Слюда и материалы на ее основе реферат

Обновлено: 07.07.2024

Слюды представляют собой группу материалов, относящихся к водным алюмосиликатам с ярко выраженной слоистой структурой, которая обусловливает высокую анизотропию свойств, т. е. неодинаковость физико-механических и электрических характеристик в на­правлении вдоль и поперек слоев. В качестве электрической изоля­ции в настоящее время применяют два вида минеральных слюд: мусковит и флогопит.

Кроме природных слюд применяются также и синтетические Слюда является весьма ценным природным минеральным электро­изоляционным материалом. Использование ее в качестве изоляции крупных турбо- и гидрогенераторов, тяговых электродвигателей и в качестве диэлектрика в некоторых конденсаторах связано с ее вы­сокой электрической прочностью, нагревостойкостью, мехакической прочностью и гибкостью. В природе слюда встречается в виде кристаллов. которые способны легко расщепляться на пластинки параллельным друг другу плоскостям (плоскостям спайности)

Слюды достаточно широко распространенные минералы и со­ставляют 3,8 % массы земной коры, однако промышленные место­рождения мусковита и флогопита, содержащие кристаллы достаточно крупных размеров, немногочисленны. Крупноразмерный мусковит добывается в Карелии, Иркутской и Мурманской областях, а флогопит – Мурманской области и Якутии. За рубежом крупными слюдяными месторождения­ми располагает Индия.

Химический состав природных слюд может быть приближенно выражен следующими формулами:



s w:val="30"/> O ">

Кроме того, в слюды могут входить другие химические элементы, оказывающие влияние на их свойства.

В месторождениях слюду обычно находят вместе с кварцем, по­левым шпатом и другими минералами. Примесь трехвалентного же­леза придает мусковиту коричневую или красноватую окраску, при­чем мусковит с такой окраской считается наилучшим. Мусковит зе­леноватого цвета с примесью двухвалентного железа имеет ухудшенные диэлектрические свойства, в частности пониженное удельное объемное сопротивление.

Мусковит, флогопит в практических условиях применения слю­дяной изоляции имеют высокую химическую стойкость, причем мус­ковит более стоек, чем флогопит. Сильные кислоты и щелочи дейст­вуют на мусковит и флогопит только при значительной концентра­ции, при нагревании и длительном контакте.

По электрическим свойствам мусковит является одним из луч­ших электроизоляционных материалов и превосходит в этом отноше­нии флогопит. Кроме того, он более прочен механически, более тверд, гибок и упруг, чем флогопит. При нагревании слюды до не­которой температуры из нее начинает выделяться входящая в ее состав вода. При этом в результате вспучивания слюда теряет прозрачность, толщина ее увеличивается, механические свойства и электрические характеристики ухудшаются. Для различных слюд температура обезвоживания колеблется в весьма широких преде­лах: у мусковитов она обычно не менее 200°С, у флогопитов – не менее 800°С Некоторые разновидности флогопита имеют более низкие температуры обезвоживания (150-250°С), что связано с по­вышенным содержанием воды. Такие слюды находят применение только для малоответственных целей.

Температура плавления слюд зависит от их химического состава и находится в пределах 1145-1400°С, Расплавленная слюда при застывании не образует кристаллов прежнего состава. Получае­мый после остывания расплава стекловидный материал не являет­ся слюдой.

Синтетическая слюда получается путем расплавления в высоко­температурной печи шихты специально подобранного состава с по­следующим весьма медленным охлаждением расплава, в результате чего кристаллизуется синтетическая слюда. Синтетическая слюда, называемая фторфлогопитом, обладает более высокой химической стойкостью, нагревостойкостью, радиационной стойкостью, чем природный флогопит. Это связано с тем, что во фторфлогопите от­сутствует кристаллизационная вода, гидроксильные группы ОН в нем замещены на ионы фтора Синтетическая слюда значительно дороже, чем природная. Она получается в виде сравнительно не­больших кристаллов и труднее, чем природная слюда, расщепля­ется. По этим причинам синтетическая слюда не может рассматри­ваться как заменитель природной, однако она представляет боль­шой интерес из-за высоких электрических свойств. Фторфлогопит находит применение в качестве изоляционных материалов в элект­ронных лампах, дли окон волноводов, в качестве диэлектрика кон­денсаторов, работающих до температуры 600 – 700 о С, и дли других изделий, применяемых в радиоэлектронике. Кроме того, на основе синтетической слюды может быть изготовлено, как и на основе при­родной слюды, много различных интересных для техники материа­лов. Сравнение свойств мусковита, флогопита и фторфлогопита при­ведено в табл. 8.4.

Слюдяные материалы изготовляют на основе так называемой щепаной слюды. После очистки слюды от посторонних минералов при её извлечении из горных пород она носит название забойного сырца. Забойный сырец разбирается вручную, раскалывается ножом на пластинки и разбирается. Полученная щепаная слюда применяется для производства миканитов.

Нажмите, чтобы узнать подробности

Слюда обладает исключительно ценными качествами: высокой электрической прочностью, нагревостойкостью, гибкостью, теплопроводностью. Встречается в природе в виде кристаллов, легко расщепляющихся на пластинки. Водные алюмосиликаты – мусковит и флогопит.

Слюда и слюдяные материалы

Слюда обладает исключительно ценными качествами: высокой электрической прочностью, нагревостойкостью, гибкостью, теплопроводностью. Встречается в природе в виде кристаллов, легко расщепляющихся на пластинки. Водные алюмосиликаты – мусковит K2O·3Al2O3·6SiO2·2H2O и флогопит K2O·6MgO·Al2O3·6SiO2·2H2O. Кроме того в состав слюды могут входить соединения железа, натрия, кальция и др. Мусковиты бесцветные или имеют оттенки – красноватый, зеленоватый и др., по электрическим и механическим свойствам лучше. Флогопиты тёмные – янтарные, золотистые, коричневые до чёрных, но встречаются и светлые. Наилучшие электрические свойства – перпендикулярно слоям. Применяется для изоляции мощных высоковольтных электрических машин и высоковольтных высокочастотных конденсаторов. При нагреве до нескольких сотен градусов из слюды выходит кристаллическая вода, она вспучивается и теряет прозрачность, электрические и механические свойства ухудшаются.

Кроме пластин самой слюды применяют материалы на её основе: миканиты, слюдиниты, слюдопласты, микалекс.

Миканиты – листовые материалы, склеенные из отдельных лепестков слюды с помощью клеящего лака или сухой смолы. Их используют в качестве различных изоляционных прокладок, например между коллекторными пластинами электродвигателей. Пластины миканита используют также в качестве конструктивных изоляционных элементов например внутри электронно-вакуумных приборов.

При изготовлении микаленты на подложку из стеклоткани или особо прочной бумаги с двух сторон приклеивают пластинки слюды с перекрытием. Из отходов слюды с использованием различных связующих изготавливают слюдинитовые и слюдопластовые бумаги. Микалекс это пластмасса, в которой наполнитель – отходы слюды, а связующее – легкоплавкое стекло.

Синтетическая слюда фторфлогопит применяется для изготовления штампованных деталей, способных работать при температуре от минус 200 до плюс 800 °С. В её структуре атомы кислорода частично заменены на атомы фтора.

Слюдяные электроизоляционные материалы

Данные материалы состоят из листочков слюды, склеенных при помощи какой-либо смолы или клеящего лака. К клееным слюдяным материалам относятся миканиты, микафолий и микаленты. Клееные слюдяные материалы используют в основном для изоляции обмоток электрических машин высокого напряжения (генераторы, электродвигатели), а также изоляции машин низкого напряжения и машин, работающих в тяжелых условиях.

Миканиты представляют собой твердые или гибкие листовые материалы, получаемые склеиванием листочков щипаной слюды с помощью шеллачной, глифталевых, кремнийорганических и других смол или лаков на основе этих смол.

Основные виды миканитов - коллекторный, прокладочный, формовочный и гибкий. Коллекторный и прокладочный миканиты относятся к группе твердых миканитов, которые после клейки слюды подвергаются прессованию при повышенных удельных давлениях и нагреве. Эти миканиты обладают меньшей усадкой по толщине и большей плотностью. Формовочный и гибкий миканиты имеют более рыхлую структуру и меньшую плотность.

Коллекторный миканит - это твердый листовой материал, изготовляемый из листочков слюды, склеенных при помощи шеллачной или глифталевой смол или лаков на основе этих смол. Для обеспечения механической прочности при работе в коллекторах электрических машин в данные миканиты вводят не более 4% клеящего вещества.

Прокладочный миканит представляет собой твердый листовой материал, изготовляемый из листочков щипаной слюды, склеенных с помощью шеллачной или глифталевой смол или лаков на их основе. После склеивания листы прокладочного миканита подвергают прессованию. В данном материале 75-95% слюды и 25-5% клеящего вещества.

Формовочный миканит - твердый листовой материал, изготовляемый из листочков щипаной слюды, склеенных с помощью шеллачной, глифталевой или кремнийорганических смол или лаков на их основе. После склеивания листы формовочного миканита прессуют при температуре 140-150° С.

Гибкий миканит представляет собой листовой материал, обладающий гибкостью при комнатной температуре. Он изготовляется из листочков щипаной слюды, склеенных масляно-битумным, масляно-глифталевым или кремнийорганическим лаком (без сиккатива), образующим гибкие пленки.

Отдельные виды гибкого миканита оклеивают с двух сторон микалентной бумагой для увеличения механической прочности. Гибкий стекломиканит - листовой материал, гибкий при комнатной температуре. Это разновидность гибкого миканита, отличается повышенной механической прочностью и повышенной устойчивостью к нагреву. Данный материал изготовляется из листочков щипаной слюды, склеенных друг с другом кремнийорганическими или масляно-глифталевыми лаками, образующими гибкие нагревостойкие пленки. Листы гибкого стекломиканита оклеиваются с двух или с одной стороны бесщелочной стеклотканью.

Микафолий - это рулонный или листовой электроизоляционный материал, формуемый в нагретом состоянии. Он состоит из одного или нескольких, чаще двух-трех, слоев листочков слюды, склеенных между собой и с полотном бумаги толщиной 0,05 мм, или со стеклотканью, или со стеклосеткой. В качестве клеящих лаков применяют шеллачный, глифталевый, полиэфирный или кремнийорганический.

Микалента представляет собой рулонный электроизоляционный материал, гибкий при комнатной температуре. Состоит из одного слоя листочков щипаной слюды, склеенных между собой и оклеенных с одной или двух сторон тонкой микалентной бумагой, стеклотканью или стеклосеткой. В качестве клеящих лаков используют масляно-битумные, масляно-глифталевые, кремнийорганические и растворы каучуков.

Микашелк - рулонный электроизоляционный материал, гибкий при комнатной температуре. Микашелк представляет собой одну из разновидностей микаленты, но с повышенной механической прочностью на разрыв. Он состоит из одного слоя листочков щипаной слюды, склеенных между собой и оклеенных с одной стороны полотном из натурального шелка, а с другой - микалентной бумагой. В качестве клеящих лаков использованы масляно-глифталевые или масляно-битумные лаки, образующие гибкие пленки.

Микаполотно - рулонный или листовой электроизоляционный материал, гибкий при комнатной температуре. Микаполотно состоит из нескольких слоев щипаной слюды, склеенных между собой и оклеенных с двух сторон хлопчатобумажной тканью (перкаль) или микалентной бумагой с одной стороны и тканью - с другой.

Микалекс представляет собой слюдяную пластмассу, изготовляемую прессованием из смеси порошкообразной слюды и стекла. После прессования изделия подвергают термической обработке (сушке). Микалекс выпускают в виде пластин и стержней, а также в виде электроизоляционных изделий (панели, основания для переключателей, воздушных конденсаторов и пр.). При прессовании микалексовых изделий в них могут быть добавлены металлические части. Данные изделия поддаются всем видам механической обработки.

Слюдинитовые электроизоляционные материалы

При разработке природной слюды и при изготовлении электроизоляционных материалов на основе щипаной слюды остается большое количество отходов. Их утилизация дает возможность получить новые электроизоляционные материалы - слюдиниты. Такого рода материалы изготовляют из слюдинитовой бумаги, предварительно обработанной каким-либо клеящим составом (смолы, лаки). Из слюдяной бумаги путем склеивания с помощью клеящих лаков или смол и последующего горячего прессования получают твердые или гибкие слюдинитовые электроизоляционные материалы. Клеящие смолы могут быть введены непосредственно в жидкую слюдяную массу - слюдяную суспензию. Среди наиболее важных слюдинитовых материалов нужно сказать о следующих.

Слюдинит коллекторный - твердый листовой материал, калиброванный по толщине. Получается горячим прессованием листов слюдинитовой бумаги, обработанной шеллачным лаком. Коллекторный слюдинит выпускается в листах размером от 215 х 400 мм до 400 х 600 мм.

Слюдинит прокладочный - твердый листовой материал, получаемый горячим прессованием листов слюдинитовой бумаги, пропитанных клеящими лаками. Прокладочный слюдинит выпускается в листах размером 200 х 400 мм. Из него изготовляют твердые прокладки и шайбы для электрических машин и аппаратов с нормальным и повышенным перегревом.

Стеклослюдинит формовочный - твердый листовой материал в холодном состоянии и гибкий - в нагретом. Получается при склеивании слюдинитовой бумаги с подложками из стеклоткани. Формовочный нагревостойкий стеклослюдинит - твердый листовой материал, формуемый в нагретом состоянии. Его изготовляют путем склеивания листов слюдинитовой бумаги со стеклотканью при помощи нагревостойкого кремнийорганического лака. Он выпускается в листах размером 250 х 350 мм и более. Данный материал имеет повышенную механическую прочность при растяжении.

Слюдинит гибкий - листовой материал, гибкий при комнатной температуре. Его получают путем склеивания листов слюдинитовой бумаги с последующим горячим прессованием. В качестве связующего применяется полиэфирный или кремнийорганический лак. Большинство видов гибкого слюдинита оклеивается стеклотканью с одной или двух сторон. Стеклослюдинит гибкий (нагревостойкий) - листовой материал, гибкий при комнатной температуре. Производится в результате склеивания одного или нескольких листов слюдинитовой бумаги со стеклотканью или стеклосеткой при помощи кремнийорганических лаков. После склеивания материал подвергается горячему прессованию. Он оклеен стеклотканью с одной или двух сторон с целью повышения механической прочности.

Слюдинитофолий - рулонный или листовой материал, гибкий в нагретом состоянии, получаемый склеиванием одного или нескольких листов слюдинитовой бумаги с телефонной бумагой толщиной 0,05 мм, применяемой в качестве гибкой подложки. Область применения этого материала та же, что и микафолия на основе щипаной слюды. Слюдинитофолий выпускается в рулонах шириной 320-400 мм.

Слюдинитовая лента - рулонный нагревостойкий материал, гибкий при комнатной температуре, состоящий из слюдинитовой бумаги, оклеенной с одной или обеих сторон стеклосеткой или стеклотканью. Слюдинитовые ленты выпускают преимущественно в роликах шириной 15, 20, 23, 25, 30 и 35 мм, реже - в рулонах.

Стеклобумослюдинитовая лента - рулонный, гибкий в холодном состоянии материал, состоящий из слюдинитовой бумаги, стеклосетки и микалентной бумаги, склеенных и пропитанных эпоксидно-полиэфирным лаком. С поверхности ленту покрывают липким слоем компаунда. Выпускают ее в роликах шириной 15, 20, 23, 30, 35 мм.

Стеклослюдинитоэлектрокартон - листовой материал, гибкий при комнатной температуре. Он получается в результате склеивания слюдинитовой бумаги, электрокартона и стеклоткани при помощи лака. Выпускается в листах размером 500 х 650 мм.

Слюдопластовые электроизоляционные материалы

Все слюдопластовые материалы изготовляются путем склеивания и прессования листов слюдопластовой бумаги. Последнюю получают из непромышленных отходов слюды в результате механического дробления частиц упругой волной. По сравнению со слюдинитами слюдопластовые материалы обладают большей механической прочностью, но менее однородны, т. к. состоят из частиц большей величины, чем слюдиниты. Важнейшими слюдопластовыми электроизоляционными материалами являются следующие.

Слюдопласт коллекторный - твердый листовой материал, калиброванный по толщине. Получается горячим прессованием листов слюдопластовой бумаги, предварительно покрытых слоем клеящего состава. Выпускается в листах размером 215 х 465 мм.

Слюдопласт прокладочный - твердый листовой материал, изготавливаемый горячим прессованием листов слюдопластовой бумаги, покрытых слоем связующего вещества. Выпускается в листах размером 520 х 850 мм.

Слюдопласт формовочный - прессованный листовой материал, твердый в холодном состоянии и способный формоваться в нагретом. Выпускается в листах размером от 200 х 400 мм до 520 х 820 мм.

Слюдопласт гибкий - прессованный листовой материал, гибкий при комнатной температуре. Выпускается в листах размером от 200 х 400 мм до 520 х 820 мм.

Стеклослюдопласт гибкий - прессованный листовой материал, гибкий при комнатной температуре, состоящий из нескольких слоев слюдопластовой бумаги, оклеенных с одной стороны стеклотканью, а с другой - стеклосеткой или с обеих сторон стеклосеткой. Выпускается в листах размером от 250 х 500 мм до 500 х 850 мм.

Слюдопластофолий - рулонный или листовой материал, гибкий и формуемый в нагретом состоянии, получаемый склеиванием нескольких листов слюдопластовой бумаги и оклеенный с одной стороны телефонной бумагой или без нее.

Слюдопластолента - гибкий при комнатной температуре рулонный материал, состоящий из слюдопластовой бумаги, оклеенной микалентной бумагой с обеих сторон. Этот материал выпускается в роликах шириной 12, 15, 17, 24, 30 и 34 мм.

Стеклослюдопластолента нагревостойкая - гибкий при комнатной температуре материал, состоящий из одного слоя слюдопластовой бумаги, оклеенной с одной или с двух сторон стеклотканью или стеклосеткой с помощью кремнийорганического лака. Материал выпускается в роликах шириной 15, 20, 25, 30 и 35 мм.

Слюда обладает исключительно ценными качествами: высокой электрической прочностью, нагревостойкостью, гибкостью, теплопроводностью. Встречается в природе в виде кристаллов, легко расщепляющихся на пластинки. Водные алюмосиликаты — мусковит K2O· 3Al2O3·6SiO2·2H2O и флогопит K2O· 6MgO·Al2O3·6SiO2·2H2O. Кроме того, в состав слюды могут входить соединения железа, натрия, кальция и др. Мусковиты… Читать ещё >

  • электротехнические материалы и технология электромонтажных работ. часть 2. диэлектрические и магнитные материалы

Слюда и слюдяные материалы ( реферат , курсовая , диплом , контрольная )

Слюда обладает исключительно ценными качествами: высокой электрической прочностью, нагревостойкостью, гибкостью, теплопроводностью. Встречается в природе в виде кристаллов, легко расщепляющихся на пластинки. Водные алюмосиликаты — мусковит K2O· 3Al2O3·6SiO2·2H2O и флогопит K2O· 6MgO·Al2O3·6SiO2·2H2O. Кроме того, в состав слюды могут входить соединения железа, натрия, кальция и др. Мусковиты бесцветные или имеют оттенки — красноватый, зеленоватый и др., по электрическим и механическим свойствам лучше. Флогопиты тёмные — янтарные, золотистые, коричневые до чёрных, но встречаются и светлые. Наилучшие электрические свойства — перпендикулярно слоям. Применяется для изоляции мощных высоковольтных электрических машин и высоковольтных высокочастотных конденсаторов. При нагреве до нескольких сотен градусов из слюды выходит кристаллическая вода, она вспучивается и теряет прозрачность, электрические и механические свойства ухудшаются.

Кроме пластин самой слюды применяют материалы на её основе: миканиты, слюдиниты, слюдопласты, микалекс.

Миканиты — листовые материалы, склеенные из отдельных лепестков слюды с помощью клеящего лака или сухой смолы. Их используют в качестве различных изоляционных прокладок, например, между коллекторными пластинами электродвигателей. Пластины миканита используют также в качестве конструктивных изоляционных элементов, например внутри электронно-вакуумных приборов.

При изготовлении микаленты на подложку из стеклоткани или особо прочной бумаги с двух сторон приклеивают пластинки слюды с перекрытием. Из отходов слюды с использованием различных связующих изготавливают слюдинитовые и слюдопластовые бумаги. Микалекс — это пластмасса, в которой наполнитель — отходы слюды, а связующее — легкоплавкое стекло.

Синтетическая слюда фторфлогопит применяется для изготовления штампованных деталей, способных работать при температуре от минус 200 до плюс 800 °C. В её структуре атомы кислорода частично заменены на атомы фтора.

Слюда представляет собой природный кристаллический электроизоляционный материал, который легко расщепляется на тонкие пластинки по параллельным друг к другу плоскостям. Эти плоскости называются плоскостями спайности.

Слюда обладает высокими электроизоляционными свойствами, нагревостойкостью, механической прочностью, гибкостью, прозрачностью (в тонких слоях много видов слюды), резко выраженной анизотропией (свойства слюды поперек и вдоль плоскости спайности существенно отличаются).


Слюда встречается в природе в виде кристаллов, включенных в горные породы, и составляет 3,8% массы земной коры. Однако, богатые промышленные месторождения, где добывают слюду высокой чистоты в виде крупных кристаллов, немногочисленны. Промышленностью выпускаются пластинки слюды с площадью прямоугольника от 0,5 до 50 . Группа слюды устанавливается в зависимости от толщины пластинок , а сорт зависит от состояния поверхности пластинки и площади различных включений. Например, слюда первого сорта имеет ровную поверхность и включений не более 10%, а слюда третьего сорта – слегка волнистую поверхность и примесей до 50%. Такая слюда называется щипаной.

По химическому составу слюда является водным алюмосиликатом щелочно-земельных металлов. Присутствующая в минерале вода является кристаллизационной водой, входящей в состав кристаллической решетки. Выделяясь при нагревании, кристаллизационная вода вызывает вспучивание слюды и увеличение ее толщины из-за расслаивания по плоскостям спайности. При этом слюда теряет свою прозрачность, резко снижаются ее электрические и механические свойства.

Известно более 30 разновидностей слюды, однако для диэлектрической изоляции применяют только мусковит и флогопит.

Лекция 6. Жидкие диэлектрики

Жидкие диэлектрики представляют собой низкомолекулярные вещества органического происхождения, которые бывают полярными и неполярными. Их электрофизические свойства в значительной степени зависят от строения молекул и наличия примесей. Примеси образуются при окислении и разложении углеводородных фракций, при поглощении воды и попадании частичек волокнистых материалов. Жидкие диэлектрики характеризуются диэлектрической проницаемостью 𝜺, электропроводностью, диэлектрическими потерями (тангенс угла диэлектрических потерь ), электрической прочностью .

У полярных жидкостей (совол, гексол, этиленгликоль) диэлектрическая проницаемость 𝜺 определяется одновременно электронной и дипольной поляризациями. Например, у гексола𝜺=3, у этиленгликоля 𝜺=40.

У неполярных жидкостей диэлектрическая проницаемость определяется в основном только электронной поляризацией, не зависит от частоты и уменьшается с ростом температуры, приближаясь к единице.

К жидким диэлектрикам относят:

1) Нефтяные электроизоляционные масла (трансформаторное, кабельное, конденсаторное). Нефтяные масла получают в процессе ступенчатой перегонки нефти и удаления из нефтяного дистиллята нестойких соединений (нафтеновых кислот, серы, смолы, кислорода, азота и др.).

К недостаткам нефтяных масел относят ограниченный интервал рабочих температур, пожаро- и взрывоопасность, склонность к старению.

При работе в малозаполненном электрическом аппарате вследствие окисления соответствующих фракций углеводородов масло постепенно стареет, становясь более темным. В нем образуется частично растворимые и нерастворимые загрязняющие продукты.

Для борьбы со старением масел используют следующие средства:

вводят антиокислительные присадки (ингибиторы), которые легко соединяются с кислородом, защищая углеводородные функции от окисления, замедляют старение масел и увеличивают его срок службы, ингибиторами являются ионол, пирамидон и др.;

ограничивают рабочую температуру (95°С для трансформаторов с воздушным охлаждением и 85°С – с водяным);

производят непрерывную фильтрацию масел через адсорбенты;

подвергают состарившееся масло регенерации, т.е. восстановлению его свойств путем очистки и сушки.

2) Синтетические жидкие диэлектрики (хлорированные углеводороды, кремнийорганические жидкости, фторорганические жидкости). Применение синтетических жидких диэлектриков предпочтительно в тех случаях, когда они по свойствам превосходят электроизоляционные масла. Например, если требуется применение неполярных жидких диэлектриков или жидких диэлектриков с более высокой пожаро- и взрывоопасностью, чем у электроизоляционных масел.

Хлорированные углеводороды получают заменой некоторых или даже всех атомов водорода атомами хлора у различных углеводородов. Наиболее известными представителями этой группы являются совол и севтол-10. Атомы в молекулах этих материалов расположены несимметрично, поэтому совол и севтол-10 являются полярными. Совол и севтол-10 мало подвержены старению, не образуют с воздухом взрывчатых смесей, негигроскопичны, токсичны, дорогостоящи. Применяются взамен конденсаторного масла для пропитки низковольтных бумажных конденсаторов с повышенной емкостью. Севтол-10- негорючая, с повышенной температурой застывания жидкость, которую получают, разбавляя соволтрихлорбензолом. Применяют вместо трансформаторного масла для взрывоопасных трансформаторов.

Кремний органические жидкости - это продукт син­теза кремнистых и углеродистых соединений, свойства которых оп­ределяются типом органических радикалов. В соответствии с этим различают полидиметилсилоксановые, полидиэтилсилоксановые и полиметилфенилсилоксановые жидкости. Применяют для пропитки бумажных конденсаторов и гидрофобизации изоляцион­ных лент.

Фторорганические жидкости представляют собой произ­водные углеводородов, у которых атомы водорода замещены фто­ром. Их пары не образуют с воздухом взрывоопасных смесей. Они обладают малыми диэлектрическими потерями (тангенс угла ди­электрических потерь tg𝞭), ничтожно малой гигроскопичностью, высокой нагревостойкостью (некоторые жидкости могут длитель­но работать при температуре 200°С и выше), высокой теплопро­водностью, полной негорючестью, высокой дугостойкостью.

Фторорганические жидкости применяют для пропитки и залив­ки конденсаторов и трансформаторов, для испытания элементов радиоэлектроники при низких и высоких температурах.

Лекция 7. Газообразные диэлектрики

Газообразные диэлектрики должны быть химически инертны; при ионизации не должны образовывать особо активных веществ, способных разрушать твердые материалы или вызывать коррозию металлов.

Основными характеристиками газообразных диэлектриков являются электропроводность, пробой в однородном электрическом поле, пробой в неоднородном электрическом поле.

Электропроводность газов - связана с наличием в них некоторого числа ионов и электронов, которые образуются под влиянием внешних воздействий или в результате соударений заряженных частиц с молекулами газов.

Пробой газов в однородном электрическом поле. Однородное поле образуется между электродами одинаковой геометрической формы с большой площадью поверхности, когда их диаметр в 10 раз больше расстояния между ними.

Электрическая прочность газов по сравнению с твердыми и жидкими диэлектриками невелика. нарушение их изоляционных свойств связано с явлением ударной ионизации.

Пробой газа в неоднородном поле. Однородное поле образуется между электродами, если хотя бы один из них имеет малую площадь. В основном неоднородные электрические поля существуют в газоразрядных приборах, между контактами реле, между проводами линий электропередач.

В качестве газообразных диэлектриков применяют воздух, инертные и электроотрицательные газы.

Воздух - смесь, которая состоит из азота N2 (78,03%), кислорода O2 (20,93%), углекислого газа CO2 (0,03%), инертных газов (He, Xe, Ar, Ne, Kr) (0,1%).

В ряде случаев воздух является основным изолирующим материалом, например в воздушных конденсаторах, на участках воздушных линий электропередачи воздух образует естественную изоляцию между голыми проводами. Чаще всего воздух является вспомогательным диэлектриком, окружающим детали и узлы. По причине своей распространенности он входит в состав многих устройств.

Азот N2 - бесцветный газ, не имеющий запаха. Он бесцветен также в жидком и твердом состоянии. Обладает одинаковой с воздухом электрической проницаемостью, но менее активен, чем воздух, который содержит кислород.

В чистом виде азот применяется сравнительно редко (для высоковольтных конденсаторов постоянной емкости, для наполнения баллонов осветительных ламп). В микроэлектронике газообразный азот применяют в качестве защитной среды, а жидкий - для наполнения ловушек в вакуумных системах.

Элегаз (также Гексафторид серы или шестифтористая сера, SF6) —электротехнический газ, неорганическое вещество, при нормальных условиях тяжёлый газ, в 5 раз тяжелее воздуха. Элегаз является основным изолятором в элементах ячеек с элегазовой изоляцией. Элегаз не стареет, т. е. не меняет своих свойств с течением времени, при электрическом разряде распадается, но быстро рекомбинирует, восстанавливая первоначальную диэлектрическую прочность.

Гелий Не - инертный газ, самый легкий из всех инертных газов. Применяется в системах глубокого охлаждения и устройствах дугогашения.

Аргон Ar2 - бесцветный инертный газ, почти в два раза тяжелее воздуха. Применяется в газоразрядных приборах и осветительных лампах, в микроэлектронике в качестве защитного газа при микропайке и микросварке; при сборке и межоперационном хранении приборов в инертной среде; как газ-носитель при производстве полупроводниковых материалов.

Водород Н2 - самый легкий газообразный химический элемент, бесцветный газ. Применяется в турбогенераторах.

Неон Ne - инертный газ без цвета и запаха. Применяется в разрядниках, лампах.

Фреон (Хладон-12) - бесцветный газ или жидкость без запаха. Применяется в электрических аппаратах.

Лекция 7, 8. Активные диэлектрики

Основным используемым явлением обычных (пассивных) ди­электриков является поляризация, индуцируемая (вынужденное относительное смещение противоположно заряженных частиц, входящих в состав атомов или молекул диэлектрика, под действием электрического поля) внешним элект­рическим полем.

Активные диэлектрики используют для генерации, усиления, модуляции и преобразования электрических сигналов.

К активным диэлектрикам относят сегнетодиэлектрики, пьезо­электрики, электреты, диэлектрики для оптической генерации, электрооптические материалы.

Сегнетодиэлектрики

Сегнетодиэлектриками называются материалы, которые обла­дают спонтанной (самопроизвольной) поляризацией в определен­ном интервале температур.

Спонтанная поляризация - это поляризация, которая возникает в диэлектрике под влиянием внутренних процессов, без внешних воздействий. Это явление связано с особенностями сегнетодиэлектриков.

Пьезоэлектрики

Пьезоэлектриками называют твердые, анизотропные кристалли­ческие вещества, обладающие пьезоэффектом.

Явление образования электрического заряда на поверхности соответствующих граней диэлектрика (поляризации) при его дефор­мации под действием механических напряжений называют прямым пьезоэлектрическим эффектом.

Электреты

Электретами называются диэлектрики, которые длительное вре­мя создают в окружающем пространстве электрическое поле за счет предварительной электризации или поляризации.

В зависимости от способа формирования заряда различают:

1)Электроэлектреты получают воздействием на диэлектрик только электрического поля при комнатной температуре. Свобод­ные носители зарядов (ионы и электроны), ускоренные электричес­ким полем, бомбардируют поверхность диэлектрика в промежутке между диэлектриком и электродом (рис. 5.10, а) и создают тем са­мым заряженный поверхностный слой.

2)Термоэлектреты получают при охлаждении нагретого или расплавленного диэлектрика в сильном электрическом поле. Пос­ле охлаждения подвижность полярных молекул или свободных за­рядов резко уменьшается и диэлектрик может сохранять остаточ­ную поляризацию длительное время (рис. 5.10, б)


При условии хранения в темноте фотоэлектрики могут удержи­вать заряды от нескольких суток до нескольких месяцев.

4) Радиоэлектреты получают при воздействии на диэлектрик радиоактивного излучения (ускоренных заряженных частиц). В ре­зультате ударной ионизации поверхностного слоя или внедрения в поверхностный слой диэлектрика ускоренных заряженных частиц на поверхности диэлектрика образуется заряженный слой (рис. 5.10, г).

5) Трибоэлектреты получают при трении двух диэлектриков. При плотном контакте двух диэлектриков электроны диэлектрика с меньшей работой выхода переходят в диэлектрик с большей ра­ботой выхода (рис. 5.10, d).

С течением времени заряд электрета изменяется, что связано с разрушением остаточной поляризации. Время, в течение которого значение стабилизированного заряда уменьшается в 2,72 раза, на­зывают временем жизни электрета. Оно может равняться десят­кам лет, а для хороших электретов - сотням лет.

В качестве электретов могут использоваться органические и не­органические материалы. Электреты из органических материалов условно делят на элект­реты, полученные из природных материалов, и электреты из синте­тических материалов.

Слюды - это группа материалов со слоистой структурой. Из-за этого свойства слюды анизотропны, т.е. различны в направлении вдоль и поперек слоев. Слюда обладает высокой электрической прочностью, нагревостойкостью, механической прочностью и гибкостью. Наибольшее применение нашла для изготовления изоляции высоковольтных генераторов и тяговых двигателей, а также конденсаторов.

Слюда относится к полным алюмосиликатам. Для изготовления электрической изоляции в настоящее время применяют два вида слюд: мусковит и флогопит.(Рис.1) Химический состав природной слюды может быть приближенно выражен следующими формулами: K20·3AL203·6Si02·2Н2О - мусковит;K20·6MgO·AL203·6Si02·2Н2О - флогопит. В состав слюды могут входить другие химические элементы, оказывающие влияние на ее свойства. Кроме природных слюд применяются также и синтетические.


Слюдяная изоляция из мусковита и флогопита имеет высокую химическую стойкость, причем мусковит более стоек, чем флогопит. Сильные кислоты и щелочи оказывают влияние на них только при значительной концентрации, нагревании и длительном контакте.

Мусковит превосходит флогопит по электроизоляционным свойствам, он более механически прочен, тверд, гибок и упруг.

Синтетическую слюду (фторфлогопит) получают в процессе расплавления шихты специально подобранного состава в высокотемпературной печи с последующим медленным охлаждением расплава, в результате чего кристаллизуется синтетическая слюда. По сравнению с флогопитом синтетическая слюда обладает более высокой нагревостойкостью, а также химической и радиационной стойкостью. Свойства различных видов слюды приведены в табл. 1.

Слюдяные материалы изготавливают из щепаной слюды, т.е. расколотой на пластинки и измельченной.

Миканиты представляют собой листовые или рулонные материалы, получаемые склеиванием между собой пластинок щепаной слюды. Связующими являются различные смолы или лаки. (рис 2)


Разновидностью формовочного миканита является микафолий - один или несколько слоев щепаной слюды, склеенных лаком между собой с бумажной или стекловолокнистой подложкой, покрывающей слюду с одной стороны.

Микалента является разновидностью гибкого миканита, представляет собой один слой щепаной слюды крупных размеров, нанесенный на подложку из стеклоткани, стеклосетки или микалентной бумаги с двух сторон.

Микашелк - рулонный электроизоляционный материал, гибкий при комнатной температуре. Микашелк представляет собой одну из разновидностей микаленты, но с повышенной механической прочностью на разрыв. Он состоит из одного слоя листочков щипаной слюды, склеенных между собой и оклеенных с одной стороны полотном из натурального шелка, а с другой - микалентной бумагой. В качестве клеящих лаков использованы масляно-глифталевые или масляно-битумные лаки, образующие гибкие пленки.

Микаполотно - рулонный или листовой электроизоляционный материал, гибкий при комнатной температуре. Микаполотно состоит из нескольких слоев щипаной слюды, склеенных между собой и оклеенных с двух сторон хлопчатобумажной тканью (перкаль) или микалентной бумагой с одной стороны и тканью - с другой.

Микалекс представляет собой слюдяную пластмассу, изготовляемую прессованием из смеси порошкообразной слюды и стекла. После прессования изделия подвергают термической обработке (сушке). Микалекс выпускают в виде пластин и стержней, а также в виде электроизоляционных изделий (панели, основания для переключателей, воздушных конденсаторов и пр.). При прессовании микалексовых изделий в них могут быть добавлены металлические части. Данные изделия поддаются всем видам механической обработки.

Термоупорный (нагревостойкий) миканит не содержит органического связующего вещества, поэтому его рабочая температура достигает несколько сотен градусов. Изготовляется он на основе флогопита, связующим веществом которого служит фосфорнокислый аммоний (аммофос).

Слюдобумажные ленты более технологичны, чем слюдяные и имеют значительно меньший разброс по толщине и электрической прочности. Это объясняется тем, что в слюдобумажной ленте диэлектрический барьер состоит из десятков элементарных чешуек слюды. При повреждении отдельных чешуек другие перекрывают ослабленное место, поэтому это менее заметно влияет на свойства изоляции, в отличие от микаленты.

Свойства изоляции на основе слюдобумажных материалов обычно выше свойств изоляции на основе натуральной слюды. Такая изоляция обладает более высокими механическими свойствами, электрической прочностью (как кратковременной, так и длительной) и монолитностью.

Изоляционные слюдосодержащие ленты состоят из диэлектрического барьера (слюда или слюдяная бумага), подложек (одной или двух) и связующего, полностью пропитывающего ленту или только склеивающего диэлектрический барьер и подложки. В слюдобумажных лентах диэлектрический барьер составляет 40-85% мас. В качестве первой подложки используют стеклоткань, вторая подложка – полимерная пленка или материал на основе синтетических волокон. Введение в состав материала второй подложки приводит к увеличению кратковременной и длительной электрической прочности изоляции на его основе.

Основные этапы технологии изготовления слюдяных бумаг.

Производство слюдяной бумаги любого типа состоит из двух этапов:

- получение из кристаллов слюды слюдяной пульпы;

- получение из пульпы слюдяной бумаги на бумагоделательной машине.

Существуют два метода получения слюдяной пульпы. Термогидромеханический процесс заключается в предварительной высокотемпературной обработке кристаллов слюды и их последующим химическим или механическим расщеплением на мелкие частички. По этой технологии изготавливают слюдинитовую бумагу.

В технологии изготовления слюдопластовой бумаги нет процедуры предварительной высокотемпературной обработки кристаллов слюды перед их измельчением.

Слюдопластовая бумага обладает улучшенной пропитываемостью и более высокой пористостью, механической прочностью и короностойкостью по сравнению со слюдинитовой.

Читайте также: