Синтез и использование кетоновых тел реферат

Обновлено: 05.07.2024

Кетоновые тела – это общее понятие для трех продуктов обмена веществ, которые образуются в печени: ацетон, ацетоуксусная и бетаоксимасляная кислота.В норме кетоновые тела в общем анализе мочи отсутствуют. Хотя на самом деле за сутки с мочой выделяется незначительное количество кетоновых тел.

-Кетоновые тела обнаруживаются в общем анализе мочи при нарушении обмена углеводов и жиров, которое сопровождается увеличением количества кетоновых тел в тканях в крови (кетонемия).Содержание в моче кетоновых тел называется кетонурией. Также кетоновые тела в общем анализе мочи появляются в следствие обезвоживании организма. Они обнаруживаются в моче при резком похудении, лихорадочных состояниях, голодании, тяжелых отравлениях с сильной рвотой и поносом. Синтез кетоновых тел

Во время высокого уровня окисления жирных кислот образуется большое количество ацетилКоА. Если в цикле Кребса его достаточно, то он идёт на синтез кетоновых тел, кетогенез.

БИОСИНТЕЗ - Кетоновые тела: 1)-ацетоацетат -бетта-гидроксибутират (восстановленная форма ацетоацетата) -ацетон. -------------Формирование ацетоацетилКоА осуществляется путём конденсации двух молекул ацетилКоА в реакции, обратной тиолазной.

2) АцетоацетилКоА и ещё один моль ацетилКоА превращаются в бетта-гидрокси-бетта-метилглутарилКоА (ГОМГ-КоА) с помощью фермента ГОМГ-КоАсинтетазы. Этот фермент находится в большом количестве в печени. Небольшое количество ГОМГ-КоА покидает митохондрию.

3) затем с помощью ГОМГ-КоА редуктазы превращается в мевалонат, который является предшественником в синтезе холестерола). В митохондрии под действием ГОМГ-КоА лиазы ГОМГ-КоА превращается в ацетоацетат. Ацетоацетат может спонтанно декарбоксилироваться до ацетона или превращаться в бетта-гидроксибутират под действием бетта-гидроксибутиратДГ. Когда уровень гликогена в печени высок, то продукция бетта-гидроксибутирата возрастает.

Когда использование углеводов низкое или недостаточное, то падает уровень ЩУК. Это в свою очередь ведёт к возрастанию освобождения кетоновых тел из печени для исползования их как топливо другими тканями. В ранних стадиях голдания, когда последние остатки жиров окислились, сердце и мышцы главным образом будут потреблять кетоновые тела для того, чтобы сохранить драгоценную глюкозу, которая необходима мозгу.

Осложнения сахарного диабета.

Кетоацидоз, так же, как и гипогликемия, относится к острым (развивающимся очень быстро) осложнениям диабета. Когда организму не хватает энергии, он начинает ее получать, расщепляя жиры. При расщеплении жиров в организме вырабатываются специальные вещества, называемые кетонами. Кетоны в свою очередь повышают кислотность крови, отсюда и получилось название кетоацидоз.

31.Реакции трансаминирования и синтеза заменимых аминокислот в организме. . Роль витамина В6в этом процессе. Диагностическое значение определения трансаминаз.

Трансаминирование – реакции межмолекулярного переноса аминогруппы (NH2) от аминокислоты на α-кетокислоту без промежуточного образования аммиака (глутамат+ пируват = α-кетоглутарат + аланин). Реакции трансаминирования являются обратимыми и универсальными для всех живых организмов, они протекают при участии специфических ферментов – аминотрансфераз (трансамниназ). Теоретически реакции возможны между любой амино- и кетокислотой, но наиболее интенсивно они протекают, если один из партнеров представлен дикарбоновой амино- или кетокислотой. В переносе амниогруппы активное участие принимает кофермет трансминаз – пиридоксальфосфат (производное витамина В6). Для реакций трансаминирования характерен общий механизм. Ферменты реакции катализируют перенос аминогруппы не на α -кетокислоту, а на кофермент; образовавшееся промежуточное соединение (шиффово основание) подвергается внутримолекулярным превращениям, приводящим к освобождению α-кетокислоты и пиридоксамнофосфата. Последний на второй стадии реагирует с любой другой α-кетокислотой, что через те же стадии приводит к синтезу новой аминокислоты и пиридоксальфосфата.

Трансаминазы - ACT и АЛТ - обладают весьма низкой специфичностью и чувствительностью в диагностике ИМ и не рекомендуются к использованию как маркеры ИМ. К примеру, рост ACT часто выявляется и при поражениях печени, и при панкреатитах, и при ТЭЛА, после приема больших доз алкоголя, после внутримышечного введения ЛС. Определение трансаминаз — дешевый метод, но требуется выполнять такие правила: анализ крови должен быть сделан в течение первых 6 ч, а затем в динамике (через 12, 18 и 24 ч).

32.Декарбоксилирование аминокислот. Образование биогенных аминов: гистамина, серотонина, ГАМК. Роль биогенных аминов.

Синтез и биологическая роль серотонина

Серотонин - нейромедиатор проводящих путей. Образуется в надпочечниках и ЦНС из аминокислоты 5-гидрокситриптофана в результате действия декарбоксилазы ароматических аминокислот. Этот фермент обладает широкой специфичностью и способен также декарбоксилировать триптофан и ДОФА, образующийся из тирозина. 5-Гидрокситриптофан синтезируется из триптофана под действием фенилаланингидроксилазы с коферментом Н4БП (этот фермент обладает специфичностью к ароматическим аминокислотам и гидроксидирует также фенилаланин) (см. схему ниже). Серотонин может превращаться в гормон мелатонин, регулирующий суточные и сезонные изменения метаболизма организма и участвующий в регуляции репродуктивной функции.

Серотонин - биологически активное вещество широкого спектра действия. Он стимулирует сокращение гладкой мускулатуры, оказывает сосудосуживающий эффект, регулирует АД, температуру тела, дыхание, обладает антидепрессантным действием. По некоторым данным он может принимать участие в аллергических реакциях, поскольку в небольших количествах синтезируется в тучных клетках.

Синтез и биологическая роль ацетилхолина Ацетилхолин синтезируется в нервной ткани и служит одним из важнейших возбуждающих нейромедиаторов вегетативной нервной системы. Его предшественник - аминокислота серии:

Синтез и биологическая роль γ-аминомасляной кислоты

В нервных клетках декарбоксилирование глутамата (отщепление α-карбоксильной группы) приводит к образованию γ-аминомасляной кислоты (ГАМК), которая служит основным тормозным медиатором высших отделов мозга (см. схему на с. 514).

Цикл превращений ГАМК в мозге включает три сопряжённые реакции, получившие название ГАМК-шунта. Первую катализирует глутаматдекарбоксилаза, которая является пиридоксальзависимым ферментом. Эта реакция является регуляторной и обусловливает скорость образования ГАМК в клетках мозга. Продукт реакции - ГАМК. Последующие 2 реакции можно считать реакциями катаболизма ГАМК. ГАМК-аминотрансфераза, также пиридоксальзависимая, образует янтарный полуальдегид, который затем подвергается дегидрированию и превращается в янтарную кислоту. Сукцинат используется в цитратном цикле. Инактивация ГАМК возможна и окислительным путём под действием МАО.

Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К + , что вызывает торможение нервного импульса; повышает дыхательную активность нервной ткани; улучшает кровоснабжение головного мозга.

ГАМК в виде препаратов гаммалон или аминалон применяют при сосудистых заболеваниях головного мозга (атеросклероз, гипертония), нарушениях мозгового кровообращения, умственной отсталости, эндогенных депрессиях и травмах головного мозга, а также заболеваниях ЦНС, связанных с резким возбуждением коры мозга (например, эпилепсии).

Аминокислота гистидин в разных тканях подвергается действию различных ферментов и включается в два разных метаболических пути: катаболизм до конечных продуктов; синтез гистамина. В печени и коже гистидин подвергается дезаминированию под действием фермента гистидазы с образованием уроканиновой кислоты. Конечным продуктом катаболизма гистидина служит глутамат, NH3 и производные Н4-фолата (N 5 -формимино-Н4-фолат и N 5 -формил-Н4-фолат). Наследственный дефект гистидазы вызывает накопление гистидина и развитие гастидинемии, которая проявляется задержкой в умственном и физическом развитии детей. Наследственный дефект уро-каниназы в печени может вызвать уроканинемию, при которой в крови повышается уровень уроканата. Симптомы этого патологического состояния во многом аналогичны симптомам других энзимопатий и проявляются отставанием умственного и физического развития.

Ферменты гистидаза и уроканиназа гепатоспецифичны, поэтому их определение используют в клинике для диагностики поражений печени.

Синтез и биологическая роль гистамина

Гистамин образуется путем декарбоксилирования гистидина в тучных клетках соединительной ткани.

Гистамин образует комплекс с белками и сохраняется в секреторных гранулах тучных клеток. Секретируется в кровь при повреждении ткани (удар, ожог, воздействие эндо- и экзогенных веществ), развитии иммунных и аллергических реакций.

Гистамин выполняет в организме человека следующие функции: стимулирует секрецию желудочного сока, слюны (т.е. играет роль пищеварительного гормона);

повышает проницаемость капилляров, вызывает отёки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль); сокращает гладкую мускулатуру лёгких, вызывает удушье; расширение сосудов, покраснение кожи, отёчность ткани; вызывает аллергическую реакцию; выполняет роль нейромедиатора; является медиатором боли.

К биогенным аминам относят и катехолами-ны (дофамин, норадреналин и адреналин).Дофамин, в частности, является медиатором среднего отдела мозга. Норадреналин - возбуждающий медиатор в гипоталамусе, а также медиатор синаптической нервной системы и разных отделов головного мозга. Адреналин - гормон, активно синтезирующийся при стрессе и регулирующий основной обмен, а также усиливающий сокращение сердечной мышцы.

Название работы: Биосинтез и использование кетоновых тел в качестве источников энергии

Предметная область: Биология и генетика

Описание: В результате скорость образования ацетилКоА превышает способность ЦТК окислять его. АцетилКоА накапливается в митохондриях печени и используется для синтеза кетоновых тел. Синтез кетоновых тел начинается с взаимодействия двух молекул ацетилКоА которые под действием фермента тиолазы образуют ацетоацетилКоА. С ацетоацетилКоА взаимодействует третья молекула ацетилКоА образуя 3гидрокси3метилглутарилКоА ГМГКоА.

Дата добавления: 2015-02-20

Размер файла: 127.33 KB

Работу скачали: 5 чел.

Биосинтез и использование кетоновых тел в качестве источников энергии

При голодании, длительной физической работе и в случаях, когда клетки не получают достаточного количества глюкозы, жирные кислотыиспользуются многими тканями как основной источник энергии. В отличие от других тканей мозг и другие отделы нервной ткани практически не используют жирные кислоты в качестве источника энергии. В печени часть жирных кислот превращается в кетоновые тела, которые окисляются мозгом, нервной тканью, мышцами, обеспечивая достаточное количество энергии для синтеза АТФ и уменьшая потребление глюкозы. К кетоновым телам относят β-гидроксибутират , ацетоацетат и ацетон . Первые две молекулы могут окисляться в тканях, обеспечивая синтез АТФ. Ацетон образуется только при высоких концентрациях кетоновых тел в крови и, выделяясь с мочой, выдыхаемым воздухом и потом, позволяет организму избавляться от избытка кетоновых тел.

Синтез кетоновых тел в печени. При низком соотношении инсулин/глюкагон в крови в жировой ткани активируется распад жиров. Жирные кислоты поступают в печень в большем количестве, чем в норме, поэтому увеличивается скорость β-окисления. Скорость реакций ЦТК в этих условиях снижена, так как оксалоацетат используется для глюконеогенеза. В результате скорость образования ацетил-КоА превышает способность ЦТК окислять его. Ацетил-КоА накапливается в митохондриях печени и используется для синтеза кетоновых тел. Синтез кетоновых тел происходит только в митохондриях печени.


Синтез кетоновых тел начинается с взаимодействия двух молекул ацетил-КоА, которые под действием фермента тиолазы образуют ацетоацетил-КоА. С ацетоацетил-КоА взаимодействует третья молекула ацетил-КоА, образуя 3-гидрокси-3-метилглутарил-КоА (ГМГ-КоА). Эту реакцию катализирует фермент ГМГ-КоА-синтаза. Далее ГМГ-КоА-лиаза катализирует расщепление ГМГ-КоА на свободный ацетоацетат и ацетил-КоА. Ацетоацетат может выделяться в кровь или превращаться в печени в другое кетоновое тело - β-гидроксибутират путём восстановления. В клетках печени при активном β-окислении создаётся высокая концентрация NADH. Это способствует превращению большей части ацетоацетата в β-гидроксибутират, поэтому основное кетоновое тело в крови - именно β-гидроксибутират. При голодании для многих тканей жирные кислоты и кетоновые тела становятся основными топливными молекулами. Глюкоза используется в первую очередь нервной тканью и эритроцитами. При высокой концентрации ацетоацетата часть его неферментативно декарбоксилируется, превращаясь в ацетон. Ацетон не утилизируется тканями, но выделяется с выдыхаемым воздухом и мочой. Таким путём организм удаляет избыточное количество кетоновых тел, которые не успевают окисляться, но, являясь водорастворимыми кислотами, вызывают ацидоз. При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе. β-Гидроксибутират , попадая в клетки, дегидрируется NAD-зависимой дегидрогеназой и превращается в ацетоацетат. Ацетоацетат активируется, взаимодействуя с сук-цинил-КоА - донором КоА:

Ацетоацетат + Сукцинил-КоА → Ацетоацетил- КоА + Сукцинат.

Реакцию катализирует сукцинил-КоА-ацето-ацетат-КоА-трансфераза. Этот фермент не синтезируется в печени, поэтому печень не использует кетоновые тела как источники энергии, а производит их "на экспорт". Кетоновые тела - хорошие топливные молекулы; окисление одной молекулы β-гидроксибутирата до СО2 и Н2О обеспечивает синтез 27 молекул АТФ. Эквивалент одной макроэргической связи АТФ (в молекуле сукцинил-КоА) используется на активацию ацетоацетата, поэтому суммарный выход АТФ при окислении одной молекулы β-гидроксибутирата - 26 молекул.

Историческая справка о возникновении кетоновых тел (ацетона) в печени. Метаболизм кетоновых тел: их содержание в плазме крови человека. Альтернативный путь синтеза кетоновых тел. Их биологическая роль в организме человека и лабораторная диагностика.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 08.03.2015
Размер файла 58,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Государственное бюджетное образовательное учреждение высшего профессионального образования Рязанский государственный медицинский университет им. Акад. И.П. Павлова

Министерства здравоохранения РФ

Реферат на тему:

Кетоновые тела

Выполнила: студентка 3 курса 6 группы,

План

1. Историческая справка

2. Метаболизм кетоновых тел

2.1 Альтернативный путь

3. Биологическая роль кетоновых тел

4. Лабораторная диагностика

Введение

Кетоновые тела(синоним: ацетомновые тела, ацетомн [распростанённый медицинский жаргонизм]) -- группа продуктов обмена веществ, которые образуются в печени из ацетил-КоА [2] :

· ацетоуксусная кислота (ацетоацетат)

· бета-гидроксимасляная кислота (в-гидроксибутират)

1. Историческая справка

Прежние представления о том, что кетоновые тела являются промежуточными продуктами бета-окисления жирных кислот, оказались ошибочными:

· во-первых, в обычных условиях промежуточными продуктами бета-окисления жирных кислот являются КоА-эфиры этих кислот: в-оксибутирил-КоА или ацетоацетил-КоА;

· во-вторых, в-оксибутирил-КоА, образующийся в печени при бета-окислении жирных китслот, имеет L-конфигурацию, в то время как в-оксибутират, обнаруживаемый в крови, представляет собой D-изомер. Именно в-оксибутират D-конфигурации образуется в ходе метаболического пути синтеза в-окси-в-метилглутарил-КоА.

кетоновый тело метаболизм лабораторный

2. Метаболизм кетоновых тел

Ацетон в плазме крови в норме присутствует в крайне низких концентрациях, образуется в результате спонтанного декарбоксилирования ацетоуксусной кислоты и не имеет определённого физиологического значения (в сущности являясь токсическим веществом для головного мозга, циркулирует в мизерной концентрации).

Нормальное содержание кетоновых тел в плазме крови человека и большинства млекопитающих (за исключением жвачных) составлет 1-2 мг (по ацетону). При увеличении их концентрации свыше 10-15 мг они преодолевают почечный порог и определяются в моче. Наличие кетоновых тел в моче всегда указывает на развитие патологического состояния.

Кетоновые тела синтезируются в печени из ацетил-КоА:

На первом этапе из двух молекул ацетил-КоА синтезируется ацетоацетил-КоА. Данная реакция катализируется ферментом ацетоацетил-КоА-тиолазой.

Ac--КоА + Ac--КоА > H3C--CO--CH2--CO--S--КоА

Затем под влиянием фермента оксиметилглутарил-КоА-синтазы присоединяется ещё одна молекула ацетил-КоА.

H3C--CO--CH2--CO--S--КоА + Ac--КоА > HOOC--CH2--COH(CH3)--CH2--CO--S--КоА

Образовавшийся в-окси-в-метилглутарил-КоА (OMG-KoA) способен под действием фермента оксиметилглутарил-КоА-лиазырасщепляться на ацетоуксусную кислоту (ацетоацетат) и ацетил-КоА.

HOOC--CH2--COH(CH3)--CH2--CO--S--КоА > H3C--CO--CH2--COOH + Ac--КоА

Ацетоуксусная кислота способна восстанавливаться при участии НАД-зависимой D-в-оксибутиратдегидрогеназы; при этом образуется D-в-оксимасляная кислота (D-в-оксибутират). Фермент специфичен по отношению к D-стереоизомеру и не действует на КоА-эфиры.

H3C--CO--CH2--COOH + NADH > H3C--CHOH--CH2--COOH

Ацетоуксусная кислота в процессе метаболизма способна окисляться до ацетона с выделением молекулы углекислого газа:

H3C--CO--CH2--COOH > CO2 + H3C--CO--CH3

Существует второй путь синтеза кетоновых тел:

образовавшийся путём конденсации двух молекул ацетил-КоА ацетоацетил-КоА способен отщеплять Кофермент A с образованием свободной ацетоуксусной кислоты. Процесс катализирует фермент ацетоацетил-КоА-гидролаза (деацилаза), однако данный путь не имеет существенного значения в синтезе ацетоуксусной кислоты, так как активность деацилазы в печени низкая.

H3C--CO--CH2--CO--S-КоА + H2O > H3C--CO--CH2--COOH + КоА-SH

3. Биологическая роль кетоновых тел

В плазме крови здорового человека кетоновые тела содержатся в весьма незначительных концентрациях. Однако при патологических состояниях (длительное голодание, тяжёлая физическая нагрузка, тяжёлая форма сахарного диабета) концентрация кетоновых тел может значительно повышаться и достигать 20 ммоль/л (кетонемия). Кетонемия (повышение концентрации кетоновых тел в крови) возникает при нарушении равновесия -- скорость синтеза кетоновых тел превышает скорость их утилизации периферическими тканями организма.

За последние десятилетия накопились сведения, указывающие на важное значение кетоновых тел в поддержании энергетического баланса. Кетоновые тела -- топливо для мышечной ткани, почек и действуют, вероятно, как часть регуляторного механизма с обратной связью, предотвращая излишнюю мобилизацию жирных кислот из жировых депо. Во время голодания кетоновые тела являются одним из основных источников энергии для мозга. Печень, синтезируя кетоновые тела, не способна использовать их в качестве энергетического материала (не располагает соответствующими ферментами).

В периферических тканях в-оксимасляная кислота окисляется до ацетоуксусной кислоты, которая активируется с образованием соответствующего КоА-эфира (ацетоацетил-КоА). Существует два ферментативных механизма активации:

· первый путь -- с использованием АТФ и HS-КоА, аналогичный пути активации жирных кислот:

H3C--CO--CH2--COOH (Ацетоуксусная кислота)

+ АТФ + HS-КоА Ацил-КоА-синтетаза > АМФ + ФФн

H3C--CO--CH2--CO--S-КоА (Ацетоацетил-КоА)

· второй путь -- перенос Коэнзима А от сукцинил-КоА на ацетоуксусную кислоту:

HOOC--CH2--CH2--CO--S-КоА (Сукцинил-КоА) + H3C--CO--CH2--COOH (Ацетоуксусная кислота)

HOOC--CH2--CH2--COOH (Сукцинат) + H3C--CO--CH2--CO--S-КоА (Ацетоацетил-КоА)

Образовавшийся в ходе этих реакций ацетоацетил-КоА в дальнейшем подвергается тиолитическому расщеплению в митохондриях с образованием двух молекул ацетил-КоА, которые, в свою очередь, являются сырьём для цикла Кребса (цикл трикарбоновых кислот), где окисляются до CO2 и H2O.

H3C--CO--CH2--CO--S-КоА (Ацетоацетил-КоА)

+ HS-КоА > H3C--CO--S-КоА

H3C--CO--S-КоА ( Ацетил-КоА)

Повышение содержания кетоновых тел в организме связано прежде всего с дефицитом углеводов в обеспечении организма энергией: перегрузка белками и жирами на фоне недостка легкопереваримых углеводов в рационе, истощение, ожирение, нарушение эндокринной регуляции (сахарный диабет, тиреотоксикоз), отравления, травма черепа и т. д.

4. Лабораторная диагностика

Для качественного определения содержания кетоновых тел в моче используют цветные пробы Ланге, Легаля, Лестраде и Герхарда.

Список литературы

1. Тюкавкина Н. А., Бауков Ю. И. Биоорганическая химия. М.: Медицина, 1985.

2. Березов Т. Т., Коровкин Б. Ф. Биологическая химия . М.: Медицина,-- 1990.

Подобные документы

Диагностика наличия белка, глюкозы, крови в моче сверх величин, составляющих физиологическую норму. Измерение наличия индикана в моче с помощью пробы Обермайера. Обнаружение кетоновых тел при нарушениях баланса между употребляемыми жирами и углеводами.

презентация [252,6 K], добавлен 11.09.2016

Характеристика железа, его физические, химические и биологические свойства. Железо в составе гемоглобина и миоглобина человека. Количество гемоглобина в крови человека. Уровень железа в плазме крови. Процессы разрушения и образования эритроцитов.

реферат [36,1 K], добавлен 13.02.2014

Роль и значение печени в организме человека. Схема гликолиза и глюконеогенеза. Желтуха - синдром, развивающийся вследствие накопления в крови избыточного количества билирубина. Дифференциальная диагностика желтух. Лабораторные показатели при желтухе.

презентация [3,0 M], добавлен 01.12.2016

Особенности печеночного кровотока при проведении операции. Метаболизм лекарственных препаратов. Образование и экскреция желчи. Дисфункция печени, ассоциированная с галогенизированными анестетиками, и ее лабораторная оценка. Заболевания желчных путей.

реферат [21,4 K], добавлен 27.12.2009

Формирование биологических ритмов. Фосфорно-кальциевый обмен в организме человека. Амплитуда суточных колебаний циркадианного ритма кальция в плазме крови. Хронобиологический анализ влияния корня солодки на организацию ритма концентрации кальция.

статья [226,7 K], добавлен 02.08.2013

Свинец как самый токсичный тяжелый металл. Токсикокинетика и токсикодинамика поведения этого металла в организме человека. Симптомы и опасность хронической интоксикации свинцом. Лабораторная диагностика и специфика клинических проявлений этого синдрома.

реферат [124,9 K], добавлен 04.03.2012

Роль активных форм кислорода и инициируемых ими свободнорадикальных процессов при различных патологических процессах, а так же при беременности. Содержание диеновых конъюгатов и малонового диальдегида в плазме крови у женщин в разные периоды беременности.


Б иологическая роль кетоновых тел– являются альтернативным глюкозе источником энергии (особенно для мышечной ткани, особенно при голодании и сахарном диабете)



П ри голодании, длительной физической работе и в случаях, когда клетки не получают достаточного количества глюкозы, жирные кислоты используются многими тканями как основной источник энергии. В отличие от других тканей мозг и другие отделы нервной ткани практически не используют жирные кислоты в качестве источника энергии. В печени часть жирных кислот превращается в кетоновые тела, которые окисляются мозгом, нервной тканью, мышцами, обеспечивая достаточное количество энергии для синтеза АТФ и уменьшая потребление глюкозы. К кетоновым телам относят β-гидроксибутират, ацетоацетат и ацетон. Первые две молекулы могут окисляться в тканях, обеспечивая синтез АТФ. Ацетон образуется только при высоких концентрациях кетоновых тел в крови и, выделяясь с мочой, выдыхаемым воздухом и потом, позволяет организму избавляться от избытка кетоновых тел.

Синтез кетоновых тел в печени. При низком соотношении инсулин/глюкагон в крови в жировой ткани активируется распад жиров. Жирные кислоты поступают в печень в большем количестве, чем в норме, поэтому увеличивается скорость β-окисления. Скорость реакций ЦТК в этих условиях снижена, так как оксалоацетат используется для глюконеогенеза. В результате скорость образования ацетил-КоА превышает способность ЦТК окислять его. Ацетил-КоА накапливается в митохондриях печени и используется для синтеза кетоновых тел. Синтез кетоновых тел происходит только в митохондриях печени. Синтез кетоновых тел начинается с взаимодействия двух молекул ацетил-КоА, которые под действием фермента тиолазы образуют ацетоацетил-КоА. С ацетоацетил-КоА взаимодействует третья молекула ацетил-КоА, образуя 3-гидрокси-3-метилглутарил-КоА (ГМГ-КоА). Эту реакцию катализирует фермент ГМГ-КоА-синтаза. Далее ГМГ-КоА-лиаза катализирует расщепление ГМГ-КоА на свободный ацетоацетат и ацетил-КоА. Ацетоацетат может выделяться в кровь или превращаться в печени в другое кетоновое тело - β-гидроксибутират путём восстановления. В клетках печени при активном β-окислении создаётся высокая концентрация NADH. Это способствует превращению большей части ацетоацетата в β-гидроксибутират, поэтому основное кетоновое тело в крови - именно β-гидроксибутират. При голодании для многих тканей жирные кислоты и кетоновые тела становятся основными топливными молекулами. Глюкоза используется в первую очередь нервной тканью и эритроцитами. При высокой концентрации ацетоацетата часть его неферментативно декарбоксилируется, превращаясь в ацетон. Ацетон не утилизируется тканями, но выделяется с выдыхаемым воздухом и мочой. Таким путём организм удаляет избыточное количество кетоновых тел, которые не успевают окисляться, но, являясь водорастворимыми кислотами, вызывают ацидоз. При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе. β-Гидроксибутират, попадая в клетки, дегидрируется NAD-зависимой дегидрогеназой и превращается в ацетоацетат. Ацетоацетат активируется, взаимодействуя с сукцинил-КоА–донором КоА:


А цетоацетат + Сукцинил-КоА → Ацетоацетил- КоА + Сукцинат.

Реакцию катализирует сукцинил-КоА-ацето-ацетат-КоА-трансфераза. Этот фермент не синтезируется в печени, поэтому печень не использует кетоновые тела как источники энергии, а производит их "на экспорт". Кетоновые тела - хорошие топливные молекулы; окисление одной молекулы β-гидроксибутирата до СО2 и Н2О обеспечивает синтез 27 молекул АТФ. Эквивалент одной макроэргической связи АТФ (в молекуле сукцинил-КоА) используется на активацию ацетоацетата, поэтому суммарный выход АТФ при окислении одной молекулы β-гидроксибутирата - 26 молекул.

Диагностическое значение: Кетоновые тела (ацетон, β-гидрокси-маслянная и ацетоуксусная кислоты) являются нормальными метаболитами липидного обмена. Они образуются в печени и отправляются током крови в мышцы, где подвергаются дальнейшему окислению. Содержание их в крови в норме колеблется до 30 мг/л. При сахарном диабете, голодании содержание кетоновых тел резко возрастает (кетонемия), как следствие, они появляются в моче (кетонурия).

Сахарный диабет заболевание, развивающееся вследствие абсолютной или относительной недостаточности инсулина, что приводит к нарушению утилизации углеводов, расстройствам липидного и белкового обменов, проявляется гипергликемией и поражением сосудов. Выделяют инсулинзависимый сахарный диабет (ИЗСД), диабет I типа, и инсулиннезависимый (ИНСД) или диабет II типа.

Далее ацетоацетил-Ко, А взаимодействует еще с одной молекулой ацетил-КоА, и образуется р-окси-р-метилглутарил-КоА (рис. 11.31). Лыазы (3-окси-(3-метилглутарил-КоА расщепляется на ацетоуксусную кислоту и ацетил-КоА (рис. 11.32). Рис. 11.32. Расщепление В-окси-(3-метилглутарил-КоА. Рис. 1131. Образование р-окси-р-метилглутарил-КоА. Рис. 11.33. Превращения ацетоуксусной кислоты. Рис. 1130. Начало… Читать ещё >

Образование кетоновых (ацетоновых) тел ( реферат , курсовая , диплом , контрольная )

Липидному обмену всегда сопутствует образование кетоновых (ацетоновые) тел. К ним относят ацетоуксусную, р-оксимасляную кислоты и ацетон (рис. 11.29).

Кетоновые тела.

Рис. 11.29. Кетоновые тела.

Ранее считалось, что кетоновые тела — это недоокисленные продукты распада жирных кислот. После того, как стало известно, что в крови обнаруживается D-изомер р-оксимасляной кислоты, а при р-окислении образуется 1-изомер, стали понятны истинный механизм их синтеза и значение для организма |13|. Кетоновые тела образуются в митохондриях печени конденсацией двух молекул ацетил-КоЛ, в результате чего образуется ацетоацетил-КоА (рис. 11.30).

Начало синтеза кетоновых тел.

Рис. 1130. Начало синтеза кетоновых тел.

Далее ацетоацетил-Ко, А взаимодействует еще с одной молекулой ацетил-КоА, и образуется р-окси-р-метилглутарил-КоА (рис. 11.31).

Эти реакции представляют интерес еще и потому, что таким же образом начинается синтез холестерина, только в цитозоле клеток. Под действием.

Образование р-окси-р-метилглутарил-КоА.

Рис. 1131. Образование р-окси-р-метилглутарил-КоА.

Расщепление В-окси-(3-метилглутарил-КоА.

Рис. 11.32. Расщепление В-окси-(3-метилглутарил-КоА.

лыазы (3-окси-(3-метилглутарил-КоА расщепляется на ацетоуксусную кислоту и ацетил-КоА (рис. 11.32).

Кетоновые тела легко проходят через митохондриальные и клеточные мембраны печени, поступают в кровь, переносятся к периферическим органам и тканям, где подвергаются превращениям, показанным на рис. 11.33.

Превращения ацетоуксусной кислоты.

Рис. 11.33. Превращения ацетоуксусной кислоты.

Ацетил-КоА используется в зависимости от потребностей клетки: в синтезе жирных кислот, холестерина или окисляется до С02 и Н20 в цикле Кребса ("https://referat.bookap.info", 19).

Ацетоуксуспая кислота восстанавливается до р-оксимасляной либо декарбоксилируется до ацетона. Декарбоксилирование происходит иеферментативным путем. Образующийся ацетон не используется в энергетическом обмене, а выводится с мочой, выдыхаемым воздухом или потовыми железами.

Образование и использование кетоновых тел уравновешено, поэтому в норме их содержание составляет не более 0,1—0,2 ммоль/л крови. При отказе от углеводов и в других перечисленных случаях, например на 2—3-и сутки голодания, содержание кетоновых тел в крови возрастает до 2,0—3,0 ммоль/л, через несколько педель — до 20,0—30,0 ммоль/л крови [23]. Увеличение содержания кетоновых тел в крови называют кетонемией. С кровыо кетоновые тела разносятся в разные ткани, в том числе мозговое вещество. Поскольку основное кетоновое тело, ацетон, является хорошим растворителем липидов, то и в клетках организма он растворяет липидный слой мембран и мозговое вещество, состоящее преимущественно из липидов. При этом ухудшается общее самочувствие, появляются головокружение, головные боли, может наступить кома. Организм, пытаясь избавиться от кетоновых тел, будет выводить их с мочой — кетонурия, может начаться рвота. У сельскохозяйственных животных такое состояние называют кетоз.

Читайте также: