока, приходящейся на единицу площади, перпендикулярной направлению тока. Между плотностью тока и напряженностью электрического поля существует связь, называемая законом Ома в дифференциальной форме:

где s - удельная электропроводность среды, величина, обратная удельному сопротивлению. При постоянном токе распределение заряда в пространстве не изменяется и электрическое поле точно такое же, как и в электростатическом случае. Из уравнения (12) следует, что картина силовых линий электрического поля должна совпадать с картиной линий электрического тока. Эквипотенциальным линиям будут соответствовать линии, между точками которых отсутствует электрическое напряжение.

3. Экспериментальные результаты.

Описание лабораторной установки:


установка представляет собой прямоугольную ванну с электролитом, в которую погружены два электрода. Электроды присоединены к источнику постоянного низковольтного напряжения. Один из электродов через вольтметр связан с подвижным зондом (курсор). Вольтметр показывает напряжение между отрицательно заряженным электродом и точкой в ванне, в которую помещен зонд.

На рис.1,2 графическое изображение электрического поля при различных положениях электродов. В первом случае электроды представляют собой два тонких кольца радиусом 1 см, во втором- отрицательно заряженная плоскость и положительно заряженное тонкое кольцо радиусом 1 см.



Ошибка! На обоих рисунках не показаны значения потенциалов у эквипотенциальных линий. Направление силовых линий зависит от распределения потенциала по формуле .

В точках с координатами (4,8), (10,8) и (17,8) величину напряженности электрического поля по формуле(11). Так как поле однородно, т.е. на каждую единицу длины изменение потенциала остается постоянным, то:

Ошибка! Нет вывода по результатам измерений.

4. Контрольные вопросы

1. Дайте определение электростатического поля и его характеристик.

Электрическое поле, созданное системой неподвижных зарядов, называется электростатическим полем . Так как электростатическое поле является частным случаем поля электрического, то их характеристики одинаковы.

Напряженность поля. Поле, создаваемое зарядом Q, действует на qпр с силой Fk
Отношение силы к заряду всегда остаётся постоянным

Е - величина напряженности электрического поля, создаваемого зарядом Q на расстоянии r.

Потенциал - энергетическая характеристика электрического поля, указывающая на способность поля перемещать заряды в пространстве.

Для заряда, формулирующего поле, отношение работы к величине переносимого заряда из данной точки поля в бесконечность является характеристикой заряда, формирующего поле, и есть величина постоянная. Это отношение и есть энергетическая характеристика электрического поля и называется потенциалом данной точки поля, созданного зарядом Q.

2. Оцените величину силы, действующей на электрон, помещенный в некоторую точку исследуемого поля.

Поле, создаваемое зарядом Q, действует на qпр с силой

3. Рассчитайте работу по перемещению электрона между двумя точками в исследуемом поле (точки выбираются произвольно).

Если траектория перемещения заряда (от точки 1 к точке 2) носит произвольный характер, тогда работа на участке (1-2):

4. Могут ли пересекаться линии вектора напряженности электрического поля?

Вектора напряженности заряженных тел всегда перпендикулярны эквипотенциальным поверхностям, а значит, всегда перпендикулярны собственной поверхности заряженного тела. Следовательно, линии вектора напряженности электрического поля пересекаться не могут.

5. Могут ли пересекаться эквипотенциальные линии? Почему?

В трехмерном пространстве вблизи любого заряженного тела совокупность точек, потенциалы которых одинаковы, образуют эквипотенциальную поверхность. Следовательно, пересекаться эквипотенциальные поверхности с разными потенциалами не могут.

6. Какое ускорение приобретает электрон, двигаясь по эквипотенциальной линии?

Двигаясь по эквипотенциальной линии, электрон имеет ускорение равное нулю.

РАБОТА НАД ОШИБКАМИ

Исследовано электростатическое поле, созданное двумя электродами: два тонких кольца в первой ванне; отрицательно заряженная плоскость и положительно заряженное кольцо для второй ванны. Графически изображены сечения эквипотенциальных поверхностей. Видно, что вблизи электродов эквипотенциальные линии принимают форму источника, так например на примере второй ванны видно, что чем ближе эквипотенциальные линии к положительно заряженному кольцу, тем больше они принимают форму окружности, а чем ближе к плоскости, тем больше принимают форму прямой линии, что позволяет сделать вывод о том, что металлические электроды являются эквипотенциальными поверхностями. Построены силовые линии электростатического поля, произведены оценки величины напряженности поля в трех точках. Полученные результаты говорят о том, что в областях, где силовые линии расположены гуще, величина напряженности поля больше, что соответствует теоретическим ожиданиям.

В механике взаимодействие тел характеризует силой или потенциальной энергией. Электрическое поле, которое обеспечивает взаимодействие между электрически заряженными телами, также характеризуют двумя величинами. Напряженность электрического поля — это силовая характеристика. Теперь введем энергетическую характеристику — потенциал. С помощью этой величины можно будет сравнивать между собой любые точки электрического поля. Таким образом, потенциал как характеристика поля должен зависеть от значения заряда, содержащегося в этих точках. Поделим обе части формулы A = W1 — W2 на заряд q, получим


Отношение W/q не зависит от значения заряда и принимается за энергетическую характеристику, которую называют потенциалом поля в данной точке. Обозначают потенциал буквой φ.

Потенциал электрического поля φ — скалярная энергетическая характеристика поля, которая определяется отношением потенциальной энергии W положительного заряда q в данной точке поля к величине этого заряда:


Единица потенциала — вольт:


Подобно потенциальной энергии значения потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Чаще всего в электродинамике за нулевой уровень берут потенциал точки, лежащей в бесконечности, а в электротехнике — на поверхности Земли.

С введением потенциала формулу для определения работы по перемещению заряда между точками 1 и 2 можно записать в виде


Поскольку при перемещении положительного заряда в направлении вектора напряженности электрическое поле выполняет положительную работу A = q (φ1 — φ2 )> 0, то потенциал φ1 больше чем потенциал φ2 . Таким образом, напряженность электрического поля направлена в сторону уменьшения потенциала.

Если заряд перемещать с определенной точки поля в бесконечность, то работа A = q (φ — φ ). Поскольку φ = 0, то A = qφ. Таким образом, величина потенциала φ определенной точки поля определяется работой, которую выполняет электрическое поле, перемещая единичный положительный заряд из этой точки в бесконечность,


Если электрическое поле создается точечным зарядом q, то в точке, лежащей на расстоянии r от него, потенциал вычисляют по формуле


По этой формуле рассчитывают и потенциал поля заряженного шара. В таком случае r — это расстояние от центра шара до выбранной точки поля. С этой формулы видно, что на одинаковых расстояниях от точечного заряда, который создает поле, потенциал одинаков. Все эти точки лежат на поверхности сферы, описанной радиусом r вокруг точечного заряда. Такую сферу называют эквипотенциальной поверхностью.

Эквипотенциальные поверхности — геометрическое место точек в электрическом поле, которые имеют одинаковый потенциал, — один из методов наглядного изображения электрических полей.


Эквипотенциальные поверхности электрических полей, созданных точечными зарядами разных знаков

Силовые линии всегда перпендикулярны эквипотенциальных поверхностей. Это означает, что работа сил поля по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае наложения электрических полей, созданных несколькими зарядами, потенциал электрического поля равен алгебраической сумме потенциалов полей, созданных отдельными зарядами, φ = φ1 + φ2 + φ3 . Эквипотенциальные поверхности таких систем имеют сложную форму. Например, для системы из двух одинаковых по значению одноименных зарядов эквипотенциальные поверхности имеют вид, изображенный на рисунке. Эквипотенциальные поверхности однородного поля явлются плоскостями.


Эквипотенциальные поверхности: а — поля двух одинаковых зарядов б — однородного поля

Разность потенциалов

Практическое значение имеет не сам потенциал в точке, а изменение (разница) потенциала φ1 — φ2 , которое не зависит от выбора нулевого уровня отсчета потенциала. Разность потенциалов φ1 — φ2 еще называют напряжением и обозначают латинской буквой U. Тогда формула для работы по перемещению заряда приобретает вид


Напряжение U — это физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля,


Единица разности потенциалов (напряжения), как и потенциала, — вольт,


Поскольку работа сил поля по перемещению заряда зависит только от разности потенциалов, то в случае перемещения заряда с первой эквипотенциальной поверхности на другую (потенциалы которых соответственно φ1 и φ2 ) выполненная полем работа не зависит от траектории этого движения.

Связь напряженности электрического поля с напряжением

Из формул A = Eqd и A = qU можно установить связь между напряженностью и напряжением электрического поля: Ed = U. С этой формулы следует:

  • чем меньше меняется потенциал на расстоянии d, тем меньше есть напряженность электрического поля;
  • если потенциал не меняется, то напряженность равна нулю;
  • напряженность электрического поля направлена ​​в сторону уменьшения потенциала.


то именно из этой формулы и выводится еще одна единица напряженности — вольт на метр,

Теорема о циркуляции вектора. Работа сил электростатического поля. Потенциальная энергия. Разность потенциалов, связь между ними и напряженностью. Силовые линии и эквипотенциальные поверхности. Расчет потенциалов простейших электростатических полей.

Рубрика Физика и энергетика
Вид презентация
Язык русский
Дата добавления 13.02.2016
Размер файла 2,4 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

Определение потенциала электростатического поля и напряжения (разности потенциалов). Определение взаимодействия между двумя электрическими зарядами в соответствии с законом Кулона. Электрические конденсаторы и их емкость. Параметры электрического тока.

презентация [1,9 M], добавлен 27.12.2011

Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

реферат [56,7 K], добавлен 15.02.2008

Расчет напряженности и потенциала электрического поля, создаваемого заряженным телом. Распределение линий напряженности и эквипотенциальных линий вокруг тела. Электрическое поле, принцип суперпозиции. Связь между потенциалом и напряженностью поля.

курсовая работа [1,5 M], добавлен 26.12.2011

Силовые линии электростатического поля. Поток вектора напряженности. Дифференциальная форма теоремы Остроградского-Гаусса. Вычисление электростатических полей с помощью теоремы Остроградского-Гаусса. Поле бесконечной равномерно заряженной плоскости.

презентация [2,3 M], добавлен 13.02.2016

Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.

шпаргалка [619,6 K], добавлен 04.05.2015

Потенциальная энергия заряда в однородном поле и потенциальная энергия взаимодействия точечных зарядов. Понятие разности потенциалов. Связь напряжения и напряженности. Принцип суперпозиции для потенциалов. Понятие эквипотенциальных поверхностей.

контрольная работа [840,9 K], добавлен 06.10.2013

Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.

Рассмотрим две точки имеющие координаты (x, y, z) и (x + Δx, y ,z) и между которыми перемещается единичный заряд. Работа, которую необходимо совершить против сил электростатического поля, для переноса заряда из одной точки в другую, численно будет равна разности потенциалов в этих точках:

Работа, которую необходимо совершить против сил электростатического поля, для переноса заряда из одной точки в другую

Согласно формуле (4 приведенной по ссылке) на том же отрезке работа по перемещению единичного заряда (q / = 1) можно выразить формулой:

На том же отрезке работа по перемещению единичного заряда

Где Ех – проекция вектора напряженности на координатную ось Х.

Приравняв правые части уравнений получим:

Приравняв правые части уравнений

По аналогии и для других координат:

По аналогии и для других координат

К эквипотенциальным поверхностям вектор напряженности Е электростатического поля нормален. В случае если вместо направляющих координат x, y, z взять нормаль n к эквипотенциальным поверхностям, то составляющие вектора Ех, Ey, Ez можно будет заменить на Е, тогда:

Вектор напряженности электростатического поля нормален к эквипотенциальным поверхностям

Величина dφ/dn называется градиентом потенциала, имеет обозначение grad φ и характеризует быстроту изменения потенциала в направлении силовой линии. Исходя из этого, предыдущее выражение можно записать как:

Вектор напряженности Е численно равен градиенту потенциала, но направлен в сторону падения потенциала – в противоположную сторону.

Давайте определим напряженность электростатического поля между двумя бесконечными заряженными пластинами, расстояние между которыми равно d, а их потенциалы постоянны и равны φ1 и φ2. Поскольку заряды на пластинах распределены равномерно, электростатическое поле между пластинами одновременно (напряженность поля Е одинакова во всех точках между пластинами). Силовые линии перпендикулярны пластинам, а эквипотенциальные поверхности параллельны им. Применив к данному случаю уравнение (2) получим:

Напряженность поля Е

Где φ1 — φ2 = U – разность потенциалов между пластинами, которую часто называют напряжением.

Напряжение (разность потенциалов) – важная характеристика электростатического поля, так как при любых расчетах важно знать не абсолютные значения потенциалов в каких – либо двух точках поля, а разность потенциалов между ними. Когда говорят о потенциале в определенной точке поля, подразумевают разность потенциалов между данной точкой и другой, потенциал которой условно могут считать равным нулю (например, потенциал Земли принимают равным нулю).

Разность потенциалов и потенциал (электрическое напряжение U) в системе СИ принято измерять в вольтах:

Разность потенциалов между двумя точками будет равна 1 В, если для перемещения заряда 1 Кл между ними совершается работа 1 Дж.

В системе СГС аналогичная единица обозначается как 1 СГСU. Соотношение между этими единицами: 1 СГСU = 300 В.

Из формулы 3 следует, что напряженность электрического поля в системе СГС измеряется в единицах СГСЕ, а в системе СИ в вольтах на метр (В/м), что соответствует Н/Кл.

Напряженность электрического поля в системе СГС и системе СИ

Пример

К пластинам плоского конденсатора приложено напряжение 600 В. Поверхностная плоскость зарядов на пластинах σ = 3,20·10 -4 Кл/м 2 . Необходимо определить расстояние между пластинами.

Решение

Напряженность поля конденсатора равна:

Где d – расстояние между пластинами, U – напряжение на них.

Выразим напряженность поля через поверхностную плоскость σ заряда на пластинах конденсатора:

Где ε = 1 (так как диэлектрик воздух), ε0 – электрическая постоянная.

Читайте также: