Современное представление о гене и геноме реферат

Обновлено: 23.04.2024

Ген
структурная и функциональная единица
наследственности живых организмов. Ген
представляет собой участок ДНК, задающий
последовательность определённого
полипептида либо функциональной РНК. Гены
(точнее, аллели генов) определяют
наследственные признаки организмов,
передающиеся от родителей потомству при
размножении. Среди некоторых организмов, в
основном одноклеточных, встречается
горизонтальный перенос генов, не связанный
с размножением.

Изучение генов
Изучением генов занимается наука
генетика, родоначальником которой
считается Грегор Мендель, который в 1865
году опубликовал результаты своих
исследований о передаче по наследству
признаков при скрещивании гороха.
Сформулированные им закономерности
впоследствии назвали законами Менделя.

Свойства гена
дискретность — несмешиваемость генов;
стабильность — способность сохранять структуру;
лабильность — способность многократно мутировать;
множественный аллелизм — многие гены существуют в
популяции во множестве молекулярных форм;
аллельность — в генотипе диплоидных организмов только
две формы гена;
специфичность — каждый ген кодирует свой признак;
плейотропия — множественный эффект гена;
экспрессивность — степень выраженности гена в признаке;
пенетрантность — частота проявления гена в фенотипе;
амплификация — увеличение количества копий гена.

Классификация генов
• Структурные гены — гены, кодирующие
синтез белков. Расположение нуклеотидных
триплетов в структурных генах
комплементарно
последовательности аминокислот в
полипептидной цепи, кодируемой данным
геном
• Функциональные гены — гены, которые
контролируют и направляют деятельность
структурных генов.

Геном
Гено́м — совокупность наследственного
материала, заключенного в клетке
организма. Геном содержит биологическую
информацию, необходимую для
построения и поддержания организма.
Большинство геномов, в том числе геном
человека и геномы всех остальных
клеточных форм жизни, построены из ДНК,
однако некоторые вирусы имеют геномы из
РНК

Размер и структура генома
Геномы живых организмов — от вирусов до
животных — различаются по размеру на шесть
порядков: от нескольких тысяч пар оснований
до нескольких миллиардов пар оснований.
Если исключить вирусы, то для клеточных
организмов ширина диапазона составит
четыре порядка. По количеству генов
диапазон значительно ýже и составляет
четыре порядка с нижним пределом 2-3 гена у
самых простых вирусов и с верхним
значением около 40 тысяч генов у некоторых
животных.

Размер и структура
По соотношению размера генома и числа
генов геномы могут быть разделены на два
чётко выделенных класса:
• Небольшие компактные геномы размером,
как правило, не более 10 млн пар
оснований, со строгим соответствием между
размером генома и числом генов.
• Обширные геномы размером более 100 млн
пар оснований, у которых нет чёткой
взаимосвязи между размером генома и
числом генов.

Прокариоты
Геном подавляющего числа прокариот
представлен одиночной хромосомой, которая
представляет собой кольцевую молекулу ДНК.
Помимо хромосомы, в клетках бактерий часто
находятся плазмиды — также замкнутые в кольцо
ДНК, способные к независимой репликации

Эукариоты
Практически вся генетическая информация у
эукариот содержится в линейно-организованных
хромосомах, находящихся в клеточном ядре.

Вирусы
Около 1 % в геноме человека занимают
встроенные гены ретровирусов
(эндогенные ретровирусы). Эти гены
обычно не приносят пользы хозяину, но
существуют и исключения. Так, около 43
млн лет назад в геном предков обезьян и
человека попали ретровирусные гены,
служившие для построения оболочки
вируса. У человека и обезьян эти гены
участвуют в работе плаценты.

Хромосомы
В геноме присутствует 23 пары хромосом:
22 пары аутосомных хромосом, а также
пара половых хромосом X и Y. У человека
мужской пол является гетерогаметным и
определяется наличием Y хромосомы.
Нормальные диплоидные соматические
клетки имеют 46 хромосом.

Что вам известно о современных достижениях в области генетики?

Весной 2000 г. в канадском городе Ванкувере подвели итоги первого этапа. Было официально объявлено, что нуклеотидная последовательность всех хромосом человека расшифрована. Трудно переоценить значение этой работы, так как знание структуры генов человеческого организма позволяет понять механизмы их функционирования и, следовательно, определить влияние наследственности на формирование признаков и свойств организма, на здоровье и продолжительность жизни. В ходе исследований было обнаружено множество новых генов, чью роль в формировании организма в дальнейшем предстоит изучить более подробно. Изучение генов ведёт к созданию принципиально новых средств диагностики и способов лечения наследственных заболеваний. Расшифровка последовательности ДНК человека имеет огромное практическое значение для определения генетической совместимости при пересадке органов, для генетической дактилоскопии и генотипирования.

По мнению учёных, если XX век был веком генетики, то XXI век будет веком геномики (термин введён в 1987 г.).

Геномика – наука, которая изучает структурно-функциональную организацию генома, представляющего собой совокупность генов и генетических элементов, определяющих все признаки организма.

Но не только для биологии и медицины оказались важны полученные сведения. На основе знаний структуры генома человека можно реконструировать историю человеческого общества и эволюцию человека как биологического вида. Сравнение геномов разных видов организмов позволяет изучать происхождение и эволюцию жизни на Земле.

Что же представляет собой геном человека?

Расшифровка полной последовательности нуклеотидов в ДНК человека позволила оценить общее число генов, составляющих геном. Оказалось, что их всего около 30–40 тыс., хотя точное число пока не известно. Раньше предполагали, что количество генов у человека раза в 3–4 больше – около 100 тыс., поэтому данные результаты стали своего рода сенсацией. У каждого из нас генов всего в 5 раз больше, чем у дрожжей, и всего в 2 раза больше, чем у дрозофилы. По сравнению с другими организмами мы имеем не так уж много генов. Может быть, существуют какие-то особенности в строении и функционировании нашего генома, которые позволяют человеку быть сложноорганизованным существом?

Строение гена эукариот. В среднем на один ген в хромосоме человека приходится около 50 тыс. нуклеотидов. Существуют очень короткие гены. Например, белок энкефалин, который синтезируется в нейронах головного мозга и влияет на формирование наших положительных эмоций, состоит всего из 5 аминокислот. Следовательно, ген, отвечающий за его синтез, содержит всего около двух десятков нуклеотидов. А самый длинный ген, кодирующий один из мышечных белков, состоит из 2,5 млн нуклеотидов.

В геноме человека, так же как и у других млекопитающих, участки ДНК, кодирующие белки, составляют менее 5 % от всей длины хромосом. Остальную, большую часть ДНК раньше называли избыточной, но теперь стало ясно, что она выполняет очень важные регуляторные функции, определяя, в каких клетках и когда должны функционировать те или иные гены. У более просто организованных прокариотических организмов, геном которых представлен одной кольцевой молекулой ДНК, на кодирующую часть приходится до 90 % от всего генома.

Все десятки тысяч генов не работают одновременно в каждой клетке многоклеточного организма, этого не требуется. Существующая специализация между клетками определяется избирательным функционированием определённых генов. Мышечной клетке не надо синтезировать кератин, а нервной – мышечные белки. Хотя надо отметить, что существует довольно большая группа генов, которые работают практически постоянно во всех клетках. Это гены, в которых закодирована информация о белках, необходимых для осуществления жизненно важных функций клетки, таких как редупликация, транскрипция, синтез АТФ и многие другие.

В соответствии с современными научными представлениями ген эукариотических клеток, кодирующий определённый белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но тем не менее активно участвуя в его управлении.

Кроме регуляторных зон существует структурная часть гена, которая, собственно, и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.

Взаимодействие генов. Необходимо отчётливо представлять себе, что работа одного гена не может осуществляться изолированно от всех остальных. Взаимовлияние генов многообразно, и в формировании большинства признаков организма обычно принимает участие не один и не два, а десятки разных генов, каждый из которых вносит свой определённый вклад в этот процесс.

В качестве примера взаимодействия генов рассмотрим, как наследуется окраска цветка у некоторых растений. В клетках венчика душистого горошка синтезируется некое вещество, так называемый пропигмент, который под действием специального фермента может превратиться в антоциановый пигмент, вызывающий пурпурную окраску цветка. Значит, наличие окраски зависит от нормального функционирования по крайней мере двух генов, один из которых отвечает за синтез пропигмента, а другой – за синтез фермента (рис. 82). Нарушение в работе любого из этих генов приведёт к нарушению синтеза пигмента и, как следствие, к отсутствию окраски; при этом венчик цветков будет белый.


Рис. 82. Схема образования пигмента у душистого горошка

Вопросы для повторения и задания

2. Чем определяется существующая специализация клеток?

3. Какие обязательные элементы входят в состав гена эукариотической клетки?

4. Приведите примеры взаимодействия генов.

Подумайте! Выполните!

1. Митохондрии содержат ДНК, гены которой кодируют синтез многих белков, необходимых для построения и функционирования этих органоидов. Подумайте, как будут наследоваться эти внеядерные гены.

2. Вспомните известные вам особенности развития человека. На каком этапе эмбриогенеза уже возникает чёткая дифференциация клеток?

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Взаимодействие неаллельных генов. Известно несколько видов взаимодействия неаллельных генов.

Комплементарное взаимодействие. Явление взаимодействия нескольких неаллельных генов, приводящее к развитию нового проявления признака, отсутствующего у родителей, называют комплементарным взаимодействием. Пример наследования окраски цветка у душистого горошка, приведённый в § 28, относится как раз к этому типу взаимодействия генов. Доминантные аллели двух генов (А и В) каждый в отдельности не могут обеспечить синтез пигмента. Антоциановый пигмент, вызывающий пурпурную окраску цветка, начинает синтезироваться только в том случае, когда в генотипе присутствуют доминантные аллели обоих генов (А_В_) (рис. 83).


Рис. 83. Наследование окраски венчика у душистого горошка


Рис. 84. Наследование формы гребня у кур

Известным примером комплементарного взаимодействия является наследование формы гребня у кур (рис. 84). Существует четыре формы гребня, формирование которых определяется взаимодействием двух неаллельных генов – А и В. При наличии в генотипе доминантных аллелей только гена А (А_bb) образуется розовидный гребень, наличие доминантных аллелей второго гена В (aaB_) обусловливает образование гороховидного гребня. Если в генотипе присутствуют доминантные аллели обоих генов (А_В_), образуется ореховидный гребень, а при отсутствии доминантных аллелей (aabb) развивается простой гребень.

Эпистаз. Взаимодействие неаллельных генов, при котором ген одной аллельной пары подавляет проявление гена другой аллельной пары, называют эпистазом. Гены, которые подавляют действие других генов, называют ингибиторами или супрессорами. Гены-ингибиторы могут быть как доминантными (I), так и рецессивными (i), поэтому различают доминантный и рецессивный эпистазы.

При доминантном эпистазе один доминантный ген (I) подавляет проявление другого неаллельного доминантного гена.

Возможны два варианта расщепления по фенотипу при доминантном эпистазе.

1. Гомозиготы по рецессивным аллелям (aaii) фенотипически не отличаются от организмов, имеющих в своём генотипе доминантные аллели гена-ингибитора. У тыквы окраска плода может быть жёлтой (А) и зелёной (а) (рис. 85). Проявление этой окраски может быть подавлено доминантным геном-ингибитором (I), в результате чего сформируются белые плоды (А_I_; aaI_).


В описанном и аналогичных случаях при расщеплении в F2 по генотипу 9:3:3:1 расщепление по фенотипу соответствует 12:3:1.

2. Гомозиготы по рецессивным аллелям (aaii) не отличаются по фенотипу от организмов с генотипами A_I_ и aaI_.

У кукурузы структурный ген А определяет окраску зерна: пурпурная (А) или белая (а). При наличии доминантного аллеля гена-ингибитора (I) пигмент не синтезируется.



Рис. 85. Наследование окраски плода у тыквы

В F2 у 9 /16 растений (A_I_) пигмент не синтезируется, потому что в генотипе присутствует доминантный аллель гена-ингибитора (I). У 3 /16 растений (aaI_) окраска зерна белая, так как в их генотипе нет доминантного аллеля А, отвечающего за синтез пигмента, и, кроме того, присутствует доминантный аллель гена-ингибитора. У 1 /16 растений (aaii) зёрна тоже белые, потому что в их генотипе нет доминантного аллеля А, отвечающего за синтез пурпурного пигмента. Только у 3 /16 растений, имеющих генотип A_ii, формируются окрашенные (пурпурные) зёрна, так как при наличии доминантного аллеля А в их генотипе отсутствует доминантный аллель гена ингибитора.

В этом и других аналогичных примерах расщепление по фенотипу в F2 13:3. (Обратите внимание, что по генотипу расщепление всё равно остаётся прежним – 9:3:3:1, соответствующим расщеплению в дигибридном скрещивании.)

При рецессивном эпистазе рецессивный аллель гена – ингибитора в гомозиготном состоянии подавляет проявление неаллельного доминантного гена.

У льна ген В определяет пигментацию венчика: аллель В – голубой венчик, аллель b – розовый. Окраска развивается только при наличии в генотипе доминантного аллеля другого неаллельного гена – I. Присутствие в генотипе двух рецессивных аллелей ii приводит к формированию неокрашенного (белого) венчика.


При рецессивном эпистазе в этом и других аналогичных случаях в F2 наблюдается расщепление по фенотипу 9:3:4.

Полимерное действие генов (полимерия). Ещё одним вариантом взаимодействия неаллельных генов является полимерия. При таком взаимодействии степень выраженности признака зависит от числа доминантных аллелей этих генов в генотипе: чем больше в сумме доминантных аллелей, тем сильнее выражен признак. Примером такого полимерного взаимодействия является наследование окраски зёрен у пшеницы (рис. 86). Растения с генотипом А1А1А2А2 имеют тёмно-красные зёрна, растения a1a1a2a2 – белые зёрна, а растения с одним, двумя или тремя доминантными аллелями – разную степень окраски: от розовой до красной. Такую полимерию называют накопительной или кумулятивной.

Однако существуют варианты и некумулятивной полимерии. Например, наследование формы стручка у пастушьей сумки определяется двумя неаллельными генами – А1 и А2. При наличии в генотипе хотя бы одного доминантного аллеля формируется треугольная форма стручка, при отсутствии доминантных аллелей (a1a1a2a2) стручок имеет овальную форму. В этом случае расщепление во втором поколении по фенотипу будет 15:1.



Рис. 86. Наследование окраски зёрен пшеницы

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Ген в гене (генная матрешка)

ИСТОРИЯ С ГЕОГРАФИЕЙ, ЗАПИСАННАЯ В НАШЕМ ГЕНОМЕ (этногеномика)

ИСТОРИЯ С ГЕОГРАФИЕЙ, ЗАПИСАННАЯ В НАШЕМ ГЕНОМЕ (этногеномика) В каждом человеке есть что-то от всех людей. Георг Кристоф Лихтенберг В сей мир едва ли снова попадем, Своих друзей вторично не найдем. Лови же миг! Ведь он не повторится, Как ты и сам не повторишься в нем. Омар

Ген в гене (генная матрешка)

ИСТОРИЯ С ГЕОГРАФИЕЙ, ЗАПИСАННАЯ В НАШЕМ ГЕНОМЕ (этногеномика)

ИСТОРИЯ С ГЕОГРАФИЕЙ, ЗАПИСАННАЯ В НАШЕМ ГЕНОМЕ (этногеномика) В каждом человеке есть что-то от всех людей. Георг Кристоф Лихтенберг В сей мир едва ли снова попадем, Своих друзей вторично не найдем. Лови же миг! Ведь он не повторится, Как ты и сам не повторишься в нем. Омар

8. СХЕМА ТЕЛА И СИСТЕМА ВНУТРЕННЕГО ПРЕДСТАВЛЕНИЯ

8. СХЕМА ТЕЛА И СИСТЕМА ВНУТРЕННЕГО ПРЕДСТАВЛЕНИЯ В настоящее время большинство специалистов согласно, что взаимодействие организма с внешней средой строится на основе модели внешнего мира и модели собственного тела, строящихся мозгом.Необходимость внутренних моделей

Какие современные представления о Вселенной предвосхитил греческий философ Демокрит еще в V веке до нашей эры?

Какие современные представления о Вселенной предвосхитил греческий философ Демокрит еще в V веке до нашей эры? Древнегреческий философ-материалист Демокрит (около 460 – около 370 до нашей эры) вошел в историю как один из первых представителей атомизма, однако занимался он

1.1. Современные представления о сущности жизни

1.1. Современные представления о сущности жизни Жизнь во всех ее формах и проявлениях изучает биология. Предметом биологии является многообразие вымерших и ныне существующих организмов, их строение и функции, происхождение и эволюция, размножение и развитие,

Ранние представления о психической деятельности животных

Ранние представления о психической деятельности животных Начало познания поведения животных При изучении любой формы психической деятельности прежде всего встает вопрос о врожденном и индивидуально приобретаемом, об элементах инстинкта и научения в поведении

Зрительные обобщения и представления

Зрительные обобщения и представления Подлинная рецепция, истинное восприятие предметных компонентов среды как таковых возможны лишь на основе достаточно развитой способности к анализу и обобщению, ибо только это позволяет полноценно узнавать постоянно меняющие свой

Общие представления о типологизации

Общие представления о типологизации Чем умнее человек, тем больше своеобычности он находит во всяком, с кем сообщается. Для человека заурядного все люди на одно лицо. Блез Паскаль Построение различных типологий человеческой психики преследует две основные цели –

15. Современные представления о возникновении жизни

15. Современные представления о возникновении жизни Вспомните!Какие химические элементы входят в состав белков и нуклеиновых кислот?Что такое биологические полимеры?Какие организмы называют автотрофами; гетеротрофами?Теория биохимической эволюции. Наибольшее

Современные представления о сексуальной ориентации

Современные представления о сексуальной ориентации В настоящее время сексуальную ориентацию подразделяют на гетеросексуальную, гомосексуальную и бисексуальную. Большую часть XX века гомосексуализм являлся объектом изучения психологов и психиатров, и во главу угла

И.В. Людвиг

И.В. Людвиг

Томас Морган - биолог

Т. Морган

Основные положения:

  • Гены находятся в хромосомах, где располагаются линейно на определенных расстояниях и не перекрываются друг с другом.
  • Гены в составе одной хромосомы образуют группу сцепления.
  • Признаки, определяемые генами в одной хромосоме, наследуются вместе.
  • Чем дальше гены расположены друг от друга в хромосоме, тем меньше вероятность, что они войдут в группу сцепления.
  • Разные хромосомы могут содержать неодинаковое количество генов.
  • В гомологичных хромосомах находятся гены, отвечающие за развитие одних и тех же признаков.
  • Аллельные гены расположены в строго определенных участках или локусах хромосом.
  • Группа сцепления способна распадаться при кроссинговере.
  • В потомстве гетерозиготных родителей возникают новые сочетания генов, находящихся в одной паре хромосом. Это происходит в результате кроссинговера.

Хромосомная теория помогла объяснить механизмы, лежащие в основе опытов Менделя. Были определены внутриклеточные пути и способы наследования.

Современные представления о гене и геноме

Ген — материальная единица хранения и передачи наследственной информации. По современным представлениям, это участок макромолекулы ДНК. Одни гены являются структурными — кодируют первичную структуру белковых молекул, строение РНК. Регуляторные гены вызывают активизацию считывания информации или подавляют этот процесс.

Для передачи информации служит генетический код. Так называют соответствие между тремя последовательными нуклеотидами (триплетами) и аминокислотами в белках. Гены идут последовательно в молекулах ДНК, из которых формируются хромосомы. Совокупность генов организма или генотип обуславливает проявление большинства внешних и внутренних признаков живого существа.


Гены и хромосомы

Когда между гомологичными хромосомами происходит конъюгация, возможен обмен аллельными генами (кроссинговер). Изучение этого явления позволяет точно установить расположение каждого гена в хромосоме. На основе экспериментов были созданы хромосомные карты многих видов живых существ. Такие исследования проведены для гороха, дрозофилы, томата, мыши.

В 2000 году официально объявили, что расшифрована последовательность нуклеотидов всех хромосом человека. Изучение строения и поведения хромосом, генов позволит добиться успеха в лечении пока неизлечимых заболеваний. Эти знания помогут определить влияние наследственности на здоровье и продолжительность жизни конкретного человека.

У большинства людей в течение жизни проявляются наследственные болезни или выявляется предрасположенность к каким-либо нарушениям здоровья. Известно более 5 тыс. наследственных патологий, это число с каждым годом увеличивается. Не последнюю роль играют мутагены — факторы, повышающие вероятность развития мутаций. Это радиоактивность, токсичные вещества, электромагнитные волны и др.

Полученные знания о структуре генома человека оказались важны для палеонтологии, археологии, антропологии. Более точными станут выводы ученых об эволюции жизни на Земле, происхождении человека, путях миграций в древности и возникновении народов.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Описание презентации по отдельным слайдам:

Содержание
Ген слайд 3
История изучения генов слайд 4
Свойства генов и их классификация слайд 5
Геном слайд 6
Происхождение названия слайд 7
Структура и размер генома слайд 8
Организация генома слайд 9
Геном человека слайд 10
Информационные источники слайд 11

Ген
Ген - в классической генетике -наследственный фактор, который несёт информацию об определённом признаке или функции организма, и который является структурной и функциональной единицей наследственности. Представляет собой участок ДНК, задающий последовательность определенного полепептида или либо функциональной РНК. Аллели генов определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении.
Рис.1 Ген

Рис.2 Грегор Мендель
Рис.3 Вильгельм Йоханнсен
Рис.4 Сеймура Бензера

Свойства генов и их классификация

Свойства:
1) Дискретность: один ген контролирует один признак;
2) Специфичность: каждый ген отвечает строго за свой признак;
3) Стабильность структуры: гены передаются из поколения в поколение не изменяясь;
4) Дозированность действия: один ген определяет одну дозу фенотипического проявления признака;
5) Способность к мутированию;
6) Способность к самоудвоению;
7) Способность к рекомбинации (переходу из одной гомологичной хромосомы в другую).

Классификация:
1) Структурные - контролируют развитие признаков путем синтеза соответствующих ферментов;
2) Регуляторные - управляют деятельностью структурных генов;
3) Модуляторные - смещают процесс проявления признаков в сторону его усиления или ослабления, вплоть до полной блокировки.

Структура и размер генома

Большая часть ДНК эукариотических клеток представлена некодирующими последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК. Объёмы генетической информации, заключённой в клетках зародышевой линии и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей или значительно перестраивать исходные гены. Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма.

Размер генома общее число базовых пар ДНК в одной копии гаплоидного генома. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.

Эукариоты:
У эукариот геномы находятся в ядре и содержат от нескольких до многих нитевидных хромосом.

Прокариоты:
У прокариот ДНК присутствует в виде кольцевых молекул. Они, как правило, гораздо меньше, чем у эукариот и содержат относительно небольшие некодирующие части.

Органеллы:
Геномы митохондрий и пластид организованы как прокариотические геномы.

Вирусы:
Вирусные геномы очень малы.
Рис.7 Эукариоты
Рис.8 Прокариоты
Рис.9 Вирусы

Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований.

Введение
Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения полезных свойств возделываемых растений и выведения высокопродуктивных пород домашних животных, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Аналогично комплиментарную пару образуют G и С. В клетках человека содержится 46 хромосом. Длина генома человека (все ДНК в хромосомах) может достигать двух метров и состоит из трех миллиардов нуклеотидных пар. Ген — это единица наследственности. Он представляет собой часть молекулы ДНК и содержит закодированную информацию об аминокислотной последовательности одного белка или рибонуклеиновой кислоты (РНК).

Генная терапия наследственных болезней, перенос генов из одних видов в другие (трансгенозис), молекулярная палеогенетика — другие впечатляющие реалии науки в конце ее 100-летней истории. Генетическая инженерия и биотехнология, подержанные эффективной публичной пропагандой, трансформировали облик генетики.

В 80-е годы ученые брались за расшифровку только коротких молекул ДНК: вирусных, митохондриальных или плазмидных. (Плазмида — кольцевая молекула ДНК, находящаяся в цитоплазме бактерий и состоящая из небольшого количества генов.) Но первые шаги были сделаны. И вот тогда в 1988 году наиболее отчаянные исследователи выступили с предложением — расшифровать геном человека.

1. Современные представления о гене
Подобно тому, что в физике элементарными еденицами вещества являются атомы, в генетике элементарными дискретными еденицами наследственности и изменчивости являются гены. Хромосома любого организма, будь то бактерия или человек, содержит длинную (от сотен тысяч до миллиардов пар нуклеотидов) непрерывную цепь ДНК, вдоль которой расположено множество генов. Установление количества генов, их точного местоположения на хромосоме и детальной внутренней структуры, включая знание полной нуклеотидной последовательности, - задача исключительной

сложности и важности. Ученые успешно решают ее, применяя целый комплекс молекулярных, генетических, цитологических, имуногенетических и других методов.
1.1 Строение гена
Согласно современным представлениям, ген, кодирующий синтез определенного белка, у эукариот состоит из нескольких обязательных элементов. Прежде всего, это обширная регуляторная зона, оказывающая сильное влияние на активность гена в той или иной ткани организма на определенной стадии его индивидуального развития.

Далее расположен непосредственно примыкающий к кодирующим элементам гена промотор — последовательность ДНК длиной до 80-100 пар нуклеотидов, ответственная за связывание РНК-полимеразы, осуществляющей транскрипцию данного гена. Вслед за промотором лежит структурная часть гена, заключающая в себе информацию о первичной структуре соответствующего белка. Эта область для большинства генов эукариот существенно короче регуляторной зоны, однако ее длина может измеряться тысячами пар нуклеотидов.

2. Основные понятия и методы генетики
Представители любого биологического вида воспроизводят подобные себе существа. Это свойство потомков быть похожими на своих предков называется наследственностью.

Несмотря на огромное влияние наследственности в формировании фенотипа живого организма, родственные особи в большей или меньшей степени отличаются от своих родителей. Это свойство потомков называется изменчивостью. Изучением явлений наследственности и изменчивости занимается наука генетика. Таким образом, генетика — наука о закономерностях наследственности и изменчивости. По современным представлениям, наследственность — это свойство живых организмов передавать из поколения в поколение особенности морфологии, физиологии, биохимии и индивидуального развития в определенных условиях среды. Изменчивость — это свойство, противоположное наследственности, - это способность дочерних организмов отличаться от родителей морфологическими, физиологическими, биологическими особенностями и отклонениями в индивидуальном развитии. Наследственность и изменчивость реализуются в процессе наследования, т. е. при передаче генетической информации от родителей к потомкам через половые клетки (при половом размножении) либо через соматические клетки (при бесполом размножении).

Генетика как наука решает следующие основные задачи:

- изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и ее материальные носители;

- анализирует способы передачи наследственной информации от одного поколения организмов к другому;

- выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на них условий среды обитания;

- изучает закономерности и механизмы изменчивости и ее роль в приспособительных реакциях в эволюционном процессе;

- изыскивает способы исправления поврежденной генетической информации.

Для решения этих задач используются разные методы исследования.

1. Метод гибридологического анализа был разработан Грегором Менделем. Этот метод позволяет выявить закономерности наследования отдельных признаков при половом размножении организмов. Сущность его заключается в следующем: анализ наследования проводится по отдельным независимым признакам; прослеживается передача этих признаков в ряду поколений; проводится точный количественный учет наследования каждого альтернативного признака и характер потомства каждого гибрида в отдельности.

2. Цитогенетический метод позволяет изучать кариотип (набор хромосом) клеток организма и выявлять геномные и хромосомные мутации.

3. Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования (например, доминантный, рецессивный) того или иного признака, зиготность организмов и вероятность проявления признаков в будующих поколениях. Этот метод широко используется в селекции и работе медико-генетических консультаций.

4. Близнецовыйметод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.

5. Биохимические методы исследования основаны на изучении активности ферментов и химического состава клеток, которые определяются наследственностью. С помощью этих методов можно выявить генные мутации и гетерозиготных носителей рецессивных генов.

6. Популяционно-статистический метод позволяет рассчитывать частоту встречаемости генов и генотипов в популяциях.

Введем основные понятия генетики. При изучении закономерностей наследования обычно скрещиваются особи, отличающиеся друг от друга альтернативными (взаимоисключающими) признаками (например, желтый и зеленый цвет, гладкая и морщинистая поверхность горошин). Гены, определяющие развитие альтернативных признаков, называются аллельными. Они распологаются в одинаковых локусах (местах) гомологичных (парных) хромосом. Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называют доминантным, а не проявляющийся (подавленный) называют рецессивным. Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены (два доминантных или два рецессивных), то такой организм называется гомозиготным. Если же в гомологичных хромосомах локализованы разные гены одной аллельной пары, то такой организм принято называть гетерозиготным по данному признаку. Он образует два типа гамет и при скрещивании с таким же по генотипу организмом дает расщепление.

Совокупность всех генов организма называется генотипом. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов. Каждый ген испытывает на себе воздействие других генов генотипа и сам оказывает на них влияние, поэтому один и тот же ген в разных генотипах может проявляться по-разному.

Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определенного генотипа в результате взаимодействия с условиями внешней среды. Организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования.

Отдельный признак называется феном. К фенотипическим признакам относятся не только внешние признаки (цвет глаз, волос, форма носа, окраска цветков и тому подобное), но и анатомические (объем желудка, строение печени и тому подобное), биохимические (концентрация глюкозы и мочевины в сыворотке крови и так далее) и другие.

Читайте также: