Системы управления лечебным процессом реферат

Обновлено: 04.07.2024

Такая сложная и динамическая система, какой является здравоохранение, требует оперативной оценки ситуации, быстрого принятия решений, определения эффективности и действенности осуществляемых мер. Возникает постоянная необходимость в оценке показателей состояния здоровья, действия служб здравоохранения, состояния фармацевтического обеспечения на всех уровнях и этапах оказания медицинской помощи, а в глобальном масштабе - стратегии и тактики развития всех отраслей здравоохранения.

Такая многогранная работа невозможна без объективных и полных данных, четкого и комплексного анализа информации, быстрого и широкого распространения выявленных закономерностей, то есть без налаженной, современной и оперативной информационной системы.

Смысл любой информационной системы в ее действенности: выработке рекомендаций и принятии решений. Необходимо осозновать, что действенной информация будет тогда, когда анализ данных будет качественным и эффективным на всех уровнях здравоохранения, начинаясь в сельской амбулатории, продолжаясь в марзе (области) и заканчиваясь в министерстве. На эти системы возлагается выполнение организационных и руководящих функций, эпидемиологический надзор, мониторинг основных программ и фармацевтического обеспечения, контроль преобразований в области здравоохранения и фармации, охраны здоровья населения и др.

Успех выполнения задач, возникших перед системой здравоохранения и фармации, во многом обусловлен содержанием, точностью информационной системы и временем получения информации, причем эти условия должны удовлетворяться на всех уровнях: начиная сверху до локальных уровней.

Но существенным недостатком, на наш взгляд, является отсутствие в информационно-статистической системе здравоохранения “фармацевтической” направленности потоков информации и данных. С одной стороны отсутствуют данные по фармацевтическим ресурсам, а с другой – не используются даже те данные, которые могут или представляют интерес для целей фармацевтического мониторинга. Причина этому – неинтегральный характер информационно-статистической системы.

Все это, в конечном счете, делает необходимым усовершенствовать действующую сегодня национальную информационную систему здравоохранения, разработать и создать комплексную систему по интегральному здравоохранному и фармацевтическому мониторингу (на примере социально значимых болезней).

Медицинская информационная система (МИС) - комплексная автоматизированная информационная система для автоматизации деятельности ЛПУ, в которой объединены система поддержки принятия медицинских решений, электронные медицинские записи о пациентах, данные медицинских исследований в цифровой форме, данные мониторинга состояния пациента с медицинских приборов, средства общения между сотрудниками, финансовая и административная информация.

Как правило, разработчики различных медицинских информационных систем не обеспечивают совместимости этих систем друг с другом. Однако существует стандарт передачи данных HL7, Health Level 7, описывающий процедуры и механизмы обмена, управления и интеграции электронной медицинской информации.

Специфика медицинских информационных систем заключается в следующем:

  1. Пациентоориентированность: ядром МИС являются записи о пациенте.
  2. Повышенная ответственность разработчика.
  3. Интеграция административной, медицинской и финансовой информации.
  4. Интеграция со специфическими видами оборудования.

Медицинские информационные системы классифицируют по направлению деятельности медицинского учреждения:

Современный период развития общества характеризуется сильным влиянием на него компьютерных технологий, которые проникают во все сферы человеческой деятельности, обеспечивают распространение информационных потоков в обществе, образуя глобальное информационное пространство. Они очень быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности. Трудно найти сферу, в которой сейчас не используются информационные технологии. Лидирующие области по внедрению компьютерных технологий занимают архитектура, машиностроение, образование, банковская структура и конечно же медицина.

Содержание

1. Введение.
2. Медицинская информатика.
3. Классификация медицинских информационных систем.
4. Медицинские приборно-компьютерные системы.
5. Медицинская диагностика.
6. Системы для проведения мониторинга.
7. Системы управления лечебным процессом.
8. Пути развития медицинских ИТ.
9. Телемедицина.
10. Компьютер в стоматологии.
11. Компьютерная томография.
12. Использование компьютеров в медицинских лабораторных исследованиях.
13. Компьютерная флюрография.
14. Заключение.
15. Список использованной литературы.

Работа содержит 1 файл

Информационные технологии в медицине1.doc

позволяет построить даже вербальное описание врачом процедуры диагноза. Интерпретация медицинских данных, полученных в результате диагностики и лечения, становиться одним из серьезных направлений нейронных сетей. При этом существует проблема их корректной интерпретации. Широкий круг задач, решаемых с помощью нейросетей, не позволяет пока создать универсальные мощные сети, вынуждая разрабатывать специализированные нейронные сети, функционирующие по различным алгоритмам. Основными преимуществами нейронных сетей для решения сложных задач медицинской диагностики являются: отсутствие необходимости задания в явной форме математической модели и проверки справедливости серьезных допущений для использования статистических методов; инвариантность метода синтеза от размерности пространства, признаков и размеров нейронных сетей и др.

Однако использование нейронных сетей для задач медицинской диагностики связано также с рядом серьезных трудностей. К ним следует отнести необходимость относительно большого объема выборки для настройки сети, ориентированность математического аппарата на количественные переменные.

Системы для проведения мониторинга.

Задача оперативной оценки состояния пациента возникает в ряде весьма важных практических направлений в медицине и в первую очередь при непрерывном наблюдении за больным в палатах интенсивной терапии, операционных и послеоперационных отделениях.

В этом случае требуется на основании длительного и непрерывного анализа большого объема данных, характеризующих состояние физиологических систем организма обеспечить не только оперативную диагностику осложнений при лечении, но и прогнозирование состояние пациента, а также определить оптимальную коррекцию возникающих нарушений. Для решения этой задачи предназначены мониторные МПКС. К числу наиболее часто используемых при мониторинге параметров относятся: электрокардиограмма, давление крови в различных точках, частота дыхания, температурная кривая, содержание газов крови, минутный объем кровообращения, содержание газов в выдыхаемом воздухе.

Аппаратное обеспечение мониторных систем и аналогичных систем для функциональной диагностики принципиально практически не отличается. Важной особенностью мониторных систем является наличие средств экспресс-анализа и визуализации их результатов в режиме реального времени. Это позволяет отображать на экране монитора также динамику различных производных от контролируемых величин. Все это осуществляется в различных временных масштабах. Причем чем выше качество системы, тем больше возможностей наблюдения динамики контролируемых и связанных с ними показателей она предоставляет. Чаще всего мониторные системы используются для одновременного слежения за состоянием от одного до 6 больных, причем у каждого из них может изучаться до 16 основных физиологических параметров.

Системы управления лечебным процессом.

К системам управления процессами лечения и реабилитации относятся автоматизированные системы интенсивной терапии, биологической обратной связи, а также протезы и искусственные органы, создаваемые на основе микропроцессорной технологии.

В системах управления лечебным процессом на первое место выходят задачи точного дозирования количественных параметров работы, стабильного удержания их заданных значений в условиях изменчивости физиологических характеристик организма пациента.

Под автоматизированными системами интенсивной терапии понимают системы, предназначенные для управления состоянием организма в лечебных целях, а также для его нормализации, восстановления естественных функций органов и физиологических систем больного человека, поддержания их в пределах нормы. По реализуемой в них структурной конфигурации системы интенсивной терапии разделяют на два класса – системы программного управления и замкнутые управляющие системы.

К системам программного управления относятся системы для осуществления лечебных воздействий. Например, различная физиотерапевтическая аппаратура, оснащенная средствами вычислительной техники, устройства для вливаний лекарственных препаратов, аппаратура для искусственной вентиляции легких и ингаляционного наркоза, аппараты искусственного кровообращения.

Замкнутые системы интенсивной терапии структурно являются более сложными МПКС, так как они объединяют в себе задачи мониторинга, оценки состояния больного и выработки управляющих лечебных воздействий. Поэтому на практике замкнутые системы интенсивной терапии создаются только для очень частных, строго фиксированных задач.

Системы биологической обратной связи предназначены для предоставления пациенту текущей информации о функционировании его внутренних органов и систем, что позволяет путем сознательного волевого воздействия пациента достигать терапевтического эффекта при определенном виде патологий.

Пути развития медицинских информационных технологий.

Медицинские информационные технологии включают в себя средства воздействия на организм внешними информационными факторами, описание способов и методов их применения и процесс обучения навыкам практической деятельности. Соответственно дальнейшее развитие этих технологий требует рассмотрения и решения следующих практических вопросов. На первом месте стоит насущный вопрос о необходимости широкого внедрения в клиническую практику апробированных средств и методов информационного воздействия, отвечающих таким требованиям, как безопасность и простота их использования, высокая терапевтическая эффективность их применения. Следующим актуальным вопросом является стимулирование и поощрение разработки и создания новых средств и методов воздействия на организм человека, соответствующих принципам и постулатам информационной медицины. Дальнейшее развитие и совершенствование данной области медицины связано с оптимизацией средств и методов обратной биологической связи при информационном воздействии, адекватных изменениям в организме в соответствии с принципами и постулатами информационной медицины.

Один из главных путей решения ряда медицинских, социальных и экономических проблем в настоящее время представляет информатизация работы медицинского персонала. К этим проблемам относиться поиска действенных инструментов, способных обеспечить повышение трех важнейших показателей здравоохранения: качества лечения, уровня безопасности пациентов, экономической эффективности медицинской помощи. Базовым звеном информатизации является использование в больницах современных клинических информационных систем, снабженных механизмами поддержки принятия решений. Однако эти системы не получили широкого распространения, так как пока не разработаны научные и методологические подходы к созданию клинических информационных систем.

Телемедицина.

- обеспечение взаимодействия региональных клиник с крупными медицинскими центрами;

- оперативное получение результатов последних научных исследований;

- подготовка и переподготовка кадров.

Перечисленные возможности можно охарактеризовать одним общим понятием – телемедицина.

Телемедицина - это комплекс современных лечебно-диагностических методик, предусматривающих дистанционное управление медицинской информацией.

Возникновение телемедицины обычно связывают с врачебным контролем при космических полетах. Первоначально это было измерение показателей жизнедеятельности у животных на космических аппаратах, затем у космонавтов.

С появлением сетевых технологий телемедицина получила мощный импульс в своем развитии. Конкретной причиной прорыва телемедицины в практику послужило бурное развитие коммуникационных сетей, а также методов работы с информацией, позволивших обеспечить двух- и многосторонний обмен видео- и аудиоинформацией и любой сопроводительной документацией.

Простейшим случаем реализации возможностей телемедицины является быстрый доступ врача к необходимой справочной информации.

Основным приложением телемедицины является обслуживание тех групп населения, которые оказались вдали от медицинских центров или имеют ограниченный доступ к медицинским службам.

Другим важным объектом телемедицины является система диагностических центров регионов, когда необходима оперативная связь между лечащим врачом и врачом-диагностом, которые оказываются в разных лечебных учреждениях, часто разнесенных на большие расстояния.

Еще одним важным направлением телемедицины является скоропомощная ситуация и сложные случаи, когда требуется срочная консультация специалистов из центральных медучреждений для спасения больного или определения тактики лечения в сложных ситуациях, в том числе в крупнейших мировых медицинских центрах.

Следующим направлением является также дистанционное медицинское образование.

Современные информационные системы, как правило, разворачиваются в глобальных сетях типа сети Интернет. Не являются исключением и системы телемедицины. Время автономных, локальных приложений уходит в прошлое. Их место занимают информационные системы, характеризующиеся многообразием архитектур, многоплатформенностью, разнообразием форматов данных и протоколов.

Компьютер в стоматологии.

Электронный документооборот модернизирует обмен информации внутри стоматологической клиники. Различная степень доступа врачей и пациентов, обязательное использование системы шифрования для кодирования диагнозов, результатов обследования, терапевтических, хирургических, ортодонтических и

др. процедур дает возможность надежно защищать любую информацию.

Компьютерная томография.

Метод изучения состояния организма человека, при котором производится последовательное, очень частое измерение тонких слоев внутренних органов. Эти данные записываются в компьютер, который на их основе конструирует полное объемное изображение. Физические основы измерений разнообразны: рентгеновские, магнитные, ультразвуковые, ядерные и пр.

Совокупность устройств, обеспечивающих измерения, сканирование, и компьютер, создающий полную картину, называются томографом .

Томография является одним из основных примеров внедрения новых информационных технологий в медицине. Создание этого метода без мощных компьютеров было бы невозможным.

Использование компьютеров в медицинских лабораторных исследованиях.

Компьютерная флюрография.

Программное обеспечение (ПО) для цифровых флюорографических установок,разработанное в НПЦ медицинской радиологии, содержит три основных компоненты: модуль управления комплексом, модуль регистрации и обработки рентгеновских изображений, включающий блок создания формализованного протокола, и модуль хранения информации, содержащий блок передачи информации на расстояние. Подобная структура ПО позволяет с его помощью получать изображение, обрабатывать его, сохранять на различных носителях и распечатывать твердые копии.

Системы биологической обратной связи предназначены для предоставления пациенту текущей информации о функционировании его внутренних органов и систем, что позволяет путем сознательного волевого воздействия пациента достигать терапевтического эффекта при определенном виде патологий. В системах управления лечебным процессом на первое место выходят задачи точного дозирования количественных параметров… Читать ещё >

Системы управления лечебным процессом ( реферат , курсовая , диплом , контрольная )

К системам управления процессами лечения и реабилитации относятся автоматизированные системы интенсивной терапии, биологической обратной связи, а также протезы и искусственные органы, создаваемые на основе микропроцессорной технологии.

В системах управления лечебным процессом на первое место выходят задачи точного дозирования количественных параметров работы, стабильного удержания их заданных значений в условиях изменчивости физиологических характеристик организма пациента.

Под автоматизированными системами интенсивной терапии понимают системы, предназначенные для управления состоянием организма в лечебных целях, а также для его нормализации, восстановления естественных функций органов и физиологических систем больного человека, поддержания их в пределах нормы. По реализуемой в них структурной конфигурации системы интенсивной терапии разделяют на два класса — системы программного управления и замкнутые управляющие системы.

К системам программного управления относятся системы для осуществления лечебных воздействий. Например, различная физиотерапевтическая аппаратура, оснащенная средствами вычислительной техники, устройства для вливаний лекарственных препаратов, аппаратура для искусственной вентиляции легких и ингаляционного наркоза, аппараты искусственного кровообращения и т. д.

Замкнутые системы интенсивной терапии структурно являются более сложными МПКС, так как они объединяют в себе задачи мониторинга, оценки состояния больного и выработки управляющих лечебных воздействий. Поэтому на практике замкнутые системы интенсивной терапии создаются только для очень частных, строго фиксированных задач.

Системы биологической обратной связи предназначены для предоставления пациенту текущей информации о функционировании его внутренних органов и систем, что позволяет путем сознательного волевого воздействия пациента достигать терапевтического эффекта при определенном виде патологий.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Мукенова Жанаргуль Наурызбаевна

Медицинские приборно-компьютерные системы

Медицинские приборно-компьютерные системы (МПКС) являются одним из распространенных видов медицинских информационных систем базового уровня. В современных медицинских приборах осуществлен переход от аналоговых измерительных и регистрирующих устройств к цифровым приборам и аппаратам на основе применения вычислительной техники. В состав медицинских приборов и систем входят микропроцессоры или микроЭВМ, чаще всего переносные персональные компьютеры (ноутбуки). Применение цифровой техники позволило увеличить точность проводимых измерений, создавать электронные архивы результатов исследований, передавать информацию на расстояние, а также осуществлять обработку данных, используя специальные программы анализа медицинских исследований. Все это позволило поднять медицинскую аппаратуру на новый уровень, позволяющий повысить эффективность инструментальных методов диагностики, прогнозирования, лечения и контроля состояния тяжелых пациентов.

МПКС состоят из электронных медицинских устройств, микропроцессоров или персональных компьютеров (ПК) и программного обеспечения. Микропроцессоры обычно входят в состав мобильных приборов и выполняют обработку данных и управление прибором по определенной программе, зашитой в постоянное запоминающее устройство (ПЗУ). Приборы на базе универсальных ПК обладают большими функциями и более гибким программным обеспечением, так как используют внешнюю память, позволяющую хранить большие объемы информации и легко менять программу обработки данных.

По назначению МПКС могут быть разделены на следующие группы:

системы функциональной диагностики;

системы оперативного слежения за состоянием пациента (мониторные системы);

системы обработки медицинских изображений;

системы лабораторной диагностики;

системы лечебных воздействий;

биотехнические системы замещения жизненно важных функций организма и протезирования.

Компьютерные системы функциональной диагностики (КСФД) позволяют значительно повышать точность и скорость обработки информации о состоянии пациента. Наиболее распространенными являются КСФД анализа электрокардиограмм (ЭКГ), электроэнцефалограмм (ЭЭГ), электромиограмм (ЭМГ), реограмм (РГ), вызванных потенциалов (ВП) мозга и др.

КСФД представляют наиболее вероятный вариант заключения, на который врач должен обратить внимание в первую очередь. Наряду с этим, исходя из собственного опыта, знаний и интуиции, он может сформулировать более правильное, на его взгляд, заключение.

Б азовые компоненты КСФД, которые являются основой технологических АРМ врача функциональной диагностики, в частности врача-кардиолога.

Аппаратное обеспечение компьютерной системы анализа электрокардиограмм включает в себя следующие основные устройства:

Устройства съема электрических сигналов - электроды, которые закрепляются непосредственно на теле пациента и представляют собой проводники специальной формы, покрытые сверху слоем хлористого серебра.

Биоусилитель предназначен для усиления сигналов до уровня порядка ±1 В, ±5 В, ±10 В, необходимого для работы аналого- цифрового преобразователя (АЦП).

Аналого-цифровой преобразователь (АЦП) преобразует входные аналоговые сигналы в цифровую форму для ввода и дальнейшей обработки в ПК.

Персональный компьютер с набором периферийных устройств и специальным программным обеспечением анализа ЭКГ.

Стимуляторы применяются для воздействия на пациента световыми, звуковыми, электрическими и другими сигналами для изучения ответных реакций организма на действующие раздражители.

Программное обеспечение КСФД предназначено для автоматизации следующих основных этапов проведения комплексного функционального исследования пациента.

Проведение исследования, запись ЭКГ.

Отбор и редактирование записей.

Выделение характерных графоэлементов и измерение параметров ЭКГ.

Интерпретация результатов анализа и оформление заключения.

Предварительная подготовка заключается в выборе методики и режимов исследования, нагрузок и функциональных проб, дополнительной аппаратуры (например, велоэргометра

Запись ЭКГ включает обычно 12 отведений: 3 стандартных ( I , II, III), 3 усиленных однополюсных отведения от конечностей ( avR , avL , avF ) и 6 грудных однополюсных отведений - V 6 ). Регистрируемый сигнал отображается на мониторе, что позволяет визуально выделить и зарегистрировать записи, свободные от артефактов и наводок.

Отбор и редактирование данных производятся после записи ЭКГ в базу данных и предназначены для выделения участков сигналов с целью дальнейшего анализа.

При выделении характерных графоэлементов и измерении параметров ЭКГ наиболее важным этапом работы программы является распознавание зубцов Р , Q , R , S , Т. Задача распознавания состоит в определении точек начала и окончания каждого зубца, нахождений максимума высоты зубцов и их идентификации.

Интерпретация результатов анализа и оформление заключения основываются на данных выявления элементов ЭКГ и измерения их параметров.

Документирование исследования состоит в выдаче на печать числовых, графических результатов и компьютерного ЭКГ-заключения.

В настоящее время отечественными и зарубежными фирмами выпускается большое количество компьютерных электрокардиографов.

Состав кардиоанализатора:

электронный блок пациента;

интерфейсный блок для связи с компьютером через порт USB ;

электроды, датчики, кабели и другие принадлежности;

компьютер (типа Pentium III , Athlon , Celeron ) или аналогичный ноутбук, принтер.

Основные возможности кардиоанализатора:

полный цикл обследования от ведения карточки до получения квалифицированного медицинского заключения;

покардиоцикловое мониторирование любых количественных параметров ЭКГ синхронно с нативной электрокардиограммой для анализа их динамики и взаимосвязи в процессе ЭКГ-исследования и при проведении различных функциональных проб;

анализ дисперсии интервала Q - Т для оценки риска внезапной сердечной смерти;

автоматическое формирование синдромального заключения;

автоматическая генерация протокола, характеризующего выбранные параметры ЭКГ в исходном состоянии и в привязке к функциональным пробам;

спектральный анализ (построение спектрограмм и таблиц спектральных характеристик) для выявление модулирующих влияний;

статистический анализ и построение гистограмм, скаттерграмм и таблиц статистических характеристик по любым амплитудно-временным параметрам ЭКГ;

создание и редактирование нормативных справочников по любым количественным параметрам ЭКГ для нескольких возрастных групп;

электронная картотека исследований обеспечивает сетевой многопользовательский режим с единой базой данных по пациентам, распечатку отчетов, возможность работы с распределенной системой хранения данных.

Компьютерный мониторинг больных предназначен для наблюдения за состоянием физиологических параметров больных, экспресс- анализа и оповещения врачебного персонала о критических и предкритических состояниях пациентов по значениям контролируемых параметров, накопления и хранения информации с целью выявления неблагополучной динамики жизненно важных показателей состояния больных.

Современные мониторные системы обладают следующими важными качествами:

возможность накапливать информацию о больном путем измерения и регистрации значений выбранных физиологических параметров, исключая субъективные ошибки обслуживающего персонала;

аналитическая обработка в компьютере измеряемых показателей позволяет объективно оценить состояние пациентов и дать рекомендации врачу по виду и объему необходимой коррекции отдельных параметров;

компьютерная оценка состояния больного в пространстве измеряемых физиологических параметров и анализ их динамики позволяют дать объективный прогноз в развитии состояния пациента;

возможность объединения компьютерных мониторов в единую локальную сеть для создания общей базы данных при компьютеризации медицинского учреждения.

В зависимости от вариантов использования выделяют перечисленные далее разновидности мониторирования:

Операционный мониторинг. Операционный компьютерный монитор предназначен для автоматического наблюдения за состоянием больного во время операции, ведения наркозной карты с автоматическим занесением в наркозную карту значений физиологических параметров при проведении операции, автоматического ведения протокола наркозной карты с привязкой ко времени, ведения протокола анестезии, автоматического формирования на дискете результатов для передачи в персональный компьютер заведующего отделением.

Кардиомониторирование в период оказания экстренной медицинской помощи. Кардиомонитор находится в оснащении бригад скорой медицинской помощи и служит для оптимизации ранней диагностики острых коронарных синдромов, нестабильной стенокардии, острой коронарной недостаточности, острого инфаркта миокарда и внезапной остановки кровообращения на догоспитальном этапе.

Мониторинг больных отделений интенсивной терапии необходим для одновременного наблюдения за состоянием тяжелобольных пациентов. В состав таких систем входят прикроватные мониторы для каждого пациента и центральная станция для сбора и представления информации о каждом пациенте.

Суточное мониторирование электрофизиологических показателей. Традиционное разовое измерение артериального давления, разовая регистрация ЭКГ не всегда отражают реальную картину заболевания пациента, оставляя открытым вопрос о корректности диагностики и лечения болезни.

Телеметрия электрофизиологических сигналов. Под этим термином понимают дискретный мониторинг электрофизиологических сигналов пациентов, удаленных территориально и находящихся на врачебном наблюдении, с использованием телекоммуникационных технологий связи.

Индивидуальный мониторинг жизненно важных параметров (аутотрансляция по телефону). Для эффективного предупреждения первичного и повторного инфарктов миокарда и внезапной коронарной смерти у больных группы риска возможно применение аутотрансляции ЭКГ.

Мониторинг интегрального состояния жизненно важных физических систем стационарных больных . Компьютерные полианализаторы могут одномоментно мониторировать следующие физиологические показатели пациентов:

-риопневмосигнал импедансной пневмограммы – вид дыхания, глубина дыхания, частота дыхания, остановка дыхания;

-фотоплетизмограмма красная и инфракрасная сдатчика пульсоксиметра (вид красной периферического кровообращения, частота сердечных сокращений, процентные содержания кислорода в гемоглобине артериальной крови);

-реограмма (снимается тетрополярным методом, вычисляются частота сердечных сокращений, частота дыхания, гемодинамические показатели);

- поверхностная температура , ректальная температура;

- артериальное давление неинвазивное (график тонов Короткова в манжете);

Программное обеспечение врачебных компьютерных мониторов , несмотря на вариации, как правило, обеспечивает сбор информации, обработку, накопление трендов, создание дежурного экрана, таблицы тревожных сигнализации, меню конфигурации монитора, графические окна с изменением их размеров, регулировкой масштабов отображаемых сигналов. Наличие количественного программного обеспечения позволяет автоматически накапливать данные об измеряемых параметрах, проводить их аналитическую обработку, отслеживать изменение параметров, оценивать о прогнозировать состояние здоровья пациента в пространстве наблюдаемых параметров, давать врачу рекомендации о виде и объеме необходимой коррекции регистрируемых параметров. [335, 345 с.].

Системы обработки изображений предназначены для визуализации, анализа и архивирования результатов томографических исследований и облегчения работы врача, интерпретирующего полученное изображение.

Существует радиологическая информационная система (АРИС) на основе рабочих станций серии MultiVox , которая применяется для автоматизации работы медперсонала:

в рентгеновских, флюорографических, маммологических кабинетах;

в ангиографических диагностических кабинетах и операционных;

в компьютерной и магниторезонансной томографии;

в ультразвуковых и эндоскопических исследованиях;

в радиоизотопных, микроскопических исследованиях.

Рабочие станции MultiVox дают возможность производить обработку 2 D - и З D -медицинских изображений.

Все это позволяет объективизировать и ускорить процесс обработки изображения врачом, выявить и уточнить наличие патологических проявлений, а, следовательно, повысить точность диагностического процесса.

Системы управления лечебным процессом предназначены для дозированного воздействия на пациента различными факторами (лекарственными, физическими и др.), оценки его функционального состояния и подбора адекватных параметров воздействия для оптимизации лечебного воздействия.

источник воздействия - устройство, генерирующее различные физические факторы (электрические, магнитные, электромагнитные излучения, тепловые, ультразвуковые, ионизирующее излучения и др.);

у стройство воздействия – элементы прибора, передающие физические воздействия на пациента (электроды, датчики, индукторы, излучатели и др.);

блок управления - устройство для регулирования и выбора режима работы источника воздействия (регулировка амплитуды, частоты, мощности, выбор периода воздействия лечебного фактора и др.);

блок контроля необходим для сбора, усиления и ввода в ПК основных физиологических характеристик человека (ЭКГ, ЭЭГ, давление, температура, дыхание и др.);

ПК (персональный компьютер или микропроцессор) осуществляет обработку текущей информации о функциональном состоянии организма или отдельных органов и систем организма и сравнивает с параметрами, которые заданы лечащим врачом.

В качестве воздействующих факторов могут выступать и лекарственные средства, которые вводятся с помощью специальных дозаторов или добавляются к содержимому капельниц. Такие системы могут использоваться в анестезиологии, реаниматологии, а также для регулирования уровня сахара в крови.

В некоторых устройствах в качестве элемента обратной связи выступает сам пациент, которому предоставляется информация о состоянии его внутренних органов и систем, а пациент путем волевого усилия стремится достигнуть нормализации их функционирования. Такие устройства носят название биологической обратной связи (БОС). [348, 351 с.].

Клиническая лабораторная диагностика представляет собой диагностическую процедуру, состоящую из совокупности исследований in vitro биоматериала человеческого организма, основанных на использовании гематологических, общеклинических, паразитарных, биохимических, иммунологических, серологических, молекулярнобиологических, бактериологических, генетических, цитологических, токсикологических, вирусологических методов с клиническими данными и формулирования лабораторного заключения.

Компьютеризация клинической лабораторной диагностики идет в двух направлениях:

замена трудоемких ручных методов на автоматизированные анализаторы;

внедрение лабораторных информационных систем (ЛИС), предназначенных для повышения эффективности организации работы лаборатории, сокращение числа ошибок и ручных операций. [353 с.].

Биотехнические системы замещения жизненно важных функций организма и протезирования предназначены для поддержания или восстановления естественных функций органов и физиологических систем больного человека в пределах нормы, а также для замены утраченных конечностей и неудовлетворительно функционирующих органов и систем организма.

В операционных и реанимационных отделениях и палатах интенсивной терапии используют системы замещения жизненно важных функций организма, к которым относятся искусственное сердце, искусственные легкие, искусственная почка и др. Эти приборы замещают органы и системы организма больного на время проведения операции, в послеоперационный период и до подбора подходящего донорского органа.

Искусственное легкое представляет собой пульсирующий насос, который подает воздух порциями с частотой 40 - 50 раз в минуту. В подобных устройствах используют меха из гофрированного металла или пластика - сильфоны. Очищенный и доведенный до определенной температуры воздух подается непосредственно в бронхи.

Искусственное сердце - имплантируемое механическое устройство, позволяющее временно заменить насосную функцию собственного сердца больного, когда оно становится не способным выполнять работу по обеспечению организма достаточным количеством крови.

Биоуправляемые протезы используются в тех случаях, когда сохраняются нервные окончания, посылавшие и принимавшие нервные импульсы от несуществующих конечностей. Тогда имеется возможность использовать эти нервные импульсы для управления механизмами протезов и приема информации от различных датчиков, расположенных на протезе. [354, 357 с.].

Читайте также: