Сварка углеродистых сталей реферат

Обновлено: 17.05.2024


1. Введение
Первые способы сварки возникли у истоков цивилизации — с началом использования и обработки металлов.
Первым сварочным процессом была ковка металла. Необходимость ремонта, выпуска более совершенных изделий приводила к необходимости разработки и совершенствованию металлургических и сварочных процессов.
Сварка с использованиемэлектричества для нагрева металла появилась с открытием электричества, электрической дуги. Существуют дуги прямого, косвенного и смешанного действия.
При электродуговой ручной сварке применяют переменный и постоянный токи. Для питания аппаратов электродуговой сварки на переменном токе используют сварочные трансформаторы в одно- и двухкорпусном исполнении. Для питания аппаратов электродуговой сварки напостоянном токе применяют сварочные машины (преобразователи, сварочные агрегаты с приводом от двигателя внутреннего сгорания), а также сварочные выпрямители.
Неразъёмное соединение, выполненное с помощью сварки, называют сварным соединением. Чаще всего с помощью сварки соединяют детали из металлов. Однако сварку применяют и для неметаллов — пластмасс, керамики или их сочетания.
При сварке используютсяразличные источники энергии: электрическая дуга, электрический ток, газовое пламя, лазерное излучение, электронный луч, трение, ультразвук. Развитие технологий позволяет в настоящее время проводить сварку не только в условиях промышленных предприятий, но в полевых и монтажных условиях (в степи, в поле, в открытом море и т. п.), под водой и даже в космосе. Процесс сварки сопряжён с опасностью возгораний; пораженийэлектрическим током; отравлений вредными газами; поражением глаз и других частей тела тепловым, ультрафиолетовым, инфракрасным излучением и брызгами расплавленного металла.
Сварка осуществима при следующих условиях:
при применении очень больших удельных давлений сжатия деталей, без нагрева;
при нагревании и одновременном сжатии деталей умеренным давлением;
при нагревании металла в месте соединениядо расплавления, без применения давления для сжатия.
Основная операция сварки изделия состоит в образовании сварного шва. Сварной шов образуется в результате расплавления электродного или присадочного материала и проплавления основного металла тепловой энергией дуги. Форма и площадь сечения сварного шва зависят не только от общей мощности дуги, но и от параметров режима ее горения, тока инапряжения дуги.
В настоящее время различают более 150 видов и способов сварочных процессов. Существуют различные классификации этих процессов. Так ГОСТ 19521-74 предусматривает классификацию сварки металлов по основным группам признаков: физическим, техническим и технологическим.


2. Сварка углеродистых и низкоуглеродистых сталей
2.1. Общие сведения
Углерод является основным легирующим элементом вуглеродистых конструкционных сталях и определяет механические свойства сталей этой группы. Повышение его содержания усложняет технологию сварки и затрудняет возможности получения равнопрочного сварного соединения без дефектов. Стали с содержанием углерода до 0,25% относятся к низкоуглеродистым. По качественному признаку углеродистые стали разделяют на две группы: обыкновенного качества и качественные. Постепени раскисления стали обыкновенного качества обозначают: кипящую — кп, полуспокойную — пс и спокойную — сп. Кипящая сталь, содержащая не более 0,07% Si, получается при неполном раскислении металла марганцем. Сталь характеризуется резко выраженной неравномерностью распределения серы и фосфора по толщине проката. Местная повышенная концентрация серы.

Современный технический прогресс в промышленности неразрывно связан с совершенствованием сварочного производства. Сварка как высокопроизводительный процесс изготовления неразъемных соединений находит широкое применение при изготовлении металлургического, химического и энергического оборудования, различных трубопроводов, в машиностроении, в производстве строительных и других конструкции.

Работа содержит 1 файл

1.docx

Современный технический прогресс в промышленности неразрывно связан с совершенствованием сварочного производства. Сварка как высокопроизводительный процесс изготовления неразъемных соединений находит широкое применение при изготовлении металлургического, химического и энергического оборудования, различных трубопроводов, в машиностроении, в производстве строительных и других конструкции.

Сварка – такой же необходимый технологический процесс, как и обработка металлов, резанием, литье, ковка. Большие технологические возможности сварки обеспечили ее широкое применение при изготовлении и ремонте судов, автомобилей, самолетов, турбин, котлов, реакторов, мостов и других конструкций. Перспективы сварки, как в научном, так и в техническом плане безграничны. Её применение способствует совершенствованию машиностроения и развития ракетостроения, атомной энергетики, радио электроники.

Газовая сварка, при которой для плавления металла используют теплоту горящей смеси газов, также относятся к способам сварки плавлением. Способ газовой сварки был разработан в конце ХIХ. когда началось промышленное производства кислорода, водорода и ацетилена, и является основным способом сварки металлов.

Наибольшее распространения получила газовая сварка с применением ацетилена. В настоящее время объем газосварочных работ в промышленности значительно сокращен, но ее успешно применяют при ремонте изделий из тонколистовой стали, алюминия и его сплавов, при пайке и сварки меди, латуни и других цветных металлов используют в современных производительных процессах газо-термическую резку, например при цеховых условиях и на монтаже.

2. Тех. Процесс газовой сварки углеродистых сталей.

В зависимости от химического состава сталь бывает углеродистая и легированная углеродистая сталь делится на низкоуглеродистую (содержание углерода до 0,25%), среднеуглеродистую ( содержание углерода от 0,25 до 0,6%) и высоко-углеродистую ( содержание углерода от 0,6 до 2,0%). Сталь, в составе которой кроме углерода имеются легирующие компоненты (хром, никель, вольфрам, ванадий и т. д.), называется легированной Легиро ванные стали бывают: низколегированные суммарное содержание легирующих компонентов, кроме углерода, менее 2,5%); среднелегированные (суммарное содержание генерирующих компонентов, кроме углерода, от 2,5 до 10%) , высоколегированные (суммарное содержание легирующих компонентов кроме углерода, более 10%).

По микроструктуре различают стали перлитного, мартенситного, аустенитного, ферритного и карбидного классов.

По способу производства - сталь может быть:

обыкновенного качества (содержание углерода до 0,6%), кипящая, полуспокойная и спокойная. Кипящую сталь получают при неполном раскислении металла кремнием, она содержит до 0,05% кремния. Спокойная сталь имеет однородное плотное строение и содержит не менее 0,12% кремния. Полуспокойная сталь занимает промежуточное положение между кипящей и спокойной сталями и содержит 0,05-0,12% кремния, , качественной - углеродистой или легированной, в которых содержание серы и фосфора не должно превышать по 0,04 каждого элемента.

высококачественной - углеродистой или легированной, в которых содержание серы и фосфора не должно поевышать соответственно 0,030 и 0,035% Такая сталь, также имеет повышенную чистоту по неметаллическим включениям и обозначается буквой А, помещаемой после обозначения марки.

По назначению стали бывают строительные, машиностроительные (конструкционные), инструментальные и стали с особыми физическими свойствами.

При сварке низкоуглеродистой стали на качество сварного соединения влияет скорость охлаждения. Повышенная скорость охлаждения металла шва увеличивает его прочность, но уменьшает пластичность и ударную вязкость, что объясняется изменением структуры шва и зоны термического влияния. Скорость охлаждения зависит от дины свариваемых деталей, их конструкции, режима сварки и начальной температуры изделия.

Для сварки низкоуглеродистой стали применяют электроды Э42 и Э46 различных мг, но для сварки конструкций с элемент большой толщины (более 20 мм), а также ответствен конструкций, работающих под большим давлением или испытывающих динамические и вибрационные нагрузки, изготовляемых из спокойной стали и работающих или свариваемых при низкой температуре, должны применят электроды Э42А и Э46А. Прокаленные электроды лучше хранить в сушильных печах при температуре 45 — 100 градусов, в помещении с относительной влажностью при температуре не ниже 15°С. На рабочем месте прокаленных электродов должно быть не более чем на половину рабочей смены. Не допускается при сварке возбуждать дугу или водить кратер на основном металле, это следует дел только в пределах шва. Если в проекте имеется специальное указание, то при сварке стыковых, угловых и тавровых швов должны устанавливаться начальные и выводные планки, на которые выводятся начало и конец шва.

Механизированная сварка низкоуглеродистой стали широко применяется при изготовлении и монтаже конструкций. На заводах, изготовляющих строительные конструкции, распространена сварка в углекислом газе, на строительных площадках — сварка порошковой проволокой. Механизированную сварку под флюсом применяют для манной сварки стержней арматуры сборных железобетонных конструкций и протяженных швов в нижнем положении.

Сварка высокоуглеродистых сталей чаще всего выполняется при изготовлении инструмента - режущего, врубового, бурильного, деревообрабатывающего и др. Технология сварки предусматривает предварительный подогрев изделий и последующую термообработку. Основные способы сварки этих сталей: стыковая, контактная, газовая, электродуговая.

Сварка высокоуглеродистых сталей затруднена и возможна при толщине металла не более 6 мм. При сварке осуществляются предварительный подогрев и последующая термическая обработка.

Сварка высокоуглеродистых сталей производится с применением флюса ( 50 % углекислого натрия Na2C03 и 50 % двууглекислого натрия NaHC03) и подогревом до 600 - 650 С для более медленного охлаждения наплавленного металла с целью избежания закалки. После сварки изделие отжигают при температуре 750 - 800 С.

Сварка высокоуглеродистых сталей марок ВСтб, 45, 50 и 60 и литейных углеродистых сталей с содержанием углерода до 0 7 % еще более затруднительна. Эти стали применяют главным образом в литых деталях и при изготовлении инструмента. Сварка их возможна только с предварительным и сопутствующим подогревом до температуры 350 - 400 С и последующей термообработкой в нагревательных печах. При сварке должны соблюдаться правила, предусмотренные для среднеуглеродистой стали. Хорошие результаты достигаются при сварке узкими валиками и небольшими участками с охлаждением каждого слоя. После окончания сварки обязательна термическая обработка.

Сварка низкоуглеродистых сталей. Такие стали имеют повышенное содержание углерода, которое является причиной образования кристаллизационных трещин при сварке, а так же малопластичных закалочных структур в около-шовной зоне. Поэтому для повышения стойкости металла шва против образования кристаллизационных трещин следует понизить количество углерода в металле шва.

Что бы снизить вероятность появления закалочных структур, необходимо применять предварительный и сопутствующий подогрев изделия. Надёжным способом достижения равнопрочности сварного соединения при низком процентном содержание углерода является дополнительное легирование металла шва марганцем и кремнием.

Среднеуглеродистые стали свариваются электродами УОНИ- 13/45, УП-1/45, УП-2/45, ОЗС-2, УОНИ-13/45, К-5А, УОНИ-13/65 и другие.

Основные технологические указания по газовой сварке среднеуглеродистых сталей сводятся к следующему:

1. В целях уменьшения окислительных реакций в сварочной ванне пламя следует регулировать с небольшим избытком ацетилена. Полезным также является применение флюсов, например:

а) 50% углекислого натрия и 50% двууглекислого натрия;

б) 70% борной кислоты и 30% углекислого натрия; в) 34% буры, 6,5% хлористого натрия, 58% углекислой соды и 1,5% окиси железа.

2. Чтобы получить более пластичный металл шва при достаточной его прочности, в качестве присадочного металла используется проволока марок Св-08Г, Св-10ГА, Св-10ГС и СВ-10ГСМ по ГОСТу 2246-60.

3. В целях уменьшения перегрева и времени пребывания ванны в расплавленном состоянии сварку следует производить максимально быстро. Увеличение скорости сварки возможно либо при общем предварительном нагреве свариваемого изделия до 300-400° С, либо при местном нагреве в районе сварки до 650-700° С. Мощность пламени при этом берется 75-90 л/ч на 1 мм толщины свариваемой стали.

4. Во избежание получения хрупких структур в околошовной зоне, производят замедление охлаждения (достаточен предварительный подогрев до 200-250° С) или последующий отпуск при 600-650° С.

Все эти мероприятия позволяют получать доброкачественные сварные соединения при содержании углерода в стали до 0,5-0,6%. При большем содержании углерода сварка может быть успешной только при малых сечениях свариваемых деталей.

В ряде случаев вместо сварки можно рекомендовать применение пайки твердыми припоями.

Для сварки неответственных конструкций из низколегированных сталей применяют электроды типа Э42А, а ответственных-типа Э50А, что обеспечивает получение металла шва с необходимой стойкостью против образования кристаллизационных трещин и с требуемыми прочностными и пластическими свойствами. Легирование металла шва легирующими элементами за счет основного металла и повышенные скорости охлаждения позволяют получить металл шва с более высокими, чем при сварке низкоуглеродистых сталей, прочностными показателями.

3. Материалы, инструменты и приспособления.

Основным инструментом сварщика-ручника является электрододержатель, конструктивное исполнение которого в значительной мере определяет удобство работы и производительность труда. Электрододержатели долж ны надежно закреплять электрод при любом положении во время сварки, иметь минимальную массу, быть удобными в эксплуатации и др. Основные параметры и технические требования, предъявляемые к электрододержателям, маркировка, методы испытания их установлены ГОСТ 14651 — 78 Е (табл. 1.12).

Конструкция электрододержателя должна обеспечивать замену электрода в течение не более 4 с и закрепление электрода в одной плоскости не менее чем в двух положениях (перпендикулярно и под углом), а также надежное присоединение кабелей.

Изолирующие детали электрододержателей, расположенные в области крепления электрода, должны быть изготовлены из материала, стойкого к термическому воздействию сварочной дуги.

Требования безопасности электрододержателей регламентированы ГОСТ 12.2.007.8—75. Сопротивление изоляции токопроводящих частей электрододержателей при нормальных климатических условиях должно быть не ниже 5 МОм, изоляция рукоятки должна выдерживать без пробоя в течение 1 мин испытательное напряжение 1500 В частотой 50 Гц, температура наружной поверхности рукоятки по сравнению с температурой внешней среды на участке, охватываемом рукой сварщика, при нормальном режиме работы не должна быть выше 40 °С.

Электрододержатели серии ЭД позволяют закреплять электрод нажатием рычага в положениях, удобных для сварщика. Аналогично удаляется огарок. Сварочный кабель присоединяется через кабельный наконечник, изоляционные детали изготовлены из термостойких полимерных материалов.

Электрододержатели серии ЭП пассатижного типа используют при силе сварочного тока 250 и 500 А. Усилием цилиндрической пружины 2 электрод зажимается между нижней губкой 5, по которой к нему подводится электрический ток, и рычагом 3. Канавки в зажиме, расположенные под различными углами, позволяют закреплять электрод под двумя углами к продольной оси электрододержателя. Огарок освобождается нажатием на рычаг. Сварочный кабель подсоединяется к электрододержателю путем механического зажатия кабеля с расклиниванием конца его между корпусом нижней губки и конусом втулки 6. Электрододержатель изолируется теплостойкими полимерными деталями.

Электрододержатели серии ЭДС защелочного типа предназначены для работы с силой тока 125, 300 и 500 А.

Электрододержатели серии ЭУ ("Луч") того же защелочного типа рассчитаны на силу тока до 315 А (ЭУ-300) и до 500 А (ЭУ-500). Электрод вставляется в отверстие и поворотом на требуемый угол (три положения) фиксируется в держателе. Усилие прижатия создает размещенная в изолированном корпусе цилиндрическая пружина, расположенная по оси рукоятки и корпуса держателя.

Техническая характеристика электрододержателей для ручной сварки плавящимся электродом.

4.Техника безопасности при выполнении сварочных работ.

Нарушение техники безопасности при проведении сварочных работ часто приводит к самым печальным последствиям – пожарам, взрывам и как следствие травмам и гибели людей.

Современный технический прогресс в промышленности неразрывно связан с совершенствованием сварочного производства. Сварка как высокопроизводительный процесс изготовления неразъемных соединений находит широкое применение при изготовлении металлургического, химического и энергического оборудования, различных трубопроводов, в машиностроении, в производстве строительных и других конструкции.

Сварка – такой же необходимый технологический процесс, как и обработка металлов, резанием, литье, ковка. Большие технологические возможности сварки обеспечили ее широкое применение при изготовлении и ремонте судов, автомобилей, самолетов, турбин, котлов, реакторов, мостов и других конструкций. Перспективы сварки, как в научном, так и в техническом плане безграничны. Её применение способствует совершенствованию машиностроения и развития ракетостроения, атомной энергетики, радио электроники.

Газовая сварка, при которой для плавления металла используют теплоту горящей смеси газов, также относятся к способам сварки плавлением. Способ газовой сварки был разработан в конце ХIХ. когда началось промышленное производства кислорода, водорода и ацетилена, и является основным способом сварки металлов.

Наибольшее распространения получила газовая сварка с применением ацетилена. В настоящее время объем газосварочных работ в промышленности значительно сокращен, но ее успешно применяют при ремонте изделий из тонколистовой стали, алюминия и его сплавов, при пайке и сварки меди, латуни и других цветных металлов используют в современных производительных процессах газо-термическую резку, например при цеховых условиях и на монтаже.

2. Тех. Процесс газовой сварки углеродистых сталей.

В зависимости от химического состава сталь бывает углеродистая и легированная углеродистая сталь делится на низкоуглеродистую (содержание углерода до 0,25%), среднеуглеродистую ( содержание углерода от 0,25 до 0,6%) и высоко-углеродистую ( содержание углерода от 0,6 до 2,0%).

Сталь, в составе которой кроме углерода имеются легирующие компоненты (хром, никель, вольфрам, ванадий и т. д.), называется легированной Легиро ванные стали бывают: низколегированные суммарное содержание легирующих компонентов, кроме углерода, менее 2,5%); среднелегированные (суммарное содержание генерирующих компонентов, кроме углерода, от 2,5 до 10%) , высоколегированные (суммарное содержание легирующих компонентов кроме углерода, более 10%).

Сварка высоколегированных сталей

. легирую углеродом и карбидообразующими элементами - ниобием или титаном. Однако углерод резко повышает склонность швов к межкристаллической коррозии. Поэтому этот способ применим только при сварке жаропрочных и жаростойких сталей. . содержания хрома и углерода. При содержании в стали хрома 12…13% и углерода более 0,06…0,08% сталь относят к мартенситному классу; при содержании . и применением .

По микроструктуре различают стали перлитного, мартенситного, аустенитного, ферритного и карбидного классов.

По способу производства — сталь может быть:

обыкновенного качества (содержание углерода до 0,6%), кипящая, полуспокойная и спокойная. Кипящую сталь получают при неполном раскислении металла кремнием, она содержит до 0,05% кремния. Спокойная сталь имеет однородное плотное строение и содержит не менее 0,12% кремния. Полуспокойная сталь занимает промежуточное положение между кипящей и спокойной сталями и содержит 0,05-0,12% кремния, , качественной — углеродистой или легированной, в которых содержание серы и фосфора не должно превышать по 0,04 каждого элемента.

высококачественной — углеродистой или легированной, в которых содержание серы и фосфора не должно поевышать соответственно 0,030 и 0,035% Такая сталь, также имеет повышенную чистоту по неметаллическим включениям и обозначается буквой А, помещаемой после обозначения марки.

По назначению стали бывают строительные, машиностроительные (конструкционные), инструментальные и стали с особыми физическими свойствами.

При сварке низкоуглеродистой стали на качество сварного соединения влияет скорость охлаждения. Повышенная скорость охлаждения металла шва увеличивает его прочность, но уменьшает пластичность и ударную вязкость, что объясняется изменением структуры шва и зоны термического влияния. Скорость охлаждения зависит от дины свариваемых деталей, их конструкции, режима сварки и начальной температуры изделия.

Для сварки низкоуглеродистой стали применяют электроды Э42 и Э46 различных мг, но для сварки конструкций с элемент большой толщины (более 20 мм), а также ответствен конструкций, работающих под большим давлением или испытывающих динамические и вибрационные нагрузки, изготовляемых из спокойной стали и работающих или свариваемых при низкой температуре, должны применят электроды Э42А и Э46А. Прокаленные электроды лучше хранить в сушильных печах при температуре 45 — 100 градусов, в помещении с относительной влажностью при температуре не ниже 15°С. На рабочем месте прокаленных электродов должно быть не более чем на половину рабочей смены. Не допускается при сварке возбуждать дугу или водить кратер на основном металле, это следует дел только в пределах шва. Если в проекте имеется специальное указание, то при сварке стыковых, угловых и тавровых швов должны устанавливаться начальные и выводные планки, на которые выводятся начало и конец шва.

Механизированная сварка низкоуглеродистой стали широко применяется при изготовлении и монтаже конструкций. На заводах, изготовляющих строительные конструкции, распространена сварка в углекислом газе, на строительных площадках — сварка порошковой проволокой. Механизированную сварку под флюсом применяют для манной сварки стержней арматуры сборных железобетонных конструкций и протяженных швов в нижнем положении.

Сварка высокоуглеродистых сталей чаще всего выполняется при изготовлении инструмента — режущего, врубового, бурильного, деревообрабатывающего и др. Технология сварки предусматривает предварительный подогрев изделий и последующую термообработку. Основные способы сварки этих сталей: стыковая, контактная, газовая, электродуговая.

Технология сварки металлов

. прочности, ударной вязкости при незначительном снижении пластичности. 2. Технология сварки металлов сталь электродуговой сварка пайка Сварка - технологический процесс получения неразъемных соединений материалов . соединение выполняется путем расплавления только основного металла, либо с применением присадочного металла. б) Сварка плавящимся (металлическим) электродом, дугой прямого действия, .

Сварка высокоуглеродистых сталей затруднена и возможна при толщине металла не более 6 мм. При сварке осуществляются предварительный подогрев и последующая термическая обработка.

Сварка высокоуглеродистых сталей производится с применением флюса ( 50 % углекислого натрия Na2C03 и 50 % двууглекислого натрия NaHC03) и подогревом до 600 — 650 С для более медленного охлаждения наплавленного металла с целью избежания закалки. После сварки изделие отжигают при температуре 750 — 800 С.

Сварка высокоуглеродистых сталей марок ВСтб, 45, 50 и 60 и литейных углеродистых сталей с содержанием углерода до 0 7 % еще более затруднительна. Эти стали применяют главным образом в литых деталях и при изготовлении инструмента. Сварка их возможна только с предварительным и сопутствующим подогревом до температуры 350 — 400 С и последующей термообработкой в нагревательных печах. При сварке должны соблюдаться правила, предусмотренные для среднеуглеродистой стали. Хорошие результаты достигаются при сварке узкими валиками и небольшими участками с охлаждением каждого слоя. После окончания сварки обязательна термическая обработка.

Сварка низкоуглеродистых сталей. Такие стали имеют повышенное содержание углерода, которое является причиной образования кристаллизационных трещин при сварке, а так же малопластичных закалочных структур в около-шовной зоне. Поэтому для повышения стойкости металла шва против образования кристаллизационных трещин следует понизить количество углерода в металле шва.

Что бы снизить вероятность появления закалочных структур, необходимо применять предварительный и сопутствующий подогрев изделия. Надёжным способом достижения равнопрочности сварного соединения при низком процентном содержание углерода является дополнительное легирование металла шва марганцем и кремнием.

Среднеуглеродистые стали свариваются электродами УОНИ- 13/45, УП-1/45, УП-2/45, ОЗС-2, УОНИ-13/45, К-5А, УОНИ-13/65 и другие.

Основные технологические указания по газовой сварке среднеуглеродистых сталей сводятся к

1. В целях уменьшения окислительных реакций в сварочной ванне пламя следует регулировать с небольшим избытком ацетилена. Полезным также является применение флюсов, например:

  • а) 50% углекислого натрия и 50% двууглекислого натрия;
  • б) 70% борной кислоты и 30% углекислого натрия;
  • в) 34% буры, 6,5% хлористого натрия, 58% углекислой соды и 1,5% окиси железа.

2. Чтобы получить более пластичный металл шва при достаточной его прочности, в качестве присадочного металла используется проволока марок Св-08Г, Св-10ГА, Св-10ГС и СВ-10ГСМ по ГОСТу 2246-60.

3. В целях уменьшения перегрева и времени пребывания ванны в расплавленном состоянии сварку следует производить максимально быстро. Увеличение скорости сварки возможно либо при общем предварительном нагреве свариваемого изделия до 300-400° С, либо при местном нагреве в районе сварки до 650-700° С. Мощность пламени при этом берется 75-90 л/ч на 1 мм толщины свариваемой стали.

Реферат металл сталь

. пониженных тем­пературах. Строительные стали должны обладать хорошей свариваемостью (не образовывать трещин в процессе сварки и не снижать ударную вязкость металла вблизи сварного шва), . пластичностью, хорошей обра­батываемостью резанием. Малоуглеродистую сталь обыкновенного качества применяют для .

4. Во избежание получения хрупких структур в околошовной зоне, производят замедление охлаждения (достаточен предварительный подогрев до 200-250° С) или последующий отпуск при 600-650° С.

Все эти мероприятия позволяют получать доброкачественные сварные соединения при содержании углерода в стали до 0,5-0,6%. При большем содержании углерода сварка может быть успешной только при малых сечениях свариваемых деталей.

В ряде случаев вместо сварки можно рекомендовать применение пайки твердыми припоями.

Для сварки неответственных конструкций из низколегированных сталей применяют электроды типа Э42А, а ответственных-типа Э50А, что обеспечивает получение металла шва с необходимой стойкостью против образования кристаллизационных трещин и с требуемыми прочностными и пластическими свойствами. Легирование металла шва легирующими элементами за счет основного металла и повышенные скорости охлаждения позволяют получить металл шва с более высокими, чем при сварке низкоуглеродистых сталей, прочностными показателями.

3. Материалы, инструменты и приспособления.

Основным инструментом сварщика-ручника является электрододержатель, конструктивное исполнение которого в значительной мере определяет удобство работы и производительность труда. Электрододержатели долж ны надежно закреплять электрод при любом положении во время сварки, иметь минимальную массу, быть удобными в эксплуатации и др. Основные параметры и технические требования, предъявляемые к электрододержателям, маркировка, методы испытания их установлены ГОСТ 14651 — 78 Е (табл. 1.12).

Конструкция электрододержателя должна обеспечивать замену электрода в течение не более 4 с и закрепление электрода в одной плоскости не менее чем в двух положениях (перпендикулярно и под углом), а также надежное присоединение кабелей.

Изолирующие детали электрододержателей, расположенные в области крепления электрода, должны быть изготовлены из материала, стойкого к термическому воздействию сварочной дуги.

Требования безопасности электрододержателей регламентированы ГОСТ 12.2.007.8—75. Сопротивление изоляции токопроводящих частей электрододержателей при нормальных климатических условиях должно быть не ниже 5 МОм, изоляция рукоятки должна выдерживать без пробоя в течение 1 мин испытательное напряжение 1500 В частотой 50 Гц, температура наружной поверхности рукоятки по сравнению с температурой внешней среды на участке, охватываемом рукой сварщика, при нормальном режиме работы не должна быть выше 40 °С.

Электрододержатели серии ЭД позволяют закреплять электрод нажатием рычага в положениях, удобных для сварщика. Аналогично удаляется огарок. Сварочный кабель присоединяется через кабельный наконечник, изоляционные детали изготовлены из термостойких полимерных материалов.

Электрододержатели серии ЭП пассатижного типа используют при силе сварочного тока 250 и 500 А. Усилием цилиндрической пружины 2 электрод зажимается между нижней губкой 5, по которой к нему подводится электрический ток, и рычагом 3. Канавки в зажиме, расположенные под различными углами, позволяют закреплять электрод под двумя углами к продольной оси электрододержателя. Огарок освобождается нажатием на рычаг. Сварочный кабель подсоединяется к электрододержателю путем механического зажатия кабеля с расклиниванием конца его между корпусом нижней губки и конусом втулки 6. Электрододержатель изолируется теплостойкими полимерными деталями.

Дипломная работа сварка цветных металлов и их сплавов

Электрододержатели серии ЭДС защелочного типа предназначены для работы с силой тока 125, 300 и 500 А.

Электрод вставляется в отверстие и поворотом на требуемый угол (три положения) фиксируется в держателе. Усилие прижатия создает размещенная в изолированном корпусе цилиндрическая пружина, расположенная по оси рукоятки и корпуса держателя.

Техническая характеристика электрододержателей для ручной сварки плавящимся электродом.

4.Техника безопасности при выполнении сварочных работ.

Нарушение техники безопасности при проведении сварочных работ часто приводит к самым печальным последствиям – пожарам, взрывам и как следствие травмам и гибели людей.

Примеры похожих учебных работ

ДП ПЗ. Разработка технологии сборки и сварки емкости для хранения нефтепродуктов. .

. программу подготовки электросварщиков для данного вида сварки; Изм. докум. Подпись Дата 7 7 1 Описание конструкции 1.1 Назначение и условия работы цистерны Конструкция представляет собой ёмкость для .

Технология сварки металлов

. увеличение прочности, ударной вязкости при незначительном снижении пластичности. 2. Технология сварки металлов сталь электродуговой сварка пайка Сварка - технологический процесс получения неразъемных соединений материалов посредством установления .

Дуговая наплавка стали

. металл. Переход FeO в металл шва при наплавке при наплавке порошковой лентой, содержащей закись железа, сопровождается окислением . на поверхности изделия и торце ленты. При наплавке металлов, растворяющих кислород, сварочная ванна может окисляться .

Сварка с трением перемешиванием

. стыковые соединения стержней и труб, соединения стержней и трубы с плоской поверхностью. 2.1 Машинная сварка трением Машины для сварки трением обычно содержат следующие основные узлы ( рис. 3): привод вращения .

Разработка технологии сборки и сварки пояса

. частью конкретного узла моста, соответственно по окончанию сборки и сварки это изделие переходит с участка стыковки на участок сборки готовых узлов. Данная технология сборки и сварки разрабатывалась с учётом того, что изделие .

Производство металлов и их сплавов (2)

. состоит из глины. Магнитный железняк, Шпатовый железняк Для производства чугуна, кроме железных руд, требуются и другие . целесообразно перерабатывать для извлечения содержащихся в них металлов. К железным рудам Эти руды содержат значительное .

Углеродистой сталью называется сплав железа с углеродом (содержание углерода до 2%) с примесями кремния, серы и фосфора, причем главной составляющей, определяющей свойства, является углерод. Процентное содержание элементов в стали примерно следующее: Fe - до 99,0; С - 0,05-2,0; Si – 0,15-0,35; Mn – 0,3-0,8; S – до 0,06; P – до 0,07. В зависимости от содержания углерода углеродистые стали подразделяют на низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25-0,6% С) и высокоуглеродистую (более 0,6% С). Различают углеродистые стали обыкновенного качества и качественную конструкционную. К первой группе относится горячекатаная (сортовая, фасонная, толстолистовая, тонколистовая, широкополосная) и холоднокатаная (тонколистовая) сталь; во вторую входят горячекатаные и кованые заготовки диаметром (или толщиной) до 250 мм, калиброванная сталь и серебрянка. Углеродистая сталь - наиболее распространённый вид чёрных металлов.

Конструкционной углеродистой сталью называется сталь, содержащая углерода до 0,65-0,70% (в виде исключения производят конструкционные стали с содержанием 0,85% углерода). Конструкционная сталь идет для изготовления деталей машин и конструкций. Она должна обладать достаточной прочностью, хорошо сопротивляться удару и в то же время хорошо обрабатываться.

По качеству конструкционная сталь делится на три группы:

Сталь обыкновенного качества – сталь широкого потребления, идет для строительных конструкций, крепежных деталей, листового проката, заклепок, труб, арматуры, мостов, профильного проката.

Сталь повышенного качества идет для паровозных и вагонных осей, бандажей, котлов, проволоки и т.д.

Качественная сталь идет для деталей, требующих более высокой пластичности, сопротивления удару, работающих при повышенных давлениях: для зубчатых колес, труб, винтов, болтов, для деталей, подлежащих цементации, для сварных изделий.

Инструментальной углеродистой сталью называется сталь с содержанием углерода от 0,7% и выше. Эта сталь отличается высокой твердостью и прочностью и применяется для изготовления инструмента. Инструментальная углеродистая сталь делится на качественную и высококачественную. Содержание серы и фосфора в качественной инструментальной стали – 0,03% и 0,035%, в высококачественной – 0,02% и 0,03% соответственно.

Выпускается по ГОСТ 1435-90 следующих марок: У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А. Стандарт распространяется на углеродистую инструментальную горячекатаную, кованую, калиброваную сталь, серебрянку.

К группе качественных сталей относятся марки стали без буквы А, к группе высококачественных сталей, более чистых по содержанию серы и фосфора, а также примесей других элементов - марки стали с буквой А. Буквы и цифры в обозначении этих марок стали означают: У - углеродистая, следующая за ней цифра - среднее содержание углерода в десятых долях процента, Г - повышенное содержание марганца.

Применение инструментальной углеродистой стали

У7, У7А Для обработки дерева: топоров, колунов, стамесок, долот; пневматических инструментов небольших размеров: зубил, обжимок, бойков; кузнечных штампов; игольной проволоки; слесарно-монтажных инструментов: молотков, кувалд, бородок, отверток, комбинированных плоскогубцев, острогубцев, боковых кусачек и др.
У8, У8А, У8Г, У8ГА, У9, У9А Для изготовления инструментов, работающих в условиях, не вызывающих разогрева режущей кромки; обработки дерева: фрез, зенковок, поковок, топоров, стамесок, долот, пил продольных и дисковых; накатных роликов, плит и стержней для форм литья под давлением оловянно-свинцовистых сплавов. Для слесарно-монтажных инструментов: обжимок для заклепок, кернеров, бородок, отверток, комбинированных плоскогубцев, острогубцев, боковых кусачек. Для калибров простой формы и пониженных классов точности; холоднокатаной термообработанной ленты толщиной от 2,5 до 0,02 мм, предназначенной для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации, клапанов, щупов, берд, ламелей двоильных ножей, конструкционных мелких деталей, в т. ч. для часов и т. д.
У10А, У12А Для сердечников.
У10, У10А Для игольной проволоки.
У10, У10А, У11, У11А Для изготовления инструментов, работающих в условиях, не вызывающих разогрева режущей кромки; обработки дерева: пил ручных поперечных и столярных, пил машинных столярных, сверл спиральных; штампов холодной штамповки (вытяжных, высадочных, обрезных и вырубных) небольших размеров и без резких переходов по сечению; калибров простой формы и пониженных классов точности; накатных роликов, напильников, шаберов слесарных и др. Для напильников, шаберов холоднокатаной термообработанной ленты толщиной от 2,5 до 0,02 мм, предназначенной для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации, клапанов, щупов, берд, ламелей двоильных ножей, конструкционных мелких деталей, в т. ч. для часов и т. д.
У12, У12А Для метчиков ручных, напильников, шаберов слесарных; штампов для холодной штамповки обрезных и вырубных небольших размеров и без переходов по сечению, холодновысадочных пуансонов и штемпелей мелких размеров, калибров простой формы и пониженных классов точности.
У13, У13А Для инструментов с пониженной износостойкостью при умеренных и значительных удельных давлениях (без разогрева режущей кромки); напильников, бритвенных лезвий и ножей, острых хирургических инструментов, шаберов, гравировальных инструментов.

К недостаткам углеродистой стали относятся:

- отсутствия сочетания прочности и твердости с пластичностью;

- потеря твердости и режущей способности при нагревании до 200°C и потери прочности при высокой температуре;

- низкая коррозионная устойчивость в среде электролита, в агрессивных средах, в атмосфере и при высоких температурах;

- низкие электротехнические свойства;

- высокий коэффициент теплового расширения;

- увеличение веса изделий, удорожание их стоимости, усложнение проектирования вследствие невысокой прочности этой стали.

Легированные стали:

Легированной называется сталь, в которой наряду с обычными примесями имеются легированные элементы, резко улучшающие ее свойства: хром, вольфрам, никель, ванадий, молибден и др., а также кремний и марганец в большом количестве. Примеси вводятся в процессе плавки.

По химическому составу (ГОСТ 5200) легированная сталь делится на три группы:

- низколегированная сталь – не более 2,5% примесей;

- высоколегированная – свыше 10%.

Легированная сталь обладает ценнейшими свойствами, которых нет у углеродистой стали, и не имеет ее недостатков. Применение легированной стали повышает долговечность изделий, экономит металл, увеличивает производительность, упрощает проектирование и потому в прогрессивной технике приобретает решающее значение. По назначению легированные стали делят обычно на конструкционные стали, инструментальные стали и стали с особыми свойствами (электротехнические, нержавеющие, жаропрочные и др.).

Конструкционная легированная сталь делится на качественную, высококачественную А и особовысококачественную Ш (электрошлакового переплава).

В зависимости от основных легирующих элементов эта сталь подразделяется на группы:

Марганцевая сталь после соответствующей химико-термической обработки приобретает высокую твердость, не снижая пластичности. Обрабатывается лучше, чем углеродистая. В производстве широко применяется сталь марок 15Г, 20Г, 30Г и др. Высокая износоустойчивость.

Хромоникелевая сталь является одной из самых распространенных конструкционных сталей, так как после термообработки приобретает высокую твердость, прочность, упругость и сопротивление ударным нагрузкам; ее марки - 20ХНА, 12Х2Н4А, 12ХН3А

Хромокремнистая сталь обладает высокой твердостью и упругостью после термической обработки и широко применяется для изготовления рессор и пружин.

Хромомарганцевая сталь частично заменяет хромоникелевую (в целях экономии никеля). Широко применяется сталь марок 20ХГ, 20ХГР, 40ХГР, 30ХСС, 18ХГТ; последняя идет для автомобильных деталей.

Хромомарганцевокремнистая сталь (хромансиль) является заменителем хромомолибденовых сталей. При малом содержании углерода хорошо штампуется и сваривается. Марка - 25ХГСД, 14ХГСА, 30ХГСА.

Хромованадиевая сталь обладает высокой прочностью, пластичностью, твердостью, упругостью. Сталь марки 50ХВА идет для ответственных пружин, марки 15ХФ - для валов, шестерен, муфт.

Хромомолибденовая сталь обладает высокой пластичностью и хорошей свариваемостью, многие из этих сталей теплоустойчивы при температурах 400-500°C. Сталь марок 30ХМА служит для изготовления роторов, осей, зубчатых колес.

Хромоникелевольфрамовая и хромоникелемолибденовая стали предназначаются для нагруженных деталей машин, зубчатых колес, коленчатых валов, высоконагруженных шатунов. Марки этой стали - 30ХНВА, 40ХНВА, 40ХНМА, 25Х2Н4ВА.

Инструментальная легированная сталь. Эта сталь идет для изготовления различного инструмента: ударно-штампового, измерительного, режущего. Она имеет ряд преимуществ перед инструментальной углеродистой сталью. Штампы из углеродистой стали обладают высокой твердостью и прочностью, но плохо сопротивляются удару. Метчики, развертки и другие длинные и тонкие инструменты из углеродистой стали при закалке получаются хрупкими, они ненадежны в работе и часто ломаются.

Режущий инструмент - резцы, фрезы, сверла из углеродистой стали при незначительном нагреве (около 200°C) теряют свою твердость, поэтому применение их при обработке металла с большой скоростью резания невозможно. При введении определенных легирующих примесей сталь приобретает красностойкость, износоустойчивость, получает глубокую прокаливаемость; она имеет высокую прочность, твердость и хорошо противостоит ударным нагрузкам.

Важнейшие легирующие примеси инструментальной легированной стали: хром, вольфрам, молибден, марганец, кремний. Содержание углерода в этой стали может быть ниже, чем в углеродистой, и колеблется от 0,3 до 2,3%.

В отдельную группу выделяют быстрорежущие стали. Они применяются для изготовления режущего инструмента – резцов, сверл, фрез. Важнейшие свойства этой стали – высокая твердость и красностойкость до 600°C (такой нагрев вызывается высокой скоростью резания). Благодаря применению быстрорежущей стали повышается стойкость инструмента и увеличивается производительность обработки. Важнейшими легирующими элементами являются вольфрам (в количестве не менее 9%), ванадий (1-2%), хром (не менее 4%). Кроме того, в быстрорежущей стали могут находиться молибден, кобальт и в небольшом количестве – никель.

В настоящее время широко применяются стали марок Р18, Р9, Р9Ф5, Р18Ф2, Р9К5, Р9К10, Р10К5Ф5, Р18М, Р9М, Р6М5 и др. Буква Р обозначает быстрорежущую сталь. Цифра, стоящая за буквой Р, показывает среднее содержание вольфрама в процентах.

Применение инструментальных легированных сталей

Инструмент горячего деформирования на кривошипных прессах и горизонтально- ковочных машинах, подвергающихся в процессе работы интенсивному охлаждению (как правило, для мелкого инструмента), пресс-формы лить под давлением медных, ножи для горячей резки, охлаждаемые водой.

Легированная сталь с особыми физическими и химическими свойствами .

К группе сталей с особыми физическими и химическими свойствами относятся: магнитные и немагнитные, обладающие высоким электрическим сопротивлением, особыми тепловыми свойствами, нержавеющие жаропрочные и окалиностойкие. В такой стали особенно нуждается авиационная промышленность, электротехническая, турбинная, химическая промышленность, ракетная техника и др.

Магнитные сплавы и стали. Эти сплавы и стали широко применяются для изготовления постоянных магнитов, сердечников трансформаторов, электроизмерительных приборов, электромагнитов. Магнитная сталь делится на две группы, резко отличающаяся по магнитным свойствам: магнитотвердые и магнитомягкие.

Магнитотвердые сплавы и стали применяются для изготовления постоянных магнитов. Сталь для постоянных магнитов обозначается буквой Е. Она содержит высокий процент хрома или кобальта. Согласно ГОСТ 6862, установлены следующие марки этой стали: ЕХ, ЕХ3, Е7136, ЕХ9К15М.

Магнитомягкие сплавы и стали должны обладать очень высокой магнитопроницаемостью. Их этих сталей и сплавов делают сердечники трансформаторов, электроизмерительных приборов, электромагнитов. Обозначается электромагнитная сталь буквой Э. Марки её: Э1, Э2, Э3, Э4, Э1АА. Она содержит высокий процент кремния. Эта сталь идет для изготовления магнитопроводов, роторов, статоров.

Читайте также: