Строение скелетных мышц реферат

Обновлено: 05.07.2024

Чтобы ни делал человек - шел, бежал, управлял машиной, копал землю, писал, - все свои действия он совершает при помощи скелетных мышц. Эти мышцы - активная часть опорно-двигательного аппарата. Они удерживают тело в вертикальном положении, позволяют принимать разнообразные позы. Мышцы живота поддерживают и защищают внутренние органы, т.е. выполняют опорную и защитную функции. Мышцы входят в состав стенок грудной и брюшной полостей, в состав стенок глотки, обеспечивают движения глазных яблок, слуховых косточек, дыхательные и глотательные движения. Это только неполный перечень функций скелетных мышц.

Поэтому неудивительно, что масса скелетной мускулатуры у взрослого человека составляет 30-35% массы тела. У человека более 600 скелетных мышц, образованы они поперечно-полосатой мышечной тканью.

Строение скелетных мышц

1 - Схема строения мышечного волокна:

2 - Схема строения миофибриллы:

г - мостик между ними

д - нервное волокно

Каждая мышца состоит из параллельных пучков поперечно-полосатых мышечных волокон. Каждый пучок одет оболочкой. И вся мышца снаружи покрыта тонкой соединительнотканной оболочкой, защищающей нежную мышечную ткань. Каждое мышечное волокно также имеет снаружи тонкую оболочку, а внутри него находятся многочисленные тонкие сократительные нити - миофибриллы и большое количество ядер. Миофибриллы, в свою очередь, состоят из тончайших нитей двух типов - толстых (белковые молекулы миозина) и тонких (белок актина). Так как они образованы различными видами белка, под микроскопом видны чередующиеся темные и светлые полосы. Отсюда и название скелетной мышечной ткани - поперечно-полосатая. У человека скелетные мышцы состоят из волокон двух типов - красных и белых. Они различаются составом и количеством миофибрилл, а главное - особенностями сокращения. Так называемые белые мышечные волокна сокращаются быстро, но быстро и устают; красные волокна сокращаются медленнее, но могут оставаться в сокращенном состоянии долго. В зависимости от функции мышц в них преобладают те или иные типы волокон. Мышцы выполняют большую работу, поэтому они богаты кровеносными сосудами, по которым кровь снабжает их кислородом, питательными веществами, выносит продукты обмена веществ. Мышцы крепятся к костям с помощью нерастяжимых сухожилий, которые срастаются с надкостницей. Обычно мышцы одним концом крепятся выше, а другим ниже сустава. При таком креплении сокращение мышц приводит в движение кости в суставах.

2. Основные группы мышц

В зависимости от расположения мышцы можно разделить на следующие большие группы: мышцы головы и шеи, мышцы туловища и мышцы конечностей.

Мышечная система человека

1. Поверхностный сгибатель пальцев.

2. Большая грудная мышца.

3. Дельтовидная мышца.

4. Двуглавая мышца плеча.

5. Фиброзная пластинка.

6. Лучевой сгибатель пальцев.

7. Передняя зубчатая мышца.

8. Четырёхглавая мышца.

9. Портняжная мышца бедра.

10. Передняя большеберцовая мышца.

11. Крестообразная мышца.

12. Икроножная мышца.

13. Двуглавая мышца.

14. Большая ягодичная мышца.

15. Наружная косая мышца живота.

16. Трёхглавая мышца плеча.

17. Двуглавая мышца бедра.

18. Дельтовидная мышца.

19. Трапециевидная мышца.

20. Подостная мышца.

21. Ромбовидная мышца.

22. Двуглавая мышца плеча.

К мышцам туловища относят мышцы спины, груди и живота. Различают поверхностные мышцы спины (трапециевидная, широчайшая и др.) и глубокие мышцы спины. Поверхностные мышцы спины обеспечивают движение конечностей и отчасти головы и шеи; глубокие мышцы располагаются между позвонками и ребрами и при своем сокращении вызывают разгибание и вращение позвоночника, поддерживают вертикальное положение тела.

Мышцы груди подразделяют на прикрепляющиеся к костям верхних конечностей (большая и малая грудные мышцы, передняя зубчатая и др.), осуществляющие движение верхней конечности, и собственно мышцы груди (большая и малая грудные мышцы, передняя зубчатая и др.), изменяющие положение ребер и тем самым обеспечивающие акт дыхания. К этой группе мышц относят также диафрагму, располагающуюся на границе грудной и брюшной полости. Диафрагма - дыхательная мышца. При сокращении она опускается, ее купол уплощается (объем грудной клетки увеличивается - происходит вдох), при расслабленном состоянии она поднимается и принимает форму купола (объем грудной клетки уменьшается - происходит выдох). В диафрагме имеются три отверстия - для пищевода, аорты и нижней полой вены.

Мышцы верхней конечности подразделяют на мышцы плечевого пояса и свободной верхней конечности. Мышцы плечевого пояса (дельтовидная и др.) обеспечивают движение руки в области плечевого сустава и движение лопатки. Мышцы свободной верхней конечности содержат мышцы плеча (передняя группа мышц-сгибателей в плечевом и локтевом суставе - двуглавая мышца плеча и др.); мышцы предплечья также делят на две группы (переднюю - сгибатели кисти и пальцев, заднюю - разгибатели); мышцы кисти обеспечивают разнообразные движения пальцев.

Мышцы нижней конечности подразделяют на мышцы таза и мышцы свободной нижней конечности (мышцы бедра, голени, стопы). К мышцам таза относят подвздошно-поясничную, большую, среднюю и малую ягодичные и др. Они обеспечивают сгибание и разгибание в тазобедренном суставе, а также сохранение вертикального положения тела. На бедре различают три группы мышц: переднюю (четырехглавая мышца бедра и другие разгибают голень и сгибают бедро), заднюю (двуглавая мышца бедра и другие разгибают голень и сгибают бедро) и внутреннюю группу мышц, которые приводят бедро к средней линии тела и сгибают тазобедренный сустав. На голени также различают три группы мышц: переднюю (разгибают пальцы и стопу), заднюю (икроножную, камбаловидную и др., сгибают стопу и пальцы), наружные (сгибают и отводят стопу).

Среди мышц шеи выделяют поверхностную, среднюю (мышцы подъязычной кости) и глубокую группы. Из поверхностных наиболее крупная грудино-ключично-сосцевидная мышца наклоняет назад и поворачивает голову в сторону. Мышцы, расположенные выше подъязычной кости, образуют нижнюю стенку ротовой полости и опускают нижнюю челюсть. Мышцы, расположенные ниже подъязычной кости, опускают подъязычную кость и обеспечивают подвижность кортанных хрящей. Глубокие мышцы шеи наклоняют или поворачивают голову и поднимают первое и второе ребра, действуя как дыхательные мышцы.

Мышцы головы составляют три группы мышц: жевательные, мимические и произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха). Жевательные мышцы приводят в движение нижнюю челюсть. Мимические мышцы прикрепляются одним концом к коже, другим - к кости (лобная, щечная, скуловая и др.) или только к коже (круговая мышца рта). Сокращаясь, они изменяют выражение лица, учавствуют в замыкании и расширении отверстий лица (глазниц, рта, ноздрей), обеспечивают подвижность щек, губ, ноздрей.

Мышечная система человека

3. Работа мышц

Мышечная система человека

Мышцы, сокращаясь или напрягаясь, производят работу. Она может выражаться в перемещении тела или его частей. Такая работа совершается при поднятии тяжестей, ходьбе, беге. Это динамическая работа. При удерживании частей тела в определенном положении, удерживания груза, стоянии, сохранении позы совершается статическая работа. Одни и те же мышцы могут выполнять и динамическую, и статическую работу. Сокращаясь, мышцы приводят в движение кости, действуя на них, как на рычаги. Кости начинают двигаться вокруг точки опоры под влиянием приложенной к ним силы. Движение в любом суставе обеспечивается как минимум двумя мышцами, действующими в противоположных направлениях. Их называют мышцы-сгибатели и мышцы-разгибатели. Например, при сгибании руки двуглавая мышца плеча сокращается, а трехглавая мышца расслабляется. Это происходит потому, что возбуждение двуглавой мышцы через центральную нервную систему вызывает расслабление трехглавой мышцы. Скелетные мышцы прикрепляются с двух сторон от сустава и при своем сокращении производят в нем движение. Обычно мышцы, осуществляющие сгибание, - флексторы - находятся спереди, а производящие разгибание - экстензоры - сзади от сустава. Только в коленном и голеностопном суставах передние мышцы, наоборот, производят разгибание, а задние - сгибание. Мышцы, лежащие снаружи (латерально) от сустава, - абдукторы - выполняют функцию отведения, а лежащие кнутри (медиально) от него - аддукторы - приведение. Вращение производят мышцы, расположенные косо или поперечно по отношению к вертикальной оси (пронаторы - вращающие внутрь, супинаторы - кнаружи). В осуществлении движения участвует обычно несколько групп мышц. Мышцы, производящие одновременно движение в одном направлении в данном суставе, называют синергистами (плечевая, двуглавая мышцы плеча); мышцы, выполняющие противоположную функцию (двуглавая, треглавая мышца плеча), - антагонистами. Работа различных групп мышц происходит согласованно: так, если мышцы-сгибатели сокращаются, то мышцы-разгибатели в это время расслабляются. "Пускают" мышцы в ход нервные импульсы. В одну мышцу в среднем поступает 20 импульсов в секунду. В каждом шаге, например, принимает участие до 300 мышц и множество импульсов согласует их работу. Количество нервных окончаний в различных мышцах неодинаково. В мышцах бедра их сравнительно мало, а глазодвигательные мышцы, целыми днями совершающие тонкие и точные движения, богаты окончаниями двигательных нервов. Кора полушарий неравномерно связана с отдельными группами мышц. Например, огромные участки коры занимают двигательные области, управляющие мышцами лица, кисти, губ, стопы, и относительно незначительные - мышцами плеча, бедра, голени. Величина отдельных зон двигательной области коры пропорциональна не массе мышечной ткани, а тонкости и сложности движений соответствующих органов. Каждая мышца имеет двойное нервное подчинение. По одним нервам подаются ипмульсы из головного и спинного мозга. Они вызывают сокращение мышц. Другие, отходя от узлов, которые лежат по бокам спинного мозга, регулируют их питание. Нервные сигналы, управляющие движением и питанием мышцы, согласуются с нервной регуляцией кровоснабжения мышцы. Получается единый тройной нервный контроль.

КЛАССИФИКАЦИЯ МЫШЦ ВИД ПРОИЗВОДИМОГО ДВИЖЕНИЯ
сгибатель сгибает конечность, притягивая два скелетных элемента друг к другу
разгибатель распрямляет конечность, оттягивая два скелетных элемента друг от друга
приводящая мышца тянет конечность по направлению к продольной оси тела
отводящая мышца отводит конечность от продольной оси тела
протрактор тянет дистальный отдел конечности вперед
ретрактор оттягивает дистальный отдел конечности назад
ротатор поворачивает конечность целиком или ее часть в одном из суставов

4. Гладкие мышцы

Но, кроме скелетных мышц, в нашем организме в соединительной ткани находятся гладкие мышцы в виде одиночных клеток. В отдельных местах они собраны в пучки. Много

Мышечная система человека

гладких мышц в коже, они расположены у основания волосяной сумки. Сокращаясь, эти мышцы поднимают волосы и выдавливают жир из сальной железы. В глазу вокруг зрачка расположены гладкие кольцевые и радиальные мышцы. Они все время работают: при ярком освещении кольцевые мышцы сужают зрачок, а в темноте сокращаются радиальные мышцы и зрачок расширяется. В стенках всех трубчатых органов - дыхательных путей, сосудов, пищеварительного тракта, мочеиспускательного канала и др. - есть слой гладкой мускулатуры. Под влиянием нервных импульсов она сокращается. Благодаря сокращению и расслаблению гладких клеток стенок кровеносных сосудов их просвет то сужается, то расширяется, что способствует распределению крови в организме. Гладкие мышцы пищевода, сокращаясь, проталкивают комок пищи или глоток воды в желудок. Сложные сплетения гладких мышечных клеток образуются в органах с широкой полостью - в желудке, мочевом пузыре, матке. Сокращение этих клеток вызывает сдавливание и сужение просвета органа. Сила каждого сокращения клеток ничтожна, т.к. они очень малы. Однако сложение сил целых пучков может создать сокращение огромной силы. Мощные сокращения создают ощущение сильной боли. Возбуждение в гладкой мускулатуре распространяется относительно медленно, что обусловливает медленное длительное сокращение мышцы и столь же длительный период расслабления. Мышцы способны также к самопроизвольным ритмическим сокращениям. Растяжение гладкой мускулатуры полого органа при наполнении его содержимым сразу же ведет к ее сокращению – так обеспечивается проталкивание содержимого дальше.

5. Возрастные изменения мышечной системы

Безусловно, с возрастом наш организм изменяется. Изменяется и мышечная система. У взрослого человека скелетная мускулатура составляет более 40% массы тела. При старении интенсивность снижения массы мышц более выражена, чем уменьшение массы тела в целом. Форма мышцы с возрастом изменяется за счет ее уменьшения и соответствующего удлинения сухожилия. В частности, длина ахиллова сухожилия увеличивается с 3,5-4 см у молодых людей до 6-9см - у старых. Прогрессирующее нарастание с возрастом гипотрофии мышц происходит неодинаково в функционально разных мышечных группах. Подобный процесс развивается в основном за счет уменьшения диаметра отдельных мышечных волокон. Так, диаметр мышечного волокна грудной мышцы у людей молодого возраста составляет 40-45 мкм, в 50 лет - 20-25 мкм, 70 лет - 10-20 мкм. Морфологические исследования разных лет показали, что при старении в скелетных мышцах наряду с неизмененными и компенсаторно гипертрофированными мышечными волокнами обнаруживаются в разной степени атрофированные мионы, отмечаются очаговые нарушения четкости поперечной исчерченности и возрастание количества ядер. При электронно-микроскопическом исследовании выявляется нарушение архитектоники взаиморасположения митохондрий и элементов сократительной субстанции. Как и в других органах при старении в скелетных мышцах развиваются компенсаторно-приспособительные перестройки, проявляющиеся увеличением площади ядерных мембран, гипертрофией митохондрий и других органелл. Параллельно с изменениями в мышечных волокнах происходят сдвиги в стенке питающих их кровеносных капилляров, свидетельствующие об измененных условиях транскапиллярного обмена, что, в свою очередь, усугубляет нарушения в мышечных волокнах. Процесс регенерации мышечных элементов в старом организме начинается значительно позже, а замещение соединительной тканью раньше, чем в молодом.

Долгое время существовало представление, что мышца при сокращении черпает энергию из своей структуры, разрушаясь. Затем эти воззрения были вытеснены сведениями о метаболических превращениях в процессе мышечной деятельности. К настоящему времени уже невозможно рассматривать биохимические процессы в мышечных волокнах безотносительно их строения, метаболический цикл жестко привязан к месту, а последовательность превращений в нем - к структурным особенностям ферментных рядов.

В зависимости от проявления специфической функции мышц происходит в разной степени выраженности физиологическое обратимое разрушение их ультраструктуры - деградация митохондрий, контрактуры отдельных миофиламентов, разрывы капилляров, локальные нарушения целостности Т-систем. При интенсивной деятельности могут отмечаться выраженные повреждения отдельных мышечных волокон, микрокровоизлияния. Чрезвычайно важным для определения возрастного оптимума сократительной функции является установление границы обратимости этих нарушений, так как одни поломки восстанавливаются бесследно, а другие ведут к постепенной утрате специфичности ткани и последующему склерозированию. Изучение ферментативной активности в мышечной ткани при старении показало наличие весьма сложных перестроек, направленных на сохранение гомеостаза организма.

Принципиально важным является положение о первичных нейронных возрастных сдвигах при старении нервно-мышечной системы, которые приводят к ухудшению связи между нервной и мышечной клетками и определяют сенильные изменения скелетных мышц, наименее выраженные в волокнах диафрагмы, что связано с первичным регулирующим влиянием нейронной импульсной активности, продолжительно форсированной во время акта дыхания.

При старении комплекс нервных механизмов регуляции активности мотонейронов переходит на более низкие частоты. Описанные изменения зависят от медленно прогрессирующих нарушений нервно-мышечного контакта, уменьшения размеров сенильной двигательной единицы, а также диаметра мышечных волокон. В частности, уменьшение в размерах (но не в количестве двигательных единиц) объясняет, почему в сенильных мышцах не обнаруживаются потенциалы фибрилляций. Развитие возрастных изменений в двигательной единице, которое сопровождается ухудшением сократительных свойств мышечных волокон, компенсируется реиннервацией, поэтому их плотность в двигательной единице при старении увеличивается. Данные об изменениях морфо-функционального профиля скелетных мышц при старении организма в какой-то мере могут объяснить особенности чувствительности мышц к гипоксии на поздних этапах онтогенеза. Развивается своеобразная адаптация к этому фактору, выражающаяся в меньшем уровне кровотока, необходимом для поддержания устойчивой работоспособности.

Возрастные изменения в нервно-мышечной системе связаны с характерными сдвигами на всех уровнях: от мышечного волокна до нервных клеток самых высоких отделов центральной нервной системы. Они зависят от нарастающих при старении метаболических сдвигов в организме и связаны со сложной системой перестройки в регуляции функций. В старости сохраняется способность нервно-мышечного аппарата к адаптации под влиянием физической тренировки. Возрастные изменения сердечно-сосудистой и нервной систем, костно-мышечного аппарата приводят к различным болевым ощущениям, физической слабости, психической утомляемости, замедленной моторике. С возрастом мышцы теряют силу, атрофируются.

Список литературы

Васильев А.Н. Мышечная система человека. – М., 1998.

Шувалова Н.В. Строение человека. – М.: Олма-пресс, 2000.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Строение мышцы. Мышца как орган.

Мышца состоит из пучков исчерченных (поперечнополосатых) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью (endomysium) в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка и т. д. В целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой — perimysium, составляя мышечное брюшко.

Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.

Строение мышцы. Мышца как орган.

В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы. В мышечные ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).

В мышце различают активно сокращающуюся часть — брюшко и пассивную часть, при помощи которой она прикрепляется к костям, — сухожилие. Сухожилие состоит из плотной соединительной ткани и имеет блестящий светло-золотистый цвет, резко отличающийся от красно-бурого цвета брюшка мышцы. В большинстве случаев сухожилие находится по обоим концам мышцы. Когда же оно очень короткое, то кажется, что мышца начинается от кости или прикрепляется к ней непосредственно брюшком. Сухожилие, в котором обмен веществ меньше, снабжается сосудами беднее брюшка мышцы.

Таким образом, скелетная мышца состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани (perimysium, сухожилие), из нервной (нервы мышц), из эндотелия и гладких мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой (сократимость) и определяет функцию мускула как органа сокращения. Каждая мышца является отдельным органом, т. е. целостным образованием, имеющим свою определенную, присущую только ему форму, строение, функцию, развитие и положение в организме.

В теле человека отличают три вида мышечной ткани: скелетная (поперечнополосатая), гладкая и мышца сердца. В данной работе будут разобраны скелетные мышцы, которые сформировывают мускулатуру опорно-двигательного аппарата, составляют стены нашего туловища и некоторых внутренних органов (пищевого тракта, глотки, гортани). В случае если всю мышечную ткань принять за 100%, то на часть скелетных мышц приходится более половины (52%), гладкая мышечная ткань составляет 40%, сердечная мышца – 8%. Масса скелетных мышц с возрастом наращивается (вплоть до зрелого возраста), а у пожилых людей мышцы атрофируются, так как имеет место функциональная зависимость массы мышц от их функции. У взрослого человека скелетные мышцы составляют 40-45% от общей массы туловища, у новорожденного – 20-24%, у стариков – 20-30%, а у спортсменов (в особенности представителей скоростно-силовых видов спорта) – 50% и более [3].
Степень развития мускулатуры находится в зависимости от отличительных черт конституции, пола, специальности и иных условий. У спортсменов уровень развития мускулатуры обусловливается характером двигательной деятельности. Регулярные физические нагрузки приводят к структурной перестройке мышц, повышению их массы и размера. Данный процесс перестройки мышц под воздействием физической нагрузки именуют функциональной (рабочей) гипертрофией. Физические упражнения, сопряженные с разными типами спорта, активизируют рабочую гипертрофию тех мышц, какие оказываются более нагруженными.
Правильно дозированные физические упражнения вызывают пропорциональное развитие мускулатуры всего туловища. Активная работа мышечной системы проявляет воздействие не только лишь на мышцы, она приводит кроме того к перестройке костной ткани и соединений костей, воздействует на внешние формы человеческого организма и его внутреннюю структуру.
1. Строение и функции
Скелетные мышцы — активная часть опорно-двигательного аппарата, содержащего также кости, связки, сухожилия и их сочленения.
Скелетные мышцы заключаются из мышечных волокон, каковые соединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, именуют двигательной (либо моторной) единицей. В глазных мышцах 1 двигательная единица может включать 3-5 мышечных волокон, в мышцах тела — сотни волокон, в камбаловидной мышце — 1500-2500 волокон[6]. Мышечные волокна 1 двигательной единицы имеют однообразные морфофункциональные качества.
С функциональной точки зрения к двигательному аппарату возможно причислить и мотонейроны, инициирующие возбуждение мышечных волокон. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка принимет участие в создании нервно-мышечного синапса в раздельном мышечном волокне.
Мотонейрон совместно с иннервируемыми им мышечными волокнами именуют нейромоторной (либо двигательной) единицей (ДЕ). В глазных мышцах одна двигательная часть содержит 13—20 мышечных волокон, в мышцах тела — сотни волокон, в камбаловидной мышце — 1500—2500 волокон. Мышечные волокна одной ДЕ имеют похожие морфофункциональные свойства[1].
Обычно средняя часть мышцы заключается из мышечной ткани и образует брюшко. Края мышц — сухожилия созданы из крепкой соединительной ткани; они объединяются с костями при помощи надкостницы, однако могут прикрепляться и к иной мышце, и к соединительному слою кожи. В мышце мышечные и сухожильные волокна соединяются в пучки при помощи рыхлой соединительной ткани. Между пучками размещаются нервы и кровеносные сосуды. Сила мышцы соразмерна числу волокон, составляющих брюшко мышцы.
Скелетные мышцы состоят из огромного количества мышечных волокон, которые соединяются в мышечные пучки.
В одном пучке находится 20-60 волокон. Мышечные волокна предполагают собою клетки цилиндрической формы протяженностью 10-12 см и диаметр 10-100 мкм.
Каждое мышечное волокно имеет оболочку (сарколемму) и цитоплазму (саркоплазму). В саркоплазме пребывают все элементы животной клетки и вдоль оси мышечного волокна размещаются тонкие нити - миофибриллы, Любая миофибрилла состоит из протофибрилл, в состав каковых вкючены нити белков миозина и актина, являющихся сократительным аппаратом мышечного волокна. Миофибриллы распределены между собою перегородками, какие называют Z-мембранами, на участки - саркомеры. На двух концах саркомеров к Z-мембране закреплены тонкие актиновые нити, а в середине находятся толстые миозиновые нити. Нити актина собственными концами отчасти входят между миозиновыми нитями. В световом микроскопе нити миозина выглядят в виде светлой полосы в темном диске. При электронной микроскопии скелетные мышцы смотрятся исчерченными (поперечно-полосатыми) [2].

Рис.1. Поперечные мостики: Ак — актин; Мз — миозин; Гл — головка; Ш — шейка
На боковых сторонах миозиновой нити существуют выступы, получившие наименование поперечных мостиков (рис.1), какие находятся под углом 120° по взаимоотношению к оси миозиновой нити

Зарегистрируйся, чтобы продолжить изучение работы

В теле человека отличают три вида мышечной ткани: скелетная (поперечнополосатая), гладкая и мышца сердца. В данной работе будут разобраны скелетные мышцы, которые сформировывают мускулатуру опорно-двигательного аппарата, составляют стены нашего туловища и некоторых внутренних органов (пищевого тракта, глотки, гортани). В случае если всю мышечную ткань принять за 100%, то на часть скелетных мышц приходится более половины (52%), гладкая мышечная ткань составляет 40%, сердечная мышца – 8%. Масса скелетных мышц с возрастом наращивается (вплоть до зрелого возраста), а у пожилых людей мышцы атрофируются, так как имеет место функциональная зависимость массы мышц от их функции. У взрослого человека скелетные мышцы составляют 40-45% от общей массы туловища, у новорожденного – 20-24%, у стариков – 20-30%, а у спортсменов (в особенности представителей скоростно-силовых видов спорта) – 50% и более [3].
Степень развития мускулатуры находится в зависимости от отличительных черт конституции, пола, специальности и иных условий. У спортсменов уровень развития мускулатуры обусловливается характером двигательной деятельности. Регулярные физические нагрузки приводят к структурной перестройке мышц, повышению их массы и размера. Данный процесс перестройки мышц под воздействием физической нагрузки именуют функциональной (рабочей) гипертрофией. Физические упражнения, сопряженные с разными типами спорта, активизируют рабочую гипертрофию тех мышц, какие оказываются более нагруженными.
Правильно дозированные физические упражнения вызывают пропорциональное развитие мускулатуры всего туловища. Активная работа мышечной системы проявляет воздействие не только лишь на мышцы, она приводит кроме того к перестройке костной ткани и соединений костей, воздействует на внешние формы человеческого организма и его внутреннюю структуру.
1. Строение и функции
Скелетные мышцы — активная часть опорно-двигательного аппарата, содержащего также кости, связки, сухожилия и их сочленения.
Скелетные мышцы заключаются из мышечных волокон, каковые соединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, именуют двигательной (либо моторной) единицей. В глазных мышцах 1 двигательная единица может включать 3-5 мышечных волокон, в мышцах тела — сотни волокон, в камбаловидной мышце — 1500-2500 волокон[6]. Мышечные волокна 1 двигательной единицы имеют однообразные морфофункциональные качества.
С функциональной точки зрения к двигательному аппарату возможно причислить и мотонейроны, инициирующие возбуждение мышечных волокон. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка принимет участие в создании нервно-мышечного синапса в раздельном мышечном волокне.
Мотонейрон совместно с иннервируемыми им мышечными волокнами именуют нейромоторной (либо двигательной) единицей (ДЕ). В глазных мышцах одна двигательная часть содержит 13—20 мышечных волокон, в мышцах тела — сотни волокон, в камбаловидной мышце — 1500—2500 волокон. Мышечные волокна одной ДЕ имеют похожие морфофункциональные свойства[1].
Обычно средняя часть мышцы заключается из мышечной ткани и образует брюшко. Края мышц — сухожилия созданы из крепкой соединительной ткани; они объединяются с костями при помощи надкостницы, однако могут прикрепляться и к иной мышце, и к соединительному слою кожи. В мышце мышечные и сухожильные волокна соединяются в пучки при помощи рыхлой соединительной ткани. Между пучками размещаются нервы и кровеносные сосуды. Сила мышцы соразмерна числу волокон, составляющих брюшко мышцы.
Скелетные мышцы состоят из огромного количества мышечных волокон, которые соединяются в мышечные пучки.
В одном пучке находится 20-60 волокон. Мышечные волокна предполагают собою клетки цилиндрической формы протяженностью 10-12 см и диаметр 10-100 мкм.
Каждое мышечное волокно имеет оболочку (сарколемму) и цитоплазму (саркоплазму). В саркоплазме пребывают все элементы животной клетки и вдоль оси мышечного волокна размещаются тонкие нити - миофибриллы, Любая миофибрилла состоит из протофибрилл, в состав каковых вкючены нити белков миозина и актина, являющихся сократительным аппаратом мышечного волокна. Миофибриллы распределены между собою перегородками, какие называют Z-мембранами, на участки - саркомеры. На двух концах саркомеров к Z-мембране закреплены тонкие актиновые нити, а в середине находятся толстые миозиновые нити. Нити актина собственными концами отчасти входят между миозиновыми нитями. В световом микроскопе нити миозина выглядят в виде светлой полосы в темном диске. При электронной микроскопии скелетные мышцы смотрятся исчерченными (поперечно-полосатыми) [2].

Рис.1. Поперечные мостики: Ак — актин; Мз — миозин; Гл — головка; Ш — шейка
На боковых сторонах миозиновой нити существуют выступы, получившие наименование поперечных мостиков (рис.1), какие находятся под углом 120° по взаимоотношению к оси миозиновой нити . Актиновые филаменты выглядят в варианте двойной нити, скрученной в двойственную спираль. В продольных бороздках актиновой спирали пребывают нити белка тропомиозина, к каким присоединен белок тропонин. В состоянии спокойствия молекулы белка тропомиозина расположены таким образом, чтобы избегать прикрепление поперечных мостиков миозина к актиновым нитям[4].

Рис.2. А — организация цилиндрических волокон в скелетной мышце, закрепленной к костям сухожилиями. Б — структурная организация филаментов в волокне скелетной мышцы, образовывающая вид поперечных полос.
Во многочисленных местах поверхностная мембрана углубляется в типе микротрубок вовнутрь волокна, перпендикулярно его продольной оси, создавая систему поперечных трубочек (Т-система). Одновременно миофибриллам и перпендикулярно поперечным трубочкам между миофибрилл находится система продольных трубочек (саркоплазматический ретикулум). Концевые расширения данных трубочек - терминальные цистерны - подходят весьма близко к поперечным трубочкам, создавая вместе с ними так именуемые триады. В цистернах сосредоточено основное количество внутриклеточного кальция[7].
Функциями скелетных мышц считаются:
1) перемещение туловища в пространстве;
2) перемещение элементов тела относитель¬но друг друга, втом количестве осуществление дыхательных движе¬ний, которые обеспечивают вентиляцию легких;
3) поддержание по¬ложения и позы туловища.
Кроме этого, поперечно-полосатые мыш¬цы имеют роль в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых пита¬тельных веществ.
Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая гарантирует поддержание позы и перемещение туловища в пространстве. Наравне с данным скелетные мышцы и скелет осуществляют защищающую функцию, защищая внутренние органы от повреждения[1].

Рис.4. Функции скелетных мышц

2. Физиологические свойства скелетных мышц
Скелетные мышцы обладают следующими физиологическими свойствами.
Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е0 около 90 мВ) возбудимость их ниже, чем нервных волокон (Е0 около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.
Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.
Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с[2].
Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.
Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.
Физические свойства скелетных мышц
Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.
Растяжимость - способность мышцы изменять длину под действием растягивающей силы.
Эластичность - способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.
Сила мышц - способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение[4].
Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.
Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.
Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять

Поднимите руку. Теперь сожмите кулак. Сделайте шаг. Правда, легко? Человек выполняет привычные действия практически не задумываясь. Около 700 мышц (от 639 до 850, согласно различным способам подсчета) позволяют человеку покорять Эверест, спускаться на морские глубины, рисовать, строить дома, петь и наблюдать за облаками.

Но скелетная мускулатура — далеко не все мускулы человеческого тела. Благодаря работе гладкой мускулатуры внутренних органов, по кишечнику идет перистальтическая волна, совершается вдох, сокращается, обеспечивая жизнь, самая важная мышца человеческого тела — сердце.

Определение мышц

Мышца (лат. muskulus) — орган тела человека и животных, образованный мышечной тканью. Мышечная ткань имеет сложное строение: клетки-миоциты и покрывающая их оболочка — эндомизий образуют отдельные мышечные пучки, которые, соединяясь вместе, образуют непосредственно мышцу, одетую для защиты в плащ из соединительной ткани или фасцию.

Мышцы. Вид спереди

Мышцы. Вид сзади

Мышцы тела человека можно поделить на:

Гладкая мускулатура входит в состав внутренних органов — кишечника, мочевого пузыря, стенки сосудов, сердца. Благодаря ее сокращению повышается артериальное давление при стрессе или передвигается пищевой комок по желудочно-кишечному тракту.

Сердечная — характерна только для сердца, обеспечивает непрерывную циркуляцию крови в организме.

Интересно узнать, что первое мышечное сокращение происходит уже на четвертой неделе жизни эмбриона – это первый удар сердца. С этого момента и до самой смерти человека сердце не останавливается ни на минуту. Единственная причина остановки сердца в течение жизни — операция на открытом сердце, но тогда за этот важный орган работает АИК (аппарат искусственного кровообращения).

Биология. Многообразие живых организмов. 7 класс. Учебник-навигатор + CD

Строение мышц человека

Единицей строения мышечной ткани является мышечное волокно. Даже отдельное мышечное волокно способно сокращаться, что свидетельствует о том, что мышечное волокно – это не только отдельная клетка, но и функционирующая физиологическая единица, способная выполнять определенное действие.

Отдельная мышечная клетка покрыта сарколеммой – прочной эластичной мембраной, которую обеспечивают белки коллаген и эластин. Эластичность сарколеммы позволяет мышечному волокну растягиваться, а некоторым людям проявлять чудеса гибкости – садиться на шпагат и выполнять другие трюки.

В сарколемме, как прутья в венике, плотно уложены нити миофибрилл, составленные из отдельных саркомеров. Толстые нити миозина и тонкие нити актина формируют многоядерную клетку, причем диаметр мышечного волокна – не строго фиксированная величина и может варьироваться в довольно большом диапазоне от 10 до 100 мкм. Актин, входящий в состав миоцита, — составная часть структуры цитоскелета и обладает способностью сокращаться. В состав актина входит 375 аминокислотных остатка, что составляет около 15% миоцита. Остальные 65 % мышечного белка представлены миозином. Две полипептидные цепочки из 2000 аминокислот формируют молекулу миозина. При взаимодействии актина и миозина формируется белковый комплекс — актомиозин.

Название мышц человека

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

Читайте также: