Суперкомпьютеры и их применение презентация с рефератом

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ГОСУДАРСТВЕННОЙ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТНЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ “.

Описание презентации по отдельным слайдам:

ГОСУДАРСТВЕННОЙ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТНЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ “.

ГОСУДАРСТВЕННОЙ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТНЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ “БЕЛОКАЛИТВИНСКИЙ МАТВЕя ПЛАТОва КАЗАЧИЙ КАДЕТСКИЙ КОРПУС” Выполнил: кадет взвода 10/3 Соколова Алина Проверил: учитель информатики Левина Л.В. Презентация По информатике На тему: “Суперкомпьютеры и их применение”

В то время, когда появились первые компьютеры, перед разработчиками вычислите.

В то время, когда появились первые компьютеры, перед разработчиками вычислительной техники стала проблема - производительность вычислительной системы. С годами производительность компьютеров стремительно возрастала, с каждым годом росло и число пользователей компьютерами, что привело к расширению сферы вычислительных систем - это стало одной из причины появления суперкомпьютеров. Суперкомпьютер- это обычная вычислительная система, которая позволяет производить сложные расчеты за более короткие промежутки времени. Система компьютера состоит из трех компонентов - счетного устройства, блока памяти и вторичной системы хранения информации. Большое значение имеет пропускная способность каналов, которая связывает их друг с другом и с терминалами потребителей. Важным показателем компьютера является быстродействие, которое измеряется флопсами. Флопс - внесистемная единица, используемая для измерения производительности компьютеров, показывающая, сколько операций с плавающей запятой в секунду выполняет данная вычислительная система. Для чего нужны суперкомпьютеры? Расширение границ человеческого знания всегда опиралось на теорию и опыт. Но теперь ученые сталкиваются с тем, что многие испытания стали невозможными - в некоторых случаях из-за своих масштабов, в других - дороговизны или опасности для здоровья и жизни людей. Тут-то и нашли применение мощным компьютерам. Они позволяют экспериментировать, становятся опорой современной науки и производства. Иногда суперкомпьютеры используются для работы с одним-единственным приложением; в других случаях они обеспечивают выполнение большого числа разнообразных приложений.

Суперкомпьютер – это компьютер, способный производить сотни миллиардов опе.

Суперкомпьютер – это компьютер, способный производить сотни миллиардов операций за 1 с. Такие большие объёмы вычислений нужны для решения задач в аэродинамике, метеорологии, физике высоких энергий, геофизике. Суперкомпьютеры так же нашли своё применение в финансовой сфере при обработке больших объёмов сделок на биржах. Сверхвысокое быстродействие суперкомпьютера обеспечивается параллельной работой множества микропроцессоров. Суперкомпьютеры – это не выдумка. Хотя суперкомпьютеры не используются обычными людьми в повседневной жизни, их влияние, как на все человечество, так и на каждого из нас очень заметно. Вернее, стало бы заметно, если бы они в один миг исчезли или сломались. Суперкомпьютеры – это современные вычислительные машины с высокой мощностью и скоростью обработки данных. Они не выпускаются большими партиями и не продаются в магазинах. Каждый суперкомпьютер уникален, так как разрабатывается и изготавливается под конкретный заказ, для решения определенной задачи. Суперкомпьютеры могут быть как микроскопически малы, так и занимать несколько комнат или даже этажей, все зависит от функций и задач, которые будет решать электронная техника. Суперкомпьютер что это?

Изобретателем суперкомпьютера является американский инженер С.Крей. В 1972 го.

Первым отечественным суперкомпьютером является БЭСМ-6, выпущенный в 1967 году.

Первым отечественным суперкомпьютером является БЭСМ-6, выпущенный в 1967 году под руководством, гениального инженера Сергея Алексеевича Лебедева. Данная машина, по формальной производительности сопоставимая с CDC 6600, реально намного превосходила своего иностранного конкурента. В данном компьютере было заложено так много инновационных решений, что её производство продолжалось на протяжении двадцати лет! Попытка американских инженеров создать что-либо совершеннее БЭСМ-6, носившая имя ILLIAC-IV, окончилась неудачей: данный суперкомпьютер оказалась дороже, сложнее и медленнее "русской машины". БЭСМ-6 не была единственным советским суперкомпьютером. В последние годы своей жизни Лебедев руководил работами по созданию многопроцессорного комплекса "Эльбрус", однако в 1974 году смерть помешала ему увидеть результаты своих трудов. Работы над первым компьютером серии "Эльбрус" завершились в 1979 году, и, хотя по производительности он, равно как и другие компьютеры серии, отставали от зарубежных аналогов, в его процессоре впервые была применена технология суперскалярности. Суперскалярная архитектура, то есть технология параллельного выполнения нескольких команд, независимых друг от друга, вскоре была реализована в большинстве процессоров для персональных компьютеров; таким образом, в процессорах Intel и AMD есть частичка нашего, русского, инженерного знания.

Но, перестройка, раскол Советского Союза и последовавшие за ним события край.

Но, перестройка, раскол Советского Союза и последовавшие за ним события крайне негативно отразились на отечественной суперкомпьютерной промышленности. Прощальным приветом отечественных инженеров-электронщиков можно считать появившийся в 1990-х процессор Elbrus 2000 (E2K) , который так и не смог выйти на рынок: сначала помешал кризис, ну а затем, когда казалось, что "вот уже чуть-чуть", команду "Эльбруса" на корню купила Intel. На данный момент все существующие в России суперкомпьютеры либо зарубежного производства, либо основаны на зарубежных комплектующих и технологиях. Оправившись от кризиса, индустрия производства суперкомпьютеров принялась за штурм новых высот. В 1997 году был создан суперкомпьютер ASCI RED, обладавший неслыханной тогда производительностью в 1,34 ТФЛОПС. Однако самое интересное, что данный компьютер был построен на базе почти что десяти тысяч процессоров Pentium II , тех самых, которых можно было спокойно найти в любом топовом ПК тех лет. Подобная система объединения вычислительных мощностей относительно недорогих процессоров получила название MassivelyParallelProc essing, или просто MPP. Преимущество MPP-систем - в их гибкости: незагруженные процессорные блоки можно легко отключить, а по возможности - включить заново, а вдобавок подключить дополнительные. На данный момент большинство суперкомпьютеров было построено именно на базе данной технологии.

Шло время, и производители выпускали всё более и более новые суперкомпьютеры.

Шло время, и производители выпускали всё более и более новые суперкомпьютеры, которые задавали новые стандарты производительности. Символический барьер в один ПентаФЛОПС был преодолён в 2008 году компьютером Roadrunner от IBM. Характеристики данной машины, мягко говоря, шокируют: почти 100 Тб оперативной памяти, около 20 000 процессоров. Удивляет и то, что всё это работает под управлением Linux-систем RedHat и Fedora, причём тех же самых версий, что устанавливаются на домашние компьютеры. Однако Roadrunner не является самым быстрым суперкомпьютером на сегодняшний день. Согласно рейтингу самых мощных компьютеров Top-500, наиболее производительным является японский суперкомпьютер K производства Fujitsu, запущенный в эксплуатацию незадолго до написания этих строк. Этот 70 000-процессорный гигант (причём процессоры, стоит заметить, все до одного восьмиядерные) на момент написания статьи обладал безумной производительностью в 8,162 ПФЛОПС. Даже не хватает воображения, что бы представить, чем же можно нагрузить подобную махину. Впрочем, на это есть учёные - перед ними стоят ещё очень много неразрешённых вопросов.

Сферы применения суперкомпьютеров Традиционной сферой внедрения суперкомпью.

Сферы применения суперкомпьютеров Традиционной сферой внедрения суперкомпьютеров постоянно были исследования: физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория простых частиц, газовая динамика и теория турбулентности, астрофизика. В химии - разные области вычислительной химии: квантовая химия (включая расчеты электронной структуры для целей конструирования новейших материалов, к примеру, катализаторов и сверхпроводников), молекулярная динамика, хим. кинетика, теория поверхностных явлений и химия твердого тела, конструирование фармацевтических средств. Естественно, что ряд областей внедрения находится на стыках соответственных наук, к примеру, химии и биологии, и перекрывается с техническими приложениями. Так, задачи метеорологии, исследование атмосферных явлений и, сначала, задача длительного прогноза погоды, для решения которой постоянно не хватает мощностей современных суперЭВМ, тесновато соединены с решением ряда вышеперечисленных проблем физики. Посреди технических проблем, для решения которых употребляются суперкомпьютеры, укажем на задачи аэрокосмической и авто индустрии, ядерной энергетики, предсказания и разработки месторождений нужных ископаемых, нефтедобывающей и газовой индустрии.

Суперкомпьютеры обычно используются для военных целей. Не считая тривиальных.

Суперкомпьютеры обычно используются для военных целей. Не считая тривиальных задач разработки орудия массового ликвидирования и конструирования самолетов и ракет, можно упомянуть, к примеру, конструирование бесшумных подводных лодок и др. Самый известный пример - это южноамериканская программа СОИ. Уже упоминавшийся MPP-компьютер Министерства энергетики США будет применяться для моделирования ядерного орудия, что дозволит, в общем, отменить ядерные тесты в данной стране. Еще есть одна неувязка внедрения суперЭВМ, о которой нужно огласить - это визуализация данных, приобретенных в итоге выполнения расчетов. Нередко, к примеру, при решении дифференциальных уравнений способом сеток, приходится сталкиваться с циклопическими размерами результатов, которые в числовой форме человек просто не в состоянии обработать. Тут во почти всех вариантах нужно обратиться к графической форме представления информации. В любом случае возникает задача транспортировки информации по компьютерной сети. Решению этого комплекса проблем в ближайшее время уделяется все большее внимание. А именно, известный Государственный центр суперкомпьютерных приложений США (NCSA) вместе с компанией SiliconGraphics ведет работы по программе "суперкомпьютерного окружения грядущего". В этом проекте предполагается интегрировать способности суперкомпьютеров POWER CHALLENGE и средств визуализации компании SGI со средствами информационной супермагистрали.

Биология и медицина. Современные медицинские исследования, новейшие разработ.

Биология и медицина. Современные медицинские исследования, новейшие разработки и научные открытия стали возможны именно благодаря суперкомпьютерам, которые позволяют проводить своевременную диагностику, с большим процентом вероятности прогнозировать ход болезни и реакцию организма на лечение. Суперкомпьютеры позволяют моделировать процессы, происходящие в жизненно важных органах, чтобы понять основной принцип их работы и эффективно бороться с патологиями. В биологии суперкомпьютеры, микрочипы и электронные микроскопы используются для изучения процессов, происходящих на клеточном уровне, что дает большие возможности для серьезнейших научных открытий, способных изменить современную науку. В медицине и биологии суперкомпьютеры больше нужны именно для исследовательской работы, хотя, некоторые крупные клиники могут позволить себе использовать такие машины и для решения прикладных задач: диагностики и лечения.

Космическое пространство. Суперкомпьютеры нужны не только для фиксирования да.

Космическое пространство. Суперкомпьютеры нужны не только для фиксирования данных на борту космических станций и обеспечения эффективности работы этих грандиозных сооружений. Мощнейшая вычислительная техника позволяет проектировать новые орбитальные и межпланетные станции, выстраивать данные оптимальной траектории движения станций, изучать процессы, влияющие на геомагнитный фон Земли, отслеживать и предугадывать всплески солнечной активности и выявить их закономерности. При разработке новых моделей космических станций и искусственных спутников, суперкомпьютеры проводят серьезную работу по моделированию и прогнозированию всех возможных ситуаций, обеспечивая, таким образом, безопасность полета.

Климат и погода. Благодаря суперкомпьютерам стало возможно очень точно предс.

Климат и погода. Благодаря суперкомпьютерам стало возможно очень точно предсказывать погод у. Цифровая обработка данных, полученных на метеорологических станциях, производится в кратчайшие сроки, что дает шанс заглянуть в будущее и предупредить людей о возможных погодных неприятностях. Эта работа суперкомпьютеров тесно связана с прогнозами стихийных бедствий, которые способны спасти жизнь многих людей. Стихийные бедствия и экологические катастрофы. Современные мощные суперкомпьютеры дают возможность с большой долей вероятности прогнозировать природные катаклизмы: землетрясения, цунами, пожары, наводнения и штормы. Чем раньше люди получат информацию о надвигающейся беде, чем больше у них шансов спастись.

Промышленность. Благодаря суперкомпьютерам наша жизнь становится более комфор.

Промышленность. Благодаря суперкомпьютерам наша жизнь становится более комфортабельной и безопасной, ведь именно эти машины помогают разрабатывать новые модели автомобилей и самолетов. Исследование аэродинамических свойств, устойчивости, маневренности, способы сочетать эти качества в оптимальной пропорции могут только суперкомпьютеры. Суперкомпьютеры имеют большое влияние на жизнь современного человека, хотя мало кто об этом задумывается. Сидя в новом автомобиле и слушая по радио прогнозы погоды, отправляясь в поездку с GPRS навигатором, покупая билет на самолет к теплому морю, просматривая по телевизору 500 цифровых каналов, включая чайник, электроэнергия для которого была получена в недрах атомного реактора, люди почти замечают, что пользуются результатами работы сложнейших суперкомпьютеров.

Заключение: Использование суперкомпьютеров в научных сферах позволило прибли.

Заключение: Использование суперкомпьютеров в научных сферах позволило приблизиться к моделированию систем на атомарном уровне. Уже доступны квантово-механические расчеты систем из сотен тысяч атомов. Моделирование становится незаменимым инструментом при проектировании нано систем с необходимыми свойствами. Любые достижения в области нано технологий недоступны без вычислительной мощности суперкомпьютеров, просто потому, что многие процессы нельзя замерить - их можно только смоделировать в виртуальном пространстве. Тем не менее, почти за 50 лет существования суперкомпьютеров, человечество не победило старость, не нашло лекарство от многих смертельных болезней, не нашло замену бензина, и даже не научилось противодействовать таким природным явления м, как торнадо, цунами или землетрясение. Чтобы понять полезность суперкомпьютера, должны пройти годы. Смотря на звёзды на ночном небе, мы заглядываем в прошлое, ну а, смотря на современные суперкомпьютеры, мы смотрим в будущее. Так общедоступный ПК сегодняшнего дня может решить все те же задачи, что решал стоящий безумных денег суперкомпьютер в 1990-х. Многоядерность и многопроцессорность, 64-битная архитектура, системы водяного охлаждения - всё это было сначала установлено и опробовано на суперкомпьютерах, а только потом уже перебралось на компьютеры персональные. Фактически, в наши дни весь мир переживает подлинный бум суперкомпьютерных проектов, результатами которых активно пользуются не только такие традиционные потребители высоких технологий, как аэрокосмическая, автомобильная, судостроительная и радиоэлектронная отрасли промышленности, но и важнейшие области современных научных знаний.

Вы можете изучить и скачать доклад-презентацию на тему Суперкомпьютеры и их применение. Презентация на заданную тему содержит 7 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500

Отличия суперкомпьютеров от обычных компьютеров высокая скорость обмена данными между отдельными узлами (до 500 мегабайт в секунду) большой объем оперативной и дисковой памяти архитектура, обеспечивающая параллельность обработки данных и специальное ПО для этих целей. многопроцессорность

Применение Суперкомпьютеров Суперкомпьютеры используются во всех сферах, где для решения задачи применяется численное моделирование; там, где требуется огромный объем сложных вычислений, обработка большого количества данных в реальном времени, или решение задачи может быть найдено простым перебором множества значений множества исходных параметров

Вычислительная биология: фолдинг белка, расшифровка ДНК Вычислительная биология: фолдинг белка, расшифровка ДНК Вычислительная химия и медицина: изучение строения вещества и природы химической связи как в изолированных молекулах, так и в конденсированном состоянии, поиск и создание новых лекарств Физика: газодинамика: турбины электростанций, горение топлива, аэродинамические процессы для создания совершенных форм крыла, фюзеляжей самолетов, ракет, кузовов автомобилей гидродинамика: течение жидкостей по трубам, по руслам рек материаловедение: создание новых материалов с заданными свойствами, анализ распределения динамических нагрузок в конструкциях, моделирование крэш-тестов при конструировании автомобилей

Суперкомпьютеры и их применение

Первый слайд презентации: Суперкомпьютеры и их применение

Суперкомпьютеры и их применение

Слайд 2: Суперкомпьютеры хх в

Суперкомпьютер – это мощная ЭВМ с производительностью свыше 10 MFLOPS(миллионов операций с плавающей запятой в секунду). То есть супер-ЭВМ – это вычислительная система, которая позволяет производить сложные расчеты за более короткие промежутки времени. Каждая компьютерная система состоит из 3-х основных частей: центрального процессора, то есть счетного устройства, блока памяти и вторичной системы хранения информации (к примеру, в виде дисков или лент). Но главную роль играют не только технические параметры каждого из этих элементов, но и пропускная способность каналов, связывающих их друг с другом и с терминалами потребителей. Суперкомпьютеры хх в

Суперкомпьютеры хх в

Слайд 3: Для чего ЭВМ

А для чего вообще нужны суперЭВМ ? Повышение уровня человеческих знаний всегда опиралось на опыт и теорию. Однако теперь ученые сталкиваются с тем, что многие испытания стали практически невозможными − в некоторых случаях из-за своих масштабов, в других − дороговизны или опасности для здоровья и жизни людей. Именно тут нашли применение суперкомпьютерам. Они позволяют экспериментировать с электронными моделями реальной действительности и становятся опорой современной науки и производства. Для чего ЭВМ

Для чего ЭВМ

Слайд 4: Параллельно-векторная модификация

Параллельно-векторная модификация

Слайд 5: Иерархия памяти

. Иерархия памяти прямого отношения к параллелизму не имеет, но, тем не менее, относится к тем особенностям архитектуры компьютеров, которые имеют огромное значение для повышения их производительности (сглаживание разницы между временем выборки из памяти и скоростью работы процессора). Основные уровни: регистры, кэш-память, оперативная память, дисковая память. Время выборки по уровням памяти от дисковой памяти к регистрам уменьшается, стоимость в пересчете на 1 слово (байт) растет. В настоящее время, подобная иерархия поддерживается даже на персональных компьютерах. В настоящее время используются: Векторно-конвейерные компьютеры. Функциональные конвейерные устройства и набор векторных команд Массивно-параллельные компьютеры с распределенной памятью. Параллельные компьютеры с общей памятью. Вся оперативная память таких компьютеров разделяется несколькими одинаковыми процессорами Использование параллельных вычислительных систем Иерархия памяти

Иерархия памяти

Слайд 6: Сферы применения суперкомпьютеров

Сначала супер- ЭВМ применялись только для оборонных задач: расчёты по ядерному и термоядерному оружию, ядерным реакторам. Позже, по ходу совершенствования математического аппарата численного моделирования и развития знаний в других сферах науки, супер - ЭВМ стали применяться и в обычных расчётах, основывая и создавая новые научные дисциплины, например, численный прогноз погоды, вычислительная биология и медицина, вычислительная химия, вычислительная гидродинамика, вычислительная лингвистика и т.п. Сферы применения суперкомпьютеров

Слайд 7: Применение компьютеров

Исследование ядерных процессов, моделирование цепной реакции и ядерного взрыва дают ученым богатый материал для исследования этих удивительных, но опасных явлений. Изучение молекулярной структуры белка помогает сделать немало важных и ценных для человечества открытий, определить причины и механизмы генетически обусловленных заболеваний Виртуальные модели кровеносной системы человека исследуются врачами и биологами для того, чтобы получить эффективные способы борьбы с заболеваниями сердца и сосудов Применение компьютеров

Применение компьютеров

Слайд 8: ТОР-500

TOP-500 – это проект по составлению рейтинга и описаний пятиста самых мощных общественно известных компьютерных систем мира. Проект был запущен в 1993 г. и публикует актуальный список суперкомпьютеров дважды в год (в июне и ноябре). Этот проект направлен на обеспечение надежной основы для выявления и отслеживания тенденций в области высокопроизводительных вычислений. Основой для рейтинга являются результаты исполнения теста LINPACK (HPL), решающего большие СЛАУ (системы линейных алгебраических уравнений). ТОР-500

Слайд 9: Связь нашей жизни с компьютерами

Благодаря суперкомпьютерам наша жизнь становится более комфортабельной и безопасной, так как именно эти машины помогают разрабатывать новые модели автомобилей и самолетов. Исследование аэродинамических свойств, устойчивости, маневренности, способы сочетать эти качества в оптимальной пропорции могут только суперкомпьютеры. Супер-ЭВМ имеют большое влияние на жизнь современного человека, но мало, кто об этом задумывается. Сидя в новом автомобиле и слушая по радио прогнозы погоды, отправляясь в поездку с GPRS навигатором, покупая билет на самолет к теплому морю, просматривая по телевизору 500 цифровых каналов, включая чайник, электроэнергия для которого была получена в недрах атомного реактора, люди почти не замечают, что пользуются результатами работы сложнейших суперкомпьютеров. Суперкомпьютеры в России Связь нашей жизни с компьютерами

Связь нашей жизни с компьютерами

Слайд 10: Погода -компьютеры

Применение суперкомпьютеров в прогнозировании погоды. С помощью суперкомпьютеров стало возможно очень точно предсказывать погоду. Цифровая обработка данных, полученных на метеорологических станциях, производится в кратчайшие сроки, что дает шанс заглянуть в будущее и предупредить людей о возможных погодных неприятностях. Эта работа суперкомпьютеров тесно связана с прогнозами стихийных бедствий, которые способны спасти жизнь многих людей. Супер-ЭВМ в промышленности. Погода -компьютеры

Погода -компьютеры

Слайд 11: Космос-компьютеры

Применение суперкомпьютеров в космическом пространстве. Помощь суперкомпьютеров нужна не только для фиксирования данных на борту космических станций и обеспечения эффективности работы этих грандиозных сооружений. Эта мощнейшая техника позволяет проектировать новые орбитальные и межпланетные станции, выстраивать данные оптимальной траектории движения станций, изучать процессы, которые влияют на геомагнитный фон Земли, отслеживать и предугадывать всплески солнечной активности и выявлять их закономерности. При разработке новых моделей космических станций и искусственных спутников, суперкомпьютеры проводят серьезную работу по моделированию и прогнозированию всех возможных ситуаций, обеспечивая, таким образом, безопасность полета. Космос-компьютеры

Слайд 12: Компьютеры в медицине

Суперкомпьютеры позволяют моделировать процессы, происходящие в жизненно важных органах для того, чтобы понять основной принцип их работы и эффективно бороться с патологиями. В биологии суперкомпьютеры, микрочипы и электронные микроскопы используются для изучения процессов, которые происходят на клеточном уровне. Это дает большие возможности для серьезнейших научных открытий, способных изменить современную науку. В медицине и биологии суперкомпьютеры больше нужны именно для исследовательской работы, хотя, некоторые крупные клиники могут позволить себе использовать такие машины и для решения прикладных задач: диагностики и лечения. Компьютеры в медицине

Компьютеры в медицине

Слайд 13: Векторно-конвейерные компьютеры

. Функциональные конвейерные устройства и набор векторных команд Массивно-параллельные компьютеры с распределенной памятью. Параллельные компьютеры с общей памятью. Вся оперативная память таких компьютеров разделяется несколькими одинаковыми процессорами Использование параллельных вычислительных систем Векторно-конвейерные компьютеры

Векторно-конвейерные компьютеры

Слайд 14: Конвейерная обработка

. Целое множество мелких операций (таких как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п.) процессоры первых компьютеров выполняли для каждой пары аргументов последовательно одна за одной до тех пор, пока не приходили к окончательному результату, и лишь после этого переходили к обработке следующей пары слагаемых. Конвейерная обработка

Конвейерная обработка

Последний слайд презентации: Суперкомпьютеры и их применение: ЗАКЛЮЧЕНИЕ

В наше время в суперкомпьютерном мире наблюдается новая волна, которая вызвана как успехами в области микропроцессорных технологий, так и появлением нового круга задач, выходящих за рамки традиционных научно-исследовательских лабораторий. Налицо мгновенное развитие в производительности микропроцессоров RISC-архитектуры, растущее заметно быстрее, чем производительность векторных процессоров. Тем не менее, вероятно, будет продолжаться развитие векторных супер-ЭВМ, по крайней мере от Cray Research. Вероятно, оно начинает сдерживаться из-за требований совместимости со старыми моделями. Успешно развиваются системы на базе Mpp -архитектур, в том числе с распределенной памятью. Возникновение новых высокопроизводительных микропроцессоров, использующих недорогую КМОП-технологию, что значительно увеличивает конкурентоспособность данных систем. Ведь ранее супер компьютеры были вроде элитарного штучного инструмента, который был доступен в основном ученым из засекреченных ядерных центров и криптоаналитикам спецслужб. Но развитие аппаратных и программных средств сверхвысокой производительности позволило освоить промышленный выпуск этих машин, а число их пользователей в настоящее время достигает десятков тысяч. Фактически, в наше время все общество переживает подлинный бум суперкомпьютерных проектов, результатами которых активно пользуются не только такие традиционные потребители высоких технологий, как автомобильная, аэрокосмическая, радиоэлектронная и судостроительная отрасли промышленности, но и важнейшие области современных научных знаний. ЗАКЛЮЧЕНИЕ

Нажмите, чтобы узнать подробности

Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках реализации распараллеливания вычислительной задачи.

Суперкомпьютер Cray-2 – самый мощный компьютер 1985-1989 годов

Применение Область применения суперкомпьютеров поистине всеобъемлющая. Они могут быть как серверами крупнейших IT-компаний, так и применяться в научной сфере в качестве вычислительных машин и тестирования новейших разработок, например, вооружения Лидером по количеству суперкомпьютеров в топ-500 мира считается Китай(173), на 2 месте – США(149), Япония – на 3 месте(32). Россия же занимает 10 строчку с 7 суперкомпьютерами. Японский суперкомпьютер Фугаку(2020) – самый мощный компьютер в мире. Работает в Центре вычислительных наук Института физико-химических исследований

  • Область применения суперкомпьютеров поистине всеобъемлющая. Они могут быть как серверами крупнейших IT-компаний, так и применяться в научной сфере в качестве вычислительных машин и тестирования новейших разработок, например, вооружения

Лидером по количеству суперкомпьютеров в топ-500 мира считается Китай(173), на 2 месте – США(149), Япония – на 3 месте(32). Россия же занимает 10 строчку с 7 суперкомпьютерами.

Японский суперкомпьютер Фугаку(2020) – самый мощный компьютер в мире. Работает в Центре вычислительных наук Института физико-химических исследований

Самые мощные российские суперкомьютеры Самым мощным компьютером России является Червоненкис, принадлежащий Яндексу(19 место в топ-500). 2 и 3 место в России также занимают 2 суперкомпьютера Яндекса Галушкин и Ляпунов. Ещё 2 суперкомпьютера принадлежат Сбербанку, один – МТС и один – МГУ. Также стоит отметить, суперкомпьютер Национального центра управления обороной России, имеющий производительность на уровне 16 петафлопс и по утверждению компетентных лиц являющийся самым мощным военным суперкомпьютером в мире, не участвует в рейтинге Top500. Тем не менее по факту на ноябрь 2021 года является третьим по производительности суперкомпьютером в России. Суперкомпьютер Яндекса Червоненкис(2021) – самый мощный в РФ

Самые мощные российские суперкомьютеры

  • Самым мощным компьютером России является Червоненкис, принадлежащий Яндексу(19 место в топ-500). 2 и 3 место в России также занимают 2 суперкомпьютера Яндекса Галушкин и Ляпунов.

Ещё 2 суперкомпьютера принадлежат Сбербанку, один – МТС и один – МГУ. Также стоит отметить, суперкомпьютер Национального центра управления обороной России, имеющий производительность на уровне 16 петафлопс и по утверждению компетентных лиц являющийся самым мощным военным суперкомпьютером в мире, не участвует в рейтинге Top500. Тем не менее по факту на ноябрь 2021 года является третьим по производительности суперкомпьютером в России.

Читайте также: