Смо с отказами реферат

Обновлено: 07.07.2024

В качестве показателей эффективности СМО с отказами будем рассматривать:

1) абсолютную пропускную способность СМО , т.е. среднее число заявок, обслуживаемых в единицу времени;

2) — относительную пропускную способность , т.е. среднюю долю пришедших заявок, обслуживаемых системой;

3) — вероятность отказа , т.е. того, что заявка покинет СМО необслуженной;

4) среднее число занятых каналов (для многоканальной системы).

Одноканальная система (СМО) с отказами

Рассмотрим задачу. Имеется один канал, на который поступает поток заявок с интенсивностью . Найти предельные вероятности состояний системы и показатели ее эффективности.

Примечание. Здесь и в дальнейшем предполагается, что все потоки событий, переводящие СМО из состояния в состояние, будут простейшими. К ним относится и поток обслуживании — поток заявок, обслуживаемых одним непрерывно занятым каналом. Среднее время обслуживания обратно по величине интенсивности , т.е. .

Система (СМО) имеет два состояния: — канал свободен, — канал занят. Размеченный граф состояний представлен на рис. 6.

В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид (см. выше правило составления таких уравнений)

т.е. система вырождается в одно уравнение. Учитывая нормировочное условие , найдем из (18) предельные вероятности состояний

которые выражают среднее относительное время пребывания системы в состоянии (когда канал свободен) и (когда канал занят), т.е. определяют соответственно относительную пропускную способность системы и вероятность отказа

Абсолютную пропускную способность найдем, умножив относительную пропускную способность на интенсивность потока отказов

Пример 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем (1/ч), мин. Интенсивность потока обслуживании (1/мин) (1/ч). По (20) относительная пропускная способность СМО , т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит (см. (21)). Абсолютная пропускная способность СМО по (29) , т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система (СМО) с отказами.

Рассмотрим классическую задачу Эрланга . Имеется каналов, на которые поступает поток заявок с интенсивностью . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): , где — состояние системы, когда в ней находится

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью (два канала заняты), то она может перейти в состояние (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет . Аналогично суммарный поток обслуживании, переводящий СМО из состояния (три канала заняты) в , будет иметь интенсивность , т.е. может освободиться любой из трех каналов и т.д.

В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния

где члены разложения , будут представлять собой коэффициенты при в выражениях для предельных вероятностей . Величина

называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала . Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь

Формулы (25) и (26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все я каналов системы будут заняты, т.е.

Относительная пропускная способность — вероятность того, что заявка будет обслужена:

Абсолютная пропускная способность:

Среднее число занятых каналов

где — предельные вероятности состояний, определяемых по формулам (25), (26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем заявок (в единицу времени), то среднее число занятых каналов

Пример 6. В условиях примера 5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (25) , т.е. за время среднего (по продолжительности) телефонного разговора мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) и определим по формулам (25), (28), (29) для получаемой n-канальной СМО характеристики обслуживания. Например, при и т.д.

Значение характеристик СМО сведем в табл. 1.

По условию оптимальности , следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае — см. табл. 1). При этом в час будут обслуживаться в среднем 80 заявок , а среднее число занятых телефонных номеров (каналов) по формуле (30) .

Пример 7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию (1/ч), =3 (ч). Интенсивность потока обслуживании . Интенсивность нагрузки ЭВМ по формуле (24) . Найдем предельные вероятности состояний:

т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% — имеется одна заявка (занята одна ЭВМ), 13,4% — две заявки (две ЭВМ), 3,3% времени — три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, .

По формуле (28) относительная пропускная способность центра , т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (29) абсолютная пропускная способность центра , т.е. в один час в среднем обслуживается. 0,242 заявки.

По формуле (30) среднее число занятых ЭВМ , т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на .

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны — значительный простой каналов обслуживания) и выбрать компромиссное решение.

За последнее время в самых разных областях практики возникла необходимость в решении различных вероятностных задач, связанных с работой так называемых систем массового обслуживания (СМО ). Примерами таких систем могут служить: телефонные станции, ремонтные мастерские, билетные кассы, стоянки такси, парикмахерские и т.п.

Темой данного курсового проекта как раз и является решение подобной задачи. Однако, в предложенной задаче будет исследована СМО, в которой рассматриваются 2 потока заявок, один из которых обладает приоритетом. Также рассматриваемые процессы являются немарковскими, т. к. важен фактор времени. Поэтому решение данной задачи построено не на аналитическом описании системы, а на статистическом моделировании.

Практическое решение задачи осуществлено с помощью программы, реализованной в среде TURBO PASCKAL.

1. Теория массового обслуживания. Основные положения.

1.1. Предмет и задачи теории массового обслуживания.

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику.

Теория массового обслуживания – область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами.

Задача теории массового обслуживания – установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных показателей (количества каналов в системе, параметров входящего потока заявок и т.д.). Результирующими показателями или интересующими нас характеристиками СМО являются – показатели эффективности СМО, которые описывают способна ли данная система справляться с потоком заявок.

Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и простоев каналов обслуживания.

1.2. Система массового обслуживания.

Система обслуживания считается заданной, если известны:

1) поток требований, его характер;

2) множество обслуживающих приборов;

3) дисциплина обслуживания (совокупность правил, задающих процесс обслуживания).

Каждая СМО состоит из какого-то числа обслуживающих единиц, которые называются каналами обслуживания. В качестве каналов могут фигурировать: линии связи, различные приборы, лица, выполняющие те или иные операции и т.п

Всякая СМО предназначена для обслуживания какого-то потока заявок, поступающих в какие-то случайные моменты времени. Обслуживание заявок продолжается какое-то случайное время, после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времен обслуживания приводит к тому, что в какие-то периоды времени на входе СМО скапливается излишне большое число заявок (они либо становятся в очередь, либо покидают СМО не обслуженными); в другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем; состояние СМО меняется скачком в моменты появления каких-то событий ( или прихода новой заявки, или окончания обслуживания, или момента, когда заявка, которой надоело ждать, покидает очередь ).

1.3. Классификация СМО.

Для облегчения процесса моделирования используют классификацию СМО по различным признакам, для которых пригодны определенные группы методов и моделей теории массового обслуживания, упрощающие подбор адекватных математических моделей к решению задач обслуживания в коммерческой деятельности.(см. рис.1)

Рис.1 Классификация систем массового обслуживания

1. 4. Характеристики СМО.

Перечень характеристик систем массового обслуживания можно представить следующим образом:

  • среднее время обслуживания;
  • среднее время ожидания в очереди;
  • среднее время пребывания в СМО;
  • средняя длина очереди;
  • среднее число заявок в СМО;
  • количество каналов обслуживания;
  • интенсивность входного потока заявок;
  • интенсивность обслуживания;
  • интенсивность нагрузки;
  • коэффициент нагрузки;
  • относительная пропускная способность;
  • абсолютная пропускная способность;
  • доля времени простоя СМО;
  • доля обслуженных заявок;
  • доля потерянных заявок;
  • среднее число занятых каналов;
  • среднее число свободных каналов;
  • коэффициент загрузки каналов;
  • среднее время простоя каналов.

2.Постановка задачи на проектирование.

2.1.Формулировка задачи.

Построить модель СМО и исследовать поведение характеристик её эффективности.

Описание системы:

Данные для варианта : l 1 =3, l 2 =1, m 1 =2, m 2 =1.

2.2Теоретическое представление задачи.

На двухканальную СМО поступают заявки двух простейших потоков.

Простейшим потоком называется поток, обладающий следующими свойствами:

Поток событий называется стационарным , если вероятность попадания того или иного числа событий на участок времени длиной t зависит только от длины участка и не зависит от того, где именно на оси времени расположен этот участок.

Поток событий называется ординарным, если вероятность попадания на элементарный участок Dt двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события. Ординарность означает, что поток прореженный, т.е. между любыми двумя событиями есть временной интервал.

Поток событий называется потоком без последействия , если для любых, не перекрывающихся участков времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Это означает, что заявки попадают в систему не зависимо друг от друга.

Интенсивность поступления заявок 1-го потока - l1. Интенсивность поступления заявок 2-го потока - l2. Простейшие потоки поступления заявок характеризуются показательным законом распределения. Тогда интервал времени поступления заявок 1-го потока представляет собой случайную величину с одним и тем же распределением вероятностей F (t).


, (1) где l1>0 – постоянная.

Плотность распределения показательного закона задается формулой:


где l1>0, - интенсивность поступления заявок 1-го потока.

Аналогично, интервал времени поступления заявок 2-го потока представляет собой случайную величину с одним и тем же распределением вероятностей F(t).


, (1) где l2>0 – постоянная.

Плотность распределения показательного закона задается формулой:


где l2>0, - интенсивность поступления заявок 2-го потока.

Необходимо также учесть, что моделируемая система массового обслуживания является СМО с отказами и с абсолютным приоритетом. Т.е. заявки 1 имеют перед заявками 2 приоритет, состоящий в том, что если заявка 1 приходит в систему, когда все каналы заняты и хотя бы один из них обслуживает заявку 2, то пришедшая заявка 1 вытесняет заявку 2, становится на ее место, а та покидает систему не обслуженной. Если заявка 1 приходит в систему в момент, когда оба канала обслуживают заявку 1, то она покидает СМО. Заявка 2 получает отказ, если она приходит в систему в момент, когда оба канала заняты, безразлично какими заявками.

Длительность обслуживания заявок 1-го и 2-го потока также представляют собой случайные величины, подчиняющиеся показательному закону распределения. Интенсивность обслуживания заявок 1-го потока - m1. Интенсивность обслуживания заявок 2-го потока - m2. Длительность обслуживания заявок 1-го потока представляет собой случайную величину с одним и тем же распределением вероятностей F (t).


, (1) где m1>0 – постоянная.

Плотность распределения показательного закона задается формулой:


где m1>0, - интенсивность обслуживания заявок 1-го потока.

Аналогично, длительность обслуживания заявок 2-го потока представляет собой случайную величину с одним и тем же распределением вероятностей F(t).


, (1) где m2>0 – постоянная.

Плотность распределения показательного закона задается формулой:


где m2>0, - интенсивность обслуживания заявок 2-го потока.

В рассматриваемой задаче СМО имеет 2 входа, на один из которых поступает случайный поток Заявок I, на другой вход - поток Заявок II.

3. Решение задачи.

3.1. Алгоритм моделирования СМО.

Начальные условия:

1) Рассматриваемая в задаче СМО представляет собой СМО с:

· Двухканальным входным потоком ( имеет 2 входа, на один из которых поступают случайный поток Заявок I, на другой вход – поток Заявок II).

2) Определение времен поступления и обслуживания заявок:

· Времена поступления и обслуживания заявок генерируются случайно с заданным показательным законом распределения;

· Интенсивности поступления и обслуживания заявок заданы;

3) Функционирование рассматриваемой СМО:

· Каждый канал обслуживает в каждый момент времени одну заявку;

· Если в момент поступления новой заявки свободен хотя бы один канал, то пришедшая заявка поступает на обслуживание;

· Если отсутствуют Заявки то система простаивает.

4) Дисциплина обслуживания:

· Приоритет Заявок I: если система занята (оба канала обслуживают заявки), причем один из каналов занят Заявкой II, Заявка I вытесняют Заявку II; Заявка II покидает систему необслуженной;

· Если к моменту поступления Заявки II оба канала заняты, Заявка II не обслуживается;

· Если к моменту поступления Заявки I оба канала обслуживают Заявки I, поступившая Заявка I покидает систему необслуженной;

Задача моделирования: зная параметры входных потоков заявок промоделировать поведение системы и вычислить её основные характеристики её эффективности. Меняя величину Т от меньших значений до больших (интервал времени, в течении которого происходит случайный процесс поступления заявок 1-го и 2-го потока в СМО на обслуживание), можно найти изменения критерия эффективности функционирования и выбрать оптимальный.

Критерии эффективности функционирования СМО:

· Относительная пропускная способность;

· Абсолютная пропускная способность;

Принцип моделирования:

· Вводим начальные условия: общее время работы системы, значения интенсивностей потоков заявок; число реализаций работы системы;

· Генерируем моменты времени, в которые прибывают заявки, последовательность прихода Заявок I Заявок II, время обслуживания каждой пришедшей заявки;

· Считаем сколько заявок было обслужено, а сколько получило отказ;

· Рассчитываем критерий эффективности СМО:

4. Программная реализация.

Программа была разработана в среде программирования Turbo Pascal. Алгоритм функционирования программы заключается в следующем: после считывания введенных пользователем параметров, производится генерация моментов появления Заявок. Затем выполняется процедура, реализующая СМО, представляющая собой цикл с условием выхода по истечению времени функционирования СМО. Значения интенсивностей появления заявок в системе и обслуживания заявок заданы в программе в виде констант.

Отсчёт внутреннего времени СМО выполняется с помощью приращения переменной. В текущий момент времени производится проверка моментов появления заявки. Если заявка появилась, когда один из каналов был свободен, заявка поступает на обслуживание в свободный канал. В противном случае при появлении заявки II, она получает отказ (соответственно увеличивается число необслуженных заявок). При появлении Заявки I, она не обслуживается в случае занятости обоих каналов заявками I. При занятости хотя бы одного канала Заявкой II, Заявка I становится на место Заявки II, (Заявка II покидает систему необслуженной, увеличивается количество необслуженных заявок).

Описание интерфейса:

Листинг программы представлен в приложении 6.

Работа программы и получение данных для анализа работы СМО.

Чтобы исследовать поведение смоделированной СМО при различных значениях времени функционирования, зададим число реализаций программы равным 18. Причем, при каждой новой реализации, будем задавать больший интервал времени функционирования системы.

Интересно также пронаблюдать поведение СМО при изменяющихся значениях интенсивностей появления заявок в системе. Поэтому изменим значения этих констант в программе и пронаблюдаем поведение СМО. Значения интенсивностей поступления заявок1 уменьшим на 1, а заявок 2- увеличим на 1.

Новые значения интенсивностей:: l 1 =2, l 2 =2, m 1 =2, m 2 =1.

Читайте также: