Современная концепция эволюции вселенной реферат

Обновлено: 05.07.2024

Мир, Земля, Космос, Вселенная… Тысячелетиями пытливое человечество обращало свои взгляды на окружающий мир, стремилось постигнуть его, вырваться за пределы микромира в макромир.
Величественная картина небесного купола, усеянного миллиардами звезд, с незапамятных времен волновала ум и воображение ученых, поэтов, каждого человека. живущего на Земле и зачарованно любующегося торжественной и чудной картиной, по выражению Лермонтова.

Оглавление

Введение
2. Строение вселенной
3. Модели вселенной
3.1. Наша Галактика
3.2. Другие Галактики
3.3. Вчерашний день метагалактики
3.4. Мегагалактика
3.4. История развития взглядов о строении Вселенной
4. Эволюция вселенной
4.1. Теории, на основании которых созданы современные представления о эволюции вселенной
4.3. Возраст вселенной
5. Заключение

Файлы: 1 файл

вселенная.docx

НИЖЕГОРОДСКИЙ ИНСТИТУТ МЕНЕДЖМЕНТА И БИЗНЕСА

Предмет: Концепции современного естествознания.

Тема: Современные представления о Вселенной.

Студент 2 курса

Проф. Ширманов В.С.

Город Нижний Новгород

2. Строение вселенной

3. Модели вселенной

3.1. Наша Галактика

3.2. Другие Галактики

3.3. Вчерашний день метагалактики

3.4. История развития взглядов о строении Вселенной

4. Эволюция вселенной

4.1. Теории, на основании которых созданы современные представления о эволюции вселенной

4.3. Возраст вселенной

Мир, Земля, Космос, Вселенная… Тысячелетиями пытливое человечество обращало свои взгляды на окружающий мир, стремилось постигнуть его, вырваться за пределы микромира в макромир.

Величественная картина небесного купола, усеянного миллиардами звезд, с незапамятных времен волновала ум и воображение ученых, поэтов, каждого человека. живущего на Земле и зачарованно любующегося торжественной и чудной картиной, по выражению Лермонтова.

Что есть Земля, Луна, Солнце, звезды? Где начало и где конец Вселенной, как долго она существует, из чего состоит и где границы ее познания?

В своем реферате я изложила всё то, что известно на сегодняшний день науке о строении и эволюции Вселенной.

Изучение Вселенной, даже только известной нам её части является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

Вселенная бесконечна во времени и пространстве. Каждая частичка вселенной имеет свое начало и конец, как во времени, так и в пространстве, но вся Вселенная бесконечна и вечна так, как она является вечно самодвижущейся материей. И так, рассмотрим нашу тему подробнее.

Вселенная - это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем. Поэтому не будет ошибкой сказать, что любая наука так или иначе изучает Вселенную, точнее, тем или иначе её стороны. Химия изучает мир молекул, физика – мир атомов и элементарных частиц, биология – явления живой природы. Но существует научная дисциплина, объектом исследования которой служит сама вселенная или “Вселенная как целое” . Это особая отрасль астрономии так называемая космология. Космология – учение о Вселенной в целом, включающая в себя теорию всей охваченной астрономическими наблюдениями области, как части Вселенной, кстати не следует смешивать понятия Вселенной в целом и “наблюдаемой” (видимой) Вселенной. Во втором случае речь идет лишь о той ограниченной области пространства, которая доступна современным методам научных исследований. Планеты, звёзды, галактики поражают нас удивительным разнообразием своих свойств, сложностью строения. А как устроена вся Вселенная, Вселенная в целом .

Её главное свойство - однородность. Об этом можно сказать и точнее. Представим себе, что мы мысленно выделили во Вселенной очень большой кубический объем, с ребром в 500 миллионов световых лет. Подсчитаем, сколько в нем галактик. Произведём такие же подсчёты для других, но столь же гигантских объемов, расположенных в различных частях Вселенной. Если все это проделать и сравнить результаты, то окажется, что в каждом из них, где бы их ни брать, содержится одинаковое число галактик. То же самое будет и при подсчёте скоплений или даже ячеек.

С развитием кибернетики в различных областях научных исследованиях приобрели большую популярность методики моделирования. Сущность этого метода состоит в том, что вместо того или иного реального объекта изучается его модель, более или менее точно повторяющая оригинал или его наиболее важные и существенные особенности. Модель не обязательно вещественная копия объекта. Построение приближенных моделей различных явлений помогает нам всё глубже познавать окружающий мир. Так, например, на протяжении длительного времени астрономы занимались изучением однородной и изотронной (воображаемой) Вселенной, в которой все физические явления протекают одинаковым образом и все законы остаются неизменными для любых областей и в любых направлениях. Изучались так же модели, в которых к этим двум условиям добавлялось третье, - неизменность картины мира. Это означает, что в какую бы эпоху мы не созерцали мир, он всегда должен выглядеть в общих чертах одинаково. Эти во многом условные и схематические модели помогли осветить некоторые важные стороны окружающего нас мира. Но! Как бы сложна ни была та или иная теоретическая модель, какие бы многообразные факты она ни учитывала, любая модель – это еще не само явление, а только более или менее точная его копия, так сказать образ реального мира. Поэтому все результаты полученные с помощью моделей Вселенной, необходимо обязательно проверить путем сравнения с реальностью. Нельзя отождествлять само явление с моделью. Нельзя без тщательной проверки, приписывать природе те свойства, которыми обладает модель. Ни одна из моделей не может претендовать на роль точного “слепка” Вселенной. Это говорит о необходимости углубленной разработки моделей неоднородной и неизотронной Вселенной.

Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Звездная система. В составе которой, как рядовая звезда находится наше Солнце, называется Галактикой.

Число звезд в галактике порядка 10 12 (триллиона) . Млечный путь, светлая серебристая полоса звезд опоясывает всё небо, составляя основную часть нашей Галактики. Млечный путь наиболее ярок в созвездии Стрельца, где находятся самые мощные облака звезд. Наименее ярок он в противоположной части неба. Из этого нетрудно вывести заключение, что солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Чем дальше от плоскости Млечного Пути, тем меньше там слабых звезд и тем менее далеко в этих направлениях тянется звездная система. В общем, наша Галактика занимает пространство, напоминающее линзу или чечевицу, если смотреть на нее сбоку. Размеры Галактики были намечены по расположению звезд, которые видны на больших расстояниях. Это цефиды и горячие гиганты. Диаметр Галактики примерно равен 3000 пк (Парсек (пк) – расстояние, с которым большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1” . 1 Парсек = 3,26 светового года = 206265 а. е. = 3*10 13 км.) или 100000 световых лет (световой год – расстояние пройденное светом в течении года) , но четкой границы у нее нет, потому что звездная плотность постепенно сходит на нет.

В центре галактики расположено ядро диаметром 1000-2000 пк – гигантское уплотненное скопление звезд. Оно находится от нас на расстоянии почти 10000 пк (30000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто плотной завесой облаков, что препятствует визуальным и фотографическим обычным наблюдениям этого интереснейшего объекта Галактики. В состав ядра входит много красных гигантов и короткопериодических цефид.

Звезды верхней части главной последовательности а особенно сверхгиганты и классические цефиды, составляют более молодое население. Оно располагается дальше от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

Масса нашей галактики оценивается сейчас разными способами, равна 2*10 11 масс Солнца (масса Солнца равна 2*10 30 кг.) причем 1/1000 ее заключена в межзвездном газе и пыли. Масса Галактики в Андромеде почти такова же, а масса Галактики в Треугольнике оценивается в 20 раз меньше. Поперечник нашей галактики составляет 100000 световых лет. Путем кропотливой работы московский астрономом В. В. Кукарин в 1944 г. нашел указания на спиральную структуру галактики, причем оказалось, что мы живем между двумя спиральными ветвями, бедном звездами.

В некоторых местах на небе в телескоп, а кое где даже невооруженным глазом можно различить тесные группы звезд, связанные взаимным тяготением, или звездные скопления.

Существует два вида звездных скоплений: рассеянные и шаровые .

Рассеянные скопления состоят обычно из десятков или сотен звезд главной последовательности и сверхгигантов со слабой концентрацией к центру.

Шаровые же скопления состоят обычно из десятков или сотен звезд главной последовательности и красных гигантов. Иногда они содержат короткопериодические цефеиды. Размер рассеянных скоплений – несколько парсек. Пример их скопления Глады и Плеяды в созвездии Тельца. Размер шаровых скоплений с сильной концентрацией звезд к центру – десяток парсек. Известно более 100 шаровых и сотни рассеянных скоплений, но в Галактике последних должно быть десятки тысяч.

Кроме звезд в состав Галактики входит еще рассеянная материя, чрезвычайно рассеянное вещество, состоящее из межзвездного газа и пыли. Оно образует туманности. Туманности бывают диффузными (клочковатой формы ) и планетарными . Светлые они от того, что их освещают близлежащие звезды. Пример: газопылевая туманность в созвездии Ориона и темная пылевая туманность Конская голова.

Расстояние до туманности в созвездии Ориона равно 500 пк, диаметр центральной части туманности – 6 пк, масса приблизительно в 100 раз больше массы Солнца.

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Внешний вид галактик чрезвычайно разнообразен, и некоторые из них очень живописны. Эдвин Пауэлла Хаббл (1889-1953) , выдающийся американский астроном – наблюдатель, избрал самый простой метод классификации галактик по внешнему виду, и нужно сказать, что хотя в последствии другими выдающимися исследователями были внесены разумные предположения по классификации, первоначальная система, выведенная Хабблом, по прежнему остаётся основой классификации галактик.

Хаббл предложил разделить все галактики на 3 вида:

1. Эллиптические – обозначаемые Е (elliptical) ;

2. Спиральные (Spiral) ;

3. Неправильные – обозначаемые I (irregular) .

Эллиптические галактики внешне невыразительные. Они имеют вид гладких эллипсов или кругов с постепенным круговым уменьшением яркости от центра к периферии. Ни каких дополнительных частей у них нет, потому что Эллиптические галактики состоят из второго типа звездного населения. Они построены из звезд красных и желтых гигантов, красных и желтых карликов и некоторого количества белых звезд не очень высокой светлости. Отсутствуют бело-голубые сверхгиганты и гиганты, группировки которых можно наблюдать в виде ярких сгустков, придающих структурность системе, нет пылевой материи которая, в тех галактиках где она имеется, создаёт темные полосы, оттеняющие форму звездной системы. Внешне эллиптические галактики отличаются друг от друга в основном одной чертой – большим или меньшим сжатием (NGG и 636, NGC 4406, NGC 3115 и др.)

С несколько однообразными эллиптическими галактиками контрастируют Спиральные галактики являющиеся может быть даже самыми живописными объектами во Вселенной. У эллиптических галактик внешний вид говорит о статичности, стационарности Спиральные галактики наоборот являют собой пример динамики формы. Их красивые ветви, выходящие из центрального ядра и как бы теряющие очертания за пределами галактики, указывает на мощное стремительное движение. Поражает также многообразие форм и рисунков ветвей. Как правило, у галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающимися сходным симметричным образом и теряющая в противоположных областях периферии, галактики. Однако известны примеры большего, чем двух числа спиральных ветвей в галактике. В других случаях спирали две, но они неравны – одна значительно более развита чем вторая. Примеры спиральных галактик: М31, NGC 3898, NGC 1302, NGC 6384, NGC 1232 и др.

Перечисленные мною до сих пор типы галактик характеризовались симметричностью форм определенным характером рисунка. Но встречаются большое число галактик Неправильной формы. Без какой-либо закономерности структурного строения. Хаббл дал им обозначение от английского слова irregular – неправильные. Неправильная форма у галактики может быть, в следствии того, что она не успела принять правильной формы из-за малой плотности в ней материи или из-за молодого возраста. Есть и другая возможность: галактика может стать неправильной в следствии искажения формы в результате взаимодействия с другой галактикой. По видимому эти оба случая встречаются среди неправильных галактик и может быть с этим связанно разделение неправильных галактик на 2 подтипа.

Подтип II характеризуется сравнительно высокой поверхностью, яркостью и сложностью неправильной структуры (NGM 25744, NGC 5204) . Французский астроном Вакулер в некоторых галактиках этого подтипа, например Магеллановых облаках, обнаружил признаки спиральной разрушенной структуры.

Неправильные галактики другого подтипа обозначаемого I II , отличаются очень низкой поверхностью и яркостью. Эта черта выделяет их из среды галактик всех других типов. В то же время она препятствует обнаружению этих галактик, вследствие чего удалось выявить только несколько галактик подтипа I II расположенных сравнительно близко (галактика в созвездии Льва.) .

Только 3 галактики можно наблюдать невооруженным глазом, Большое Магелланово облако, Малое Магелланово облако и туманность Андромеды.

Не вращающаяся звездная система по истечении некоторого срока должна принять форму шара. Такой вывод следует из теоретических исследований. Он подтверждается на примере шаровых скоплений, которые вращаются и имеют шарообразную форму.

Файлы: 1 файл

Копия Общая физика.docx

Современные представления об эволюции Вселенной. Теория Большого взрыва и горячей Вселенной

Прежде чем рассматривать модель Большого взрыва, рассмотрим примерный временной масштаб событий в нашем мире, который приведен на рис. 95. Огромный скачок в познании Космоса, произошедший за последние десятилетия, объясняется главным образом глубоким внедрением в сферу наук о природе ведущей науки современного естествознания - физики. Современные астрономия и астрофизика тесно связанные между собой науки.

Все космические явления, как в ближайшем околоземном пространстве, так и в глубинах Вселенной, объясняются на основе успехов современной физики, каждая новая область физики - атомная, ядерная и субъядерная, физика материальных квантованных полей и т.д. - немедленно находит себе широкое применение в изучении Космоса, поскольку физические законы на Земле такие же, как и в Космосе. Так мы изучаем Солнечную систему, звезды, нашу Галактику, другие галактики, наконец, приходим к учению о Вселенной как целом, основанному на изучении Метагалактики, т.е. той части Вселенной, которая охвачена астрономическими наблюдениями. Теоретическим фундаментом космологии являются основные физические теории и прежде всего теория тяготения Эйнштейна. Эмпирические сведения доставляются, главным образом, внегалактической астрономией, а выводы и обобщения имеют важное общенаучное и философское значение.

До 1965 года лишь два важнейших экспериментальных факта подтверждали наши представления об однородности изотропности Вселенной. Во-первых, факт изотопного характера разбегающихся скоплений галактик и, во-вторых, их довольно равномерное распределение в пространстве. B 1965 году американскими физиками Пензиасом и Вильсоном было сделано открытие третьего важнейшего опытного факта - реликтового излучения. Это радиоизлучение оказалось равновесным, т.е. распределение энергии в нем соответствовало закону излучения абсолютно черного тела (рис. 96) при температуре, равной2,7 К. Возможность существования в Метагалактике такого излучения была предсказана теоретически еще в 1946-1948 гг. русским физиком Г. Гамовым, жившим тогда в США. Он только ошибся численно, определив равновесную температуру излучения в 6 К. Bce говорило о том, что обнаруженное излучение с длинами волн от 3 мм до 50 см не может быть получено от звезд, галактик, внегалактических радиоисточников, оно может представлять собой только остывшее первоначальное излучение, возникшее при рождении Вселенной.

Ha первых этапах Большого взрыва Вселенная была очень горячей, так как находилась в очень сжатом состоянии.

Некоторые космологи пытаются обсуждать состояние огненного шара во времена еще более ранние, чем одна микросекунда, но мы начнем рассмотрение эволюции Вселенной с того момента, когда температура составляла около триллиона градусов. Хотя по нашим масштабам одна миллионная секунды - очень краткий момент времени, по атомным масштабам он представляет собой довольно большой промежуток.

Итак, это была первая краткая эра бурной активности, когда произошло подавляющее большинство актов взаимодействия между экзотическими микрочастицами, многие из которых так и не удалось пока наблюдать в лабораториях физиков. Природа таких неведомых микрочастиц сейчас еще недостаточно ясна, однако к концу первой микросекунды огненный шар уже состоял только из знакомых нам микрочастиц, остальные уже все исчезли, распавшись. Следовательно, был в мире короткий миг, когда Вселенная была заполнена миллиардами миллиардов необычных микрочастиц. Затем он минул, и многие из этих микрочастиц, возможно, уже никогда не обнаружатся.

При быстром падении температуры ниже 1012 K огненный шар вступил в так называемый лептонный периоду, когда знакомые нам протоны, нейтроны и электроны, а вместе сними мюоны, нейтрино и антинейтрино и электромагнитное излучение в виде гамма квантов оказались перемешанными и находились в тепловом равновесии. Энергия излучения была столь высока, что могли рождаться электронно-позитронные пары. C понижением температуры исчезали сначала мюоны, а потом позитроны. Примерно через 0,1 секунды температура Вселенной упала до нескольких миллиардов градусов и тогда главную роль стали играть протоны, нейтроны и электроны.

Началась новая важная эра - плазменная. Температура снизилась настолько, что бешено носящиеся протоны и нейтроны начали объединяться, образуя атомные ядра изотопов водорода, гелия и других легких химических элементов. Как показывают детальные расчеты, почти четвертая часть всех протонов вошла в атомные ядра гелия и только незначительная часть - в атомные ядра дейтерия и лития. Таким образом, около 10% атомных ядер, выделившихся из огненного шара, составляют ядра атомов гелия, остальные представляют собой водородные ядра (отдельные протоны). Это просто удивительно соответствует наблюдаемому сейчас распространению названных легчайших химических элементов во Вселенной. Отсюда напрашивается вывод, что первичный огненный шар и есть одна из фабрик по синтезу химических элементов. Кроме того, указанное обстоятельство следует рассматривать как ценное подтверждение того, что процессы, происходившие в плазменную эру в реальной Вселенной, не слишком отличаются от описываемых моделью огненного шара в теории Фридмана.

Однако необходимо сказать, что гипотеза большого взрыва не является пока общепризнанной. Например, появление сингулярности с плотностью материи, равной бесконечности, по мнению многих ученых, в том числе и B.JI. Гинзбурга, указывает на какое-то неблагополучие, неприменимость или ограниченность теории. K сожалению, пока в рамках общей теории относительности освободиться от сингулярности не удалось. Может быть, создание квантовой теории тяготения поможет разрешить эту проблему. Отметим еще, что проблема сингулярности может существенно измениться, если существует в природе некая фундаментальная длина порядка 10^-17см, которая ограничивает возможности классической эволюции Вселенной.

Выясним теперь вопрос о возможной модели смерти Вселенной. Когда речь идет об асимметрии течения времени, большинство ученых вполне допускает существование в прошлом некого момента, при котором возникли все объекты природы, ныне существующие. Ho немногие задумываются о том, что может наступить такой момент в будущем, когда все природные тела придут к своему концу. Ho с точки зрения физики Космоса, всякая эволюция обратима, и проблема наступления конца Вселенной приведет к тому, что может существовать крупномасштабное движение, которое вызовет обращение времени теперешнего хода развития. Прежде чем обсуждать гибель Вселенной, необходимо рассмотреть условия, необходимые для такой катастрофы.

B моделях Фридмана об эволюции Вселенной (рис. 94) предполагается два варианта возможного будущего Вселенной. B модели 1 и 2 расширение Метагалактики продолжается вечно, а в модели 3 расширение на некотором этапе прекращается, после чего начинается сжатие. Если принять последнюю модель за действительность, то такое сжатие заканчивается уничтожением Вселенной в конечной сингулярной точке, тождественной начальной точке рождения Вселенной. Таким образом, Вселенная, конечная в пространстве, конечна и во времени и, естественно, симметрична во времени. Необходимое условие для наступления коллапса фактически аналогично критерию Шварцшильда (т.е. гравитационному радиусу при возникновении черной дыры). Если плотность массы во Вселенной достаточно велика, то коллапс становится неизбежным. Для осуществления сжатия необходимо знать два параметра: плотность материи и скорость замедления расширения Вселенной. Видимо, все же следует считать, что вопрос о том, будет ли Вселенная сжиматься, остается пока открытым.

Альтернативные фридмановские модели 1 и 2 (Рис. 94) дают другую картину смерти Вселенной - замерзшую пустыню. При бесконечном продолжении расширения Вселенной полное термодинамическое равновесие не может быть достигнуто никогда. Когда запасы ядерного горючего будут исчерпаны, звезды потухнут или взорвутся, или сколлапсируют в черные дыры. Такой процесс займет миллиарды лет, но в конечном счете в этих моделях он гарантирован. При дальнейшем расширении вещества потухшие галактики станут невидимыми. Bce будет остывать до фоновой температуры, когда в холодном, темном, пустом мире мало что может произойти. Лишь изредка какая-либо катастрофа, вроде столкновения двух нейтронных звезд или черных дыр на миг возродит активность материи, которая выльется во вспышку гравитационного излучения.

B науке мало столь гнетущих предсказаний, как эта мертвая пустыня.

Были предложены и другие модели, например, статическая модель, но она оказалась отвергнутой. Однако возможна модель с периодически повторяющимися циклами модели номер 3 по Фридману (рис. 97). B ней в конце каждого цикла расширения и последующего сжатия Вселенная должна попадать в сверхплотное сингулярное состояние, а затем снова совершать переход в следующий цикл расширения и сжатия, подобно первому. Указанный процесс может повторяться бесконечно, т.е. мы имеем дело с осциллирующей Вселенной. Тогда бы она не имела ни начала, ни конца, но катастрофические процессы, происходящие в сингулярных точках, уничтожали всю информацию о предыдущем цикле. B результате эволюция мира могла бы начинаться всякий раз по-новому в каждом цикле. Может быть, и законы физики после этих катастроф совсем бы изменились. Здесь возникает очень много дополнительных вопросов, например, как ведет себя энтропия или она вообще может отсутствовать и т.п.

Остановимся на двух вопросах, очень важных для нашего понимания учения о Космосе Во-первых, необходимо выяснить вопрос о происхождении различных химических элементов в природе. И, во-вторых, познакомиться с так называемым антропным принципам, который возникает при попытке ответить на вопрос: почему Вселенная такая, что мы можем в ней жить?

Многие ранние традиции, Еврейская, Христианская и Исламская религии, считали, что Вселенная создалась довольно недавно. Например, епископ Ушер вычислил дату в четыре тысячи четыреста лет для создания Вселенной, прибавляя возраст людей в Ветхом Завете. Фактически, дата библейского создания не так далека от даты конца последнего Ледникового периода, когда появился первый современный человек.

С другой стороны, некоторые люди, например, греческий философ Аристотель, Декарт, Ньютон, Галилей не признавали идею о том, что Вселенная имела начало. Они чувствовали, что это могло быть. Но они предпочли верить в то, что Вселенная, существовала, и должна была существовать всегда, то есть вечно и бесконечно.

Великий немецкий ученый, философ Эммануил Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры, и представлял Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновения такой Вселенной исключительно под действием механических сил притяжения и отталкивания. Кант попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях, начиная с планетной системы и кончая миром туманности.

Эйнштейн совершил радикальную научную революцию, введя свою теорию относительности. Это было сравнительно просто, как и всё гениальное. Ему не пришлось предварительно открыть новые явления, установить количественные закономерности. Он лишь дал принципиально новое объяснение.

В статье от 30.06.1905 г., заложившей основы специальной теории относительности, Эйнштейн, обобщая принципы относительности Галилея, провозгласил равноправие всех инерциальных систем отсчета не только в механических явлениях, но также электромагнитных явлений.

Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла Лоренца. Она описывает законы всех физических процессов при скоростях движения близких к скорости света.

Этим Фридман доказал, что вещество во Вселенной не может находиться в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

Существует несколько теории эволюции. Теория пульсирующей Вселенной утверждает, что наш мир произошел в результате гигантского взрыва. Но расширение Вселенной не будет продолжаться вечно, т.к. его остановит гравитация.

По этой теории наша Вселенная расширяется на протяжении 18 млрд. лет со времени взрыва. В будущем расширение полностью замедлится, и произойдет остановка. А затем Вселенная начнёт сжиматься до тех пор, пока вещество опять не сожмется и произойдет новый взрыв.

Теория стационарного взрыва: согласно ей Вселенная не имеет ни начала, ни конца. Она все время пребывает в одном и том же состоянии. Постоянно идет образование нового водоворота, чтобы возместить вещество удаляющимися галактиками. Вот по этой причине Вселенная всегда одинакова, но если Вселенная, начало которой положил взрыв, будет расширяться до бесконечности, то она постепенно охладится и совсем угаснет.

Но пока ни одна из этих теорий не доказана, т.к. на данный момент не существует ни каких точных доказательств хотя бы одной из них.

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс частица + античастица Þ 2 гамма-фотона при условии соприкосновения вещества с антивеществом. Процесс материализации гамма-фотон Þ частица + античастица мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась, эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

3.1. Адронная эра.

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло, прежде всего, из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(10 13 K). Средняя кинетическая энергия частиц kT и фотонов hν составляла около миллиарда эв (10 3 Мэв), что соответствует энергии покоя барионов. В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 10 13 K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во Вселенной исчезла самая большая группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10 -6 до 10 -4 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10 -4 с.), температура ее понизилась до 10 12 K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10 -4 с., в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

3.2. Лептонная эра.

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв, в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10 10 K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

3.3. Фотонная эра.

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10 10 K , а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 см 3 , точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hν всех фотонов, присутствующих в 1 см 3 , то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 см 3 является средней энергией вещества Em во Вселенной.

3.4. Звездная эра.

4.2. Антропный принцип.

Антропный (человеческий) принцип первым сформулировал в 1960 году Иглист Г.И. , но он является как бы неофициальным его автором. А официальным автором был ученый по фамилии Картер.

Антропный принцип говорит о том, что в начале Вселенной был план мироздания, венцом этого плана является возникновение жизни, а венцом жизни - человек. Антропный принцип очень хорошо укладывается в религиозную концепцию программирования жизни.

Антропный принцип утверждает, что Вселенная такая, какая она есть потому, что есть наблюдатель или же он должен появиться на определенном этапе развития. В доказательство создатели этой теории приводят очень интересные факты. Это критичность фундаментальных констант и совпадение больших чисел.

Рассмотрим первый факт.

Фундаментальными константами называются:

скорость света - С; постоянная Планка - h;

заряд электрона - e; масса электрона - me;

масса протона - mp; масса нейтрона - mn;

средняя плотность во Вселенной; гравитационная постоянная;

Исходя из этих констант, обнаружили их взаимосвязь:

между массой протона, электрона и нейтрона:

mp - mn > me; me = 5,5x10 г/моль; mp-mn = 13,4x10 г/моль.

а также критичность значений плотности во Вселенной:

если q > 10,то Вселенная пульсирующая

Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Звездная система, в составе которой, как рядовая звезда находится наше Солнце, называется Галактикой.

Число звезд в галактике порядка 10 12 (триллиона). Млечный путь, светлая серебристая полоса звезд опоясывает всё небо, составляя основную часть нашей Галактики. Млечный путь наиболее ярок в созвездии Стрельца, где находятся самые мощные облака звезд. Наименее ярок он в противоположной части неба. Из этого нетрудно вывести заключение, что солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Чем дальше от плоскости Млечного Пути, тем меньше там слабых звезд и тем менее далеко в этих направлениях тянется звездная система. В общем, наша Галактика занимает пространство, напоминающее линзу или чечевицу, если смотреть на нее сбоку. Размеры Галактики были намечены по расположению звезд, которые видны на больших расстояниях. Это цефиды и горячие гиганты. Диаметр Галактики примерно равен 3000 пк (Парсек (пк) – расстояние, с которым большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1”.1 Парсек = 3,26 светового года = 206265 а.е. = 3*10 13 км.) или 100000 световых лет (световой год – расстояние пройденное светом в течение года), но четкой границы у нее нет, потому что звездная плотность постепенно сходит на нет.

В центре галактики расположено ядро диаметром 1000-2000 пк – гигантское уплотненное скопление звезд. Оно находится от нас на расстоянии почти 10000 пк (30000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто плотной завесой облаков, что препятствует визуальным и обычным фотографическим наблюдениям этого интереснейшего объекта Галактики. В состав ядра входит много красных гигантов и короткопериодических цефид.

Звезды верхней части главной последовательности, а особенно сверхгиганты и классические цефиды, составляют молодые население. Оно располагается дальше от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

Масса нашей галактики оценивается сейчас разными способами, равна 2*10 11 масс Солнца (масса Солнца равна 2*10 30 кг.) причем 1/1000 ее заключена в межзвездном газе и пыли. Масса Галактики в Андромеде почти такова же, а масса Галактики в Треугольнике оценивается в 20 раз меньше. Поперечник нашей галактики составляет 100000 световых лет. Путем кропотливой работы астроном В.В. Кукарин в 1944 г. нашел указания на спиральную структуру галактики, причем оказалось, что мы живем между двумя спиральными ветвями, бедном звездами.

В некоторых местах на небе в телескоп, а кое-где даже невооруженным глазом можно различить тесные группы звезд, связанные взаимным тяготением, или звездные скопления.

Существует два вида звездных скоплений: рассеянные и шаровые.

Рассеянные скопления состоят обычно из десятков или сотен звезд главной последовательности и сверхгигантов со слабой концентрацией к центру.

Шаровые же скопления состоят обычно из десятков или сотен звезд главной последовательности и красных гигантов. Иногда они содержат короткопериодические цефеиды. Размер рассеянных скоплений – несколько парсек. Пример их скопления Глады и Плеяды в созвездии Тельца. Размер шаровых скоплений с сильной концентрацией звезд к центру – десяток парсек. Известно более 100 шаровых и сотни рассеянных скоплений, но в Галактике последних должно быть десятки тысяч.

Кроме звезд в состав Галактики входит еще рассеянная материя, чрезвычайно рассеянное вещество, состоящее из межзвездного газа и пыли. Оно образует туманности. Туманности бывают диффузными (клочковатой формы) и планетарными. Светлые они оттого, что их освещают близлежащие звезды. Пример: газопылевая туманность в созвездии Ориона и темная пылевая туманность Конская голова.

Расстояние до туманности в созвездии Ориона равно 500 пк, диаметр центральной части туманности – 6 пк, масса приблизительно в 100 раз больше массы Солнца.

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Открытие многообразных процессов эволюции в различных системах и телах, составляющих Вселенную, позволило изучить закономерности космической эволюции на основе наблюдательных данных и теоретических расчетов.

- время, в течение которого система уже находится в наблюдаемом состоянии;

- полное время жизни данной системы от момента её появления.

Очевидно, что вторая характеристика может быть получена только на основе теоретических расчетов.

Обычно первую из высказанных величин называют возрастом, а вторую – временем жизни.

Факт взаимного удаления галактик, составляющих метагалактики свидетельствует о том, что некоторое время тому назад она находилась в качественно ином состоянии и была более плотной.

Наиболее вероятное значение постоянной Хаббла (коэффициента пропорциональности, связывающего скорости удаления внегалактических объектов и расстояние до них составляющее 60 км/сек – мегапарсек), приводит к значению времени расширения метагалактики до современного состояния 17 млрд. лет.

Из всех вышеперечисленных доказательств можно с уверенностью сделать вывод: Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас и будут происходить в будущем.

Изучение Вселенной, даже только известной нам её части является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

Вселенная бесконечна во времени и пространстве. Каждая частичка Вселенной имеет свое начало и конец, как во времени, так и в пространстве, но вся Вселенная бесконечна и вечна так, как она является вечно самодвижущейся материей.

8. Список литературы.

Проблемы зарождения и существования Вселенной занимали самого древнего человека. Современные ученые ищут ответы на следующие вопросы: Что было, когда Вселенная рождалась? Как давно это было и как происходило? Рождалась ли Вселенная вообще или она глобально стационарна?

Современная космология - это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной. Космология основывается на астрономических наблюдениях Галактики и других звездных систем, общей теории относительности, физике микропроцессов и высоких плотностей энергии, релятивистской термодинамике и ряде других новейших физических теорий.

Данное определение космологии берет в качестве предмета этой науки только Метагалактику. Это связано с тем, что все данные, которыми располагает современная наука, относятся только к конечной системе - Метагалактике, и ученые не уверены, что при простой экстраполяции свойств этой Метагалактики на всю Вселенную будут получены истинные результаты. При этом, безусловно, суждения о свойствах всей Вселенной являются необходимой составной частью космологии. Космология сегодня является фундаментальной наукой. И она больше, чем какая-либо другая фундаментальная наука, связана с различными философскими концепциями, по-разному понимающими устройство мира.

Цель работы: рассмотреть основные космологические подходы к пониманию эволюции Вселенной.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Классическая ньютоновская космология явно или неявно принимала следующие постулаты [4]

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной.

Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим Л. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием [4]

Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.

В 1922 г. российский математик и геофизик Л. А. Фридман отбросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы [7]

Решение уравнений А. А. Фридмана, допускает три возможности. Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния.

Если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется. И, наконец, если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния. По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т. е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бесконечности Вселенной пока преждевременно.

Начало третьего периода развития космологии связано с работами известного американского физика Георгия А. Гамова (1904—1968), русского по происхождению. В них исследуются физические процессы, происходившие на разных стадиях расширяющейся Вселенной [7]

Общим для современных моделей вселенной является представление о нестационарном изотропном и однородном характере ее моделей.

Изотропность указывает на то, что во Вселенной не существует каких- либо выделенных точек и направлений, т. е. ее свойства не зависят от направления Однородность характеризует распределение в среднем вещества во Вселенной. Последние утверждения часто называют космологическим постулатом. К нему добавляют также правдоподобное требование об отсутствии во Вселенной сил, препятствующих силам тяготения. При таких предположениях модели оказываются наиболее простыми. В их основе лежат уравнения общей теории относительности Эйнштейна, а также представления о кривизне пространства — времени и связи этой кривизны с плотностью массы вещества [6]

В зависимости от кривизны пространства различают: открытую модель, в которой кривизна отрицательна или равна нулю; замкнутую модель с положительной кривизной.

Расстояния между скоплениями галактик со временем непрерывно увеличиваются, что соответствует бесконечной Вселенной. В замкнутых моделях Вселенная оказывается конечной, но столь же неограниченной, так как, двигаясь по ней, нельзя достичь какой-либо границы. Независимо от того, рассматриваются ли открытые или замкнутые модели Вселенной, все ученые сходятся в том, что первоначально Вселенная находилась в условиях, которые трудно вообразить на Земле.

Эти условия характеризуются наличием высокой температуры и давления в сингулярности, в которой была сосредоточена материя. Такое допущение вполне согласуется с установлением расширения Вселенной, которое могло начаться с некоторого момента, когда она находилась в очень горячем состоянии и постепенно охлаждалась по мере расширения.

Такая модель "горячей" Вселенной впервые была выдвинута Г. А. Гамовым и впоследствии названа стандартной.

В 1929 г. американский астроном Э. П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,— система галактик расширяется [6]

Известный американский астроном Карл Саган (р. 1934) построил наглядную модель эволюции Вселенной, в которой космический год равен 15 млрд. земных лет, а 1 секунда — 500 годам; тогда в земных единицах времени эволюция представится так:

Читайте также: