Сине зеленые водоросли реферат

Обновлено: 07.07.2024

Сине-зеленые водоросли, цианеи (Cyanophyta), отдел водорослей; относятся к прокариотам. Водоросли – это низшие споровые растения, содержащие в своих клетках хлорофилл и живущие преимущественно в воде. В морфологическом отношении для водорослей наиболее существенным признаком является отсутствие тела, расчлененного на стебли, листья и корни. Их тело обозначают как слоевище (или таллом). Размножаются они вегетативно или с помощью спор, т. е. относятся к споровым растениям. В физиологическом отношении водоросли резко отличаются от других групп низших растений наличием хлорофилла, благодаря которому они способны ассимилировать углекислый газ, т. е. питаться фотоавтотрофно. Процесс светового и углеродного питания растений получил название фотосинтеза и в общем виде может быть записан следующим суммарным уравнением:

C6 H2 O6 +6H2 O+2815680 Дж

Из уравнения видно, что на каждые 6 грамм-молекул углекислоты и воды синтезируется грамм-молекула глюкозы (C6 H2 O6 ), выделяется 6 грамм-молекул кислорода и накапливается 2815680 Дж энергии. Таким образом, функция фотосинтеза растений является, по существу, биохимическим процессом преобразования световой энергии в химическую.

В отличие от водорослей бактерии, имеющие зеленую окраску, содержат пигмент, близкий к хлорофиллу, но не тождественный ему. Водоросли, даже простейшие из них – сине-зеленые, являются первыми организмами, у которых в процессе эволюции появилась способность осуществлять фотосинтез с использованием воды в качестве источника (донора) водорода и выделением свободного кислорода, т. е. процесс, свойственный высшим растениям. Второй особенностью питания водорослей и других фотосинтезирующих растений является способность усваивать азот, серу, фосфор, калий и другие минеральные элементы в виде ионов минеральных солей и использовать их для синтеза таких важных компонентов живой клетки, как аминокислоты, белки, нуклеиновые кислоты, макроэргические соединения, вещества вторичного обмена. Среди водорослей есть виды, которые являются строгими фотосинтетиками (из сине-зеленых – анабены, некоторые штаммы ностоков). Многие водоросли в определенных условиях могут легко переключаться с фотоавтотрофного способа питания на ассимиляцию различных органических соединений,

т. е. осуществлять гетеро- или фотогетеротрофный типы питания.

Основная структурная единица тела водорослей – клетка. Уникальную группу составляют сифоновые водоросли: у них таллом не разделен на клетки, однако в цикле развития имеются одноклеточные стадии.

Многоклеточные формы возникли после того, как клетка проделала длительный и сложный путь развития в качестве самостоятельного организма. Переход от одноклеточного к многоклеточному состоянию сопровождался потерей индивидуальности и связанным с этими изменениями в структуре и функции клетки. С возникновением многоклеточности связаны дифференцировка и специализация клеток в талломе, что следует рассматривать как первый шаг на пути становления тканей и органов.

Существует огромное многообразие форм (шаровидные, грушевидные, яйцевидные, веретеновидные, спиралевидные, цилиндрические и др.) и размеров (от нескольких микрометров) водорослевой клетки.

Различают размножение вегетативное, бесполое и половое.

В е г е т а т и в н о е – деление особей надвое. Иногда делению предшествует отмирание отдельных клеток; акинеты (иногда их называют спорами) – клетки, способные переживать неблагоприятные условия у нитчатых сине-зеленых. Вегетативное размножение – одна из форм бесполого размножения.

Б е с п о л о е размножение сопровождается делением протопласта клетки на части и выходом продуктов деления из оболочки материнской клетки. Бесполое размножение происходит посредством спор или зооспор (спор со жгутиками). Они образуются в клетках, не отличающихся по форме от других клеток, или в особых клетках – спорангиях, которые могут иметь другую форму и размеры, чем вегетативные. Главное отличие спорангиев от других клеток заключается в том, что они возникают как выросты обычных клеток и выполняют только функцию образования спор.

Типы спор: 1) апланоспоры – споры, одевающиеся оболочкой внутри материнской клетки; 2) автоспоры – апланоспоры, которые в материнской клетке приобретают подобную им форму. По количеству их в спорангиях различают тетраспоры, биоспоры и моноспоры.

Споры и зооспоры обычно входят в воду через отверстие в стенке спорангия целой группой, окруженные слизистой оболочкой, которая вскоре расплывается.

П о л о в о е размножение заключается в слиянии двух клеток (гамет), в результате чего образуется зигота, вырастающая в новую особь или дающая зооспоры. Типы полового размножения: 1) соединение содержимого двух вегетативных клеток; 2) образование внутри клеток специализированных половых клеток – гамет. Вместилища гамет называются гаметангиями. В зависимости от относительных размеров гамет различают: а) изогамию – гаметы одинаковой формы и величины; б) гетерогамию – женская гамета крупнее мужской, но сходна с нею; в) оогамию – женская гамета (яйцеклетка) лишена жгутиков, неподвижна, значительно крупнее мужской; г) автогамию – особый тип полового процесса, заключающийся в том, что ядро клетки предварительно делится с мейозом на 4 ядра, два из них разрушаются, а оставшиеся два сливаются, вновь образуя диплоидное ядро. Автогамия не сопровождается увеличением числа особей, а лишь их омоложением.

В результате слияния гамет образуется зигота, жгутики отпадают, появляется оболочка. В зиготе происходит слияние двух ядер – она диплоидна.

По условиям существования водоросли можно разделить на две группы: живущие в воде и живущие вне воды.

Водные организмы делятся на планктонные, бентические, перифитонные, нейстонные. Водоросли, живущие вне воды, разделяются на аэрофитон и почвенные.

Водоросли – одни из древнейших организмов, населяющих нашу планету. В прошлые геологические эпохи, как и в настоящее время, водоросли населяли океаны, реки, озера и другие водоемы. Обогатив атмосферу кислородом, они вызвали к жизни разнообразный мир животных и способствовали развитию аэробных бактерий; они явились родоначальниками растений, заселивших сушу, и создали мощные толщи горных пород.

Водоросли, как и высшие растения на суше, – источник органических веществ, продуценты кислорода в водоемах. Вследствие деятельности сине-зеленых водорослей (и других тоже) образуются горные породы. Сверлящие сине-зеленые, разрушая горные породы, участвуют в образовании первичных почв. В комплексе с другими организмами (бактериями, грибами) водоросли принимают участие в процессе самоочищения воды.

Водоросли являются сырьем для получения ценных органических веществ: спиртов, аммиака, лаков, органических кислот и т. п.; йода, каротина, биологически активных веществ. Используются в микробиологической промышленности, космических исследованиях. Морские водоросли используют в пищевой промышленности и при изготовлении различных лекарств.

В санитарной гидробиологии сине-зеленые водоросли используются как индикаторы, показывающие степень загрязнения воды органическими веществами. Водоросли применяют при очистке промышленных вод.

Рассмотрим отдельного представителя отдела сине-зеленых водорослей – анабену (Anabaena Cyanophyta).

Анабена — многоклеточная водоросль. Она живет на почве, и для фотосинтеза ей необходим солнечный свет. Сине-зеленые водоросли неприхотливы и не требуют каких-то особых условий для роста, но водород образуют только тогда, когда в окружающей среде нет кислорода. Поэтому, чтобы получить водород, их выращивают в аргоне. Водоросли при фотосинтезе вместе с водородом выделяют кислород, который мешает образованию водорода. К тому же такой процесс дорог. Поэтому производство водорода обычными сине-зелеными водорослями невыгодно.

Ситуация изменилась, когда на кафедре генетики и селекции биологического факультета МГУ получили штамм РК84, выделявший водород в воздухе. Ученые Института фундаментальных проблем биологии РАН нашли условия (в частности, уровень освещенности), при которых водоросль хорошо росла и давала много водорода. Интересно, что в биореакторе, где росла водоросль, концентрация выделяемого ею кислорода вдвое превысила атмосферную, но это не помешало синтезу водорода. Сотрудники Института фундаментальных проблем биологии РАН, изучив мутантный штамм анабены РК84, заключили, что это пока лучший преобразователь солнечной энергии в энергию водорода.

Ученые считают, что этот штамм анабены можно использовать для получения водорода. Однако, по словам ученых, прежде необходимо изучить, как эта водоросль будет работать в природных условиях, и оценить эффективность, с которой она преобразует энергию света в энергию водорода.

Сине-зеленые водоросли , цианеи (Cyanophyta), отдел водорослей; относятся к прокариотам. Водоросли – это низшие споровые растения, содержащие в своих клетках хлорофилл и живущие преимущественно в воде. В морфологическом отношении для водорослей наиболее существенным признаком является отсутствие тела, расчлененного на стебли, листья и корни. Их тело обозначают как слоевище (или таллом). Размножаются они вегетативно или с помощью спор, т. е. относятся к споровым растениям. В физиологическом отношении водоросли резко отличаются от других групп низших растений наличием хлорофилла, благодаря которому они способны ассимилировать углекислый газ, т. е. питаться фотоавтотрофно. Процесс светового и углеродного питания растений получил название фотосинтеза и в общем виде может быть записан следующим суммарным уравнением:

Из уравнения видно, что на каждые 6 грамм-молекул углекислоты и воды синтезируется грамм-молекула глюкозы (C6 H2 O6 ), выделяется 6 грамм-молекул кислорода и накапливается 2815680 Дж энергии. Таким образом, функция фотосинтеза растений является, по существу, биохимическим процессом преобразования световой энергии в химическую.

В отличие от водорослей бактерии, имеющие зеленую окраску, содержат пигмент, близкий к хлорофиллу, но не тождественный ему. Водоросли, даже простейшие из них – сине-зеленые, являются первыми организмами, у которых в процессе эволюции появилась способность осуществлять фотосинтез с использованием воды в качестве источника (донора) водорода и выделением свободного кислорода, т. е. процесс, свойственный высшим растениям. Второй особенностью питания водорослей и других фотосинтезирующих растений является способность усваивать азот, серу, фосфор, калий и другие минеральные элементы в виде ионов минеральных солей и использовать их для синтеза таких важных компонентов живой клетки, как аминокислоты, белки, нуклеиновые кислоты, макроэргические соединения, вещества вторичного обмена. Среди водорослей есть виды, которые являются строгими фотосинтетиками (из сине-зеленых – анабены, некоторые штаммы ностоков). Многие водоросли в определенных условиях могут легко переключаться с фотоавтотрофного способа питания на ассимиляцию различных органических соединений,

т. е. осуществлять гетеро- или фотогетеротрофный типы питания.


Основная структурная единица тела водорослей – клетка. Уникальную группу составляют сифоновые водоросли: у них таллом не разделен на клетки, однако в цикле развития имеются одноклеточные стадии.

Многоклеточные формы возникли после того, как клетка проделала длительный и сложный путь развития в качестве самостоятельного организма. Переход от одноклеточного к многоклеточному состоянию сопровождался потерей индивидуальности и связанным с этими изменениями в структуре и функции клетки. С возникновением многоклеточности связаны дифференцировка и специализация клеток в талломе, что следует рассматривать как первый шаг на пути становления тканей и органов.

Существует огромное многообразие форм (шаровидные, грушевидные, яйцевидные, веретеновидные, спиралевидные, цилиндрические и др.) и размеров (от нескольких микрометров) водорослевой клетки.

Различают размножение вегетативное, бесполое и половое.

В е г е т а т и в н о е – деление особей надвое. Иногда делению предшествует отмирание отдельных клеток; акинеты (иногда их называют спорами) – клетки, способные переживать неблагоприятные условия у нитчатых сине-зеленых. Вегетативное размножение – одна из форм бесполого размножения.

Б е с п о л о е размножение сопровождается делением протопласта клетки на части и выходом продуктов деления из оболочки материнской клетки. Бесполое размножение происходит посредством спор или зооспор (спор со жгутиками). Они образуются в клетках, не отличающихся по форме от других клеток, или в особых клетках – спорангиях, которые могут иметь другую форму и размеры, чем вегетативные. Главное отличие спорангиев от других клеток заключается в том, что они возникают как выросты обычных клеток и выполняют только функцию образования спор.

Типы спор: 1) апланоспоры – споры, одевающиеся оболочкой внутри материнской клетки; 2) автоспоры – апланоспоры, которые в материнской клетке приобретают подобную им форму. По количеству их в спорангиях различают тетраспоры, биоспоры и моноспоры.

Споры и зооспоры обычно входят в воду через отверстие в стенке спорангия целой группой, окруженные слизистой оболочкой, которая вскоре расплывается.

П о л о в о е размножение заключается в слиянии двух клеток (гамет), в результате чего образуется зигота, вырастающая в новую особь или дающая зооспоры. Типы полового размножения: 1) соединение содержимого двух вегетативных клеток; 2) образование внутри клеток специализированных половых клеток – гамет. Вместилища гамет называются гаметангиями. В зависимости от относительных размеров гамет различают: а) изогамию – гаметы одинаковой формы и величины; б) гетерогамию – женская гамета крупнее мужской, но сходна с нею; в) оогамию – женская гамета (яйцеклетка) лишена жгутиков, неподвижна, значительно крупнее мужской; г) автогамию – особый тип полового процесса, заключающийся в том, что ядро клетки предварительно делится с мейозом на 4 ядра, два из них разрушаются, а оставшиеся два сливаются, вновь образуя диплоидное ядро. Автогамия не сопровождается увеличением числа особей, а лишь их омоложением.

В результате слияния гамет образуется зигота, жгутики отпадают, появляется оболочка. В зиготе происходит слияние двух ядер – она диплоидна.


По условиям существования водоросли можно разделить на две группы: живущие в воде и живущие вне воды.

Водные организмы делятся на планктонные, бентические, перифитонные, нейстонные. Водоросли, живущие вне воды, разделяются на аэрофитон и почвенные.

Водоросли – одни из древнейших организмов, населяющих нашу планету. В прошлые геологические эпохи, как и в настоящее время, водоросли населяли океаны, реки, озера и другие водоемы. Обогатив атмосферу кислородом, они вызвали к жизни разнообразный мир животных и способствовали развитию аэробных бактерий; они явились родоначальниками растений, заселивших сушу, и создали мощные толщи горных пород.

Водоросли, как и высшие растения на суше, – источник органических веществ, продуценты кислорода в водоемах. Вследствие деятельности сине-зеленых водорослей (и других тоже) образуются горные породы. Сверлящие сине-зеленые, разрушая горные породы, участвуют в образовании первичных почв. В комплексе с другими организмами (бактериями, грибами) водоросли принимают участие в процессе самоочищения воды.

Водоросли являются сырьем для получения ценных органических веществ: спиртов, аммиака, лаков, органических кислот и т. п.; йода, каротина, биологически активных веществ. Используются в микробиологической промышленности, космических исследованиях. Морские водоросли используют в пищевой промышленности и при изготовлении различных лекарств.

В санитарной гидробиологии сине-зеленые водоросли используются как индикаторы, показывающие степень загрязнения воды органическими веществами. Водоросли применяют при очистке промышленных вод.

Рассмотрим отдельного представителя отдела сине-зеленых водорослей – анабену (Anabaena Cyanophyta).


Анабена - многоклеточная водоросль. Она живет на почве, и для фотосинтеза ей необходим солнечный свет. Сине-зеленые водоросли неприхотливы и не требуют каких-то особых условий для роста, но водород образуют только тогда, когда в окружающей среде нет кислорода. Поэтому, чтобы получить водород, их выращивают в аргоне. Водоросли при фотосинтезе вместе с водородом выделяют кислород, который мешает образованию водорода. К тому же такой процесс дорог. Поэтому производство водорода обычными сине-зелеными водорослями невыгодно.

Ситуация изменилась, когда на кафедре генетики и селекции биологического факультета МГУ получили штамм РК84, выделявший водород в воздухе. Ученые Института фундаментальных проблем биологии РАН нашли условия (в частности, уровень освещенности), при которых водоросль хорошо росла и давала много водорода. Интересно, что в биореакторе, где росла водоросль, концентрация выделяемого ею кислорода вдвое превысила атмосферную, но это не помешало синтезу водорода. Сотрудники Института фундаментальных проблем биологии РАН, изучив мутантный штамм анабены РК84, заключили, что это пока лучший преобразователь солнечной энергии в энергию водорода.

Ученые считают, что этот штамм анабены можно использовать для получения водорода. Однако, по словам ученых, прежде необходимо изучить, как эта водоросль будет работать в природных условиях, и оценить эффективность, с которой она преобразует энергию света в энергию водорода.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

профессионального образования РФ

Каменск-Уральский политехнический колледжРЕФЕРАТ ПО БИОЛОГИИ

группы М03 – 11

Строение сине-зеленых водорослей……………. 3-5

Распространение в природе………………………..6

Роль их в природе, хозяйственное значение……6-7

Сине-зеленая водоросль Anabaena Cyanophyta…7-8

Сине-зеленые водоросли, цианеи (Cyanophyta), отдел водорослей; относятся к прокариотам. Водоросли – это низшие споровые растения, содержащие в своих клетках хлорофилл и живущие преимущественно в воде. В морфологическом отношении для водорослей наиболее существенным признаком является отсутствие тела, расчлененного на стебли, листья и корни. Их тело обозначают как слоевище (или таллом). Размножаются они вегетативно или с помощью спор, т. е. относятся к споровым растениям. В физиологическом отношении водоросли резко отличаются от других групп низших растений наличием хлорофилла, благодаря которому они способны ассимилировать углекислый газ, т. е. питаться фотоавтотрофно. Процесс светового и углеродного питания растений получил название фотосинтеза и в общем виде может быть записан следующим суммарным уравнением:

6CO2+12H2O 

Из уравнения видно, что на каждые 6 грамм-молекул углекислоты и воды синтезируется грамм-молекула глюкозы (C6H2O6), выделяется 6 грамм-молекул кислорода и накапливается 2815680 Дж энергии. Таким образом, функция фотосинтеза растений является, по существу, биохимическим процессом преобразования световой энергии в химическую.

В отличие от водорослей бактерии, имеющие зеленую окраску, содержат пигмент, близкий к хлорофиллу, но не тождественный ему. Водоросли, даже простейшие из них – сине-зеленые, являются первыми организмами, у которых в процессе эволюции появилась способность осуществлять фотосинтез с использованием воды в качестве источника (донора) водорода и выделением свободного кислорода, т. е. процесс, свойственный высшим растениям. Второй особенностью питания водорослей и других фотосинтезирующих растений является способность усваивать азот, серу, фосфор, калий и другие минеральные элементы в виде ионов минеральных солей и использовать их для синтеза таких важных компонентов живой клетки, как аминокислоты, белки, нуклеиновые кислоты, макроэргические соединения, вещества вторичного обмена. Среди водорослей есть виды, которые являются строгими фотосинтетиками (из сине-зеленых – анабены, некоторые штаммы ностоков). Многие водоросли в определенных условиях могут легко переключаться с фотоавтотрофного способа питания на ассимиляцию различных органических соединений,

т. е. осуществлять гетеро- или фотогетеротрофный типы питания.

У сине-зеленых водорослей, как и у бактерий, ядерный материал не отграничен мембраной от остального содержимого клетки, внутренний слой клеточной оболочки состоит из муреина и чувствителен к действию фермента лизоцима. Для сине-зеленых водорослей

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

ЯрГУ им. П.Г.Демидова

Факультет биологии и экологии

Кафедра ботаники и микробиологии

Синезеленые водоросли – продуценты токсических веществ

Выполнила: Кесарева Т.В

Руководитель: Воропаева О.Г

Характеристика Microcystis aeruginosa как продуцента токсинов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Характеристика Aphanizomenon flos-aquae как продуцента токсинов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Действие токсинов водорослей на человека, животных и гидробионтов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Синезеленые водоросли широко распространены в природе. Они встречаются в планктоне стоячих и медленно текучих вод, в прибрежном бентосе, как эпифиты и обрастания на различных твердых субстратах, в воде, в горячих источниках, на поверхности снега, в толще почвы (эдафон), в симбиозе с другими организмами.

Многие сине-зеленые водоросли положительно реагируют на присутствие органических соединений, в том числе азотистых. Поэтому их всегда мало в морях и пресных водоемах. Особенно их много в водохранилищах, так как зарегулирование стока превращает реки в озера с полупроточной водой.

Среди массово разрастающихся в водохранилищах и эвтрофных озерах синезеленых водорослей доминируют пять – шесть видов. Почти все они являются планктонными формами, и в большинстве случаев проявляют токсические свойства. Токсические водоросли относятся к семействам Microcystidaceae, Coelosphaeriaceae (класс Chroococceae, порядок Chroococcales), Nostocaceae, Anabaenaceae, Aphanizomenonaceae, Nodulariaceae, Rivulariaceae (класс Hormogoneae, порядок Nostocales), Oscillatoriaceae (класс Hormogoneae, порядок Oscillatoriales).

1.Характеристика Microcystis aeruginosa

как продуцента токсинов

Microcystis aeruginosa K?tz. emend.Elenk. относится к классу Chroococcaceae, порядку Chroococcales, подпорядку Stereometridae, семейству Microcytstidaceae Elenk, роду Microcystis (K?tz.) Elenk. Для порядка характерны одноклеточные и колониальные или только колониальные водоросли, с толстой слизистой бесструктурной массой.

По химической природе эндотоксин микроцистиса является полипептидом циклической структуры, состоящим из 10 аминокислот, и содержит редкие аминокислоты – орнитин и правовращающую форму серина. Пептид обладает кислотными свойствами, так как содержит карбоксильные группы. Он нелетучий, хорошо адсорбируется ионообменными смолами, и не обладает антибиотической активностью. Выход токсина: на 100 г сухих клеток – 110 – 125 мкг токсина. Оптимальная температура для роста и развития M. aeruginosa cоставляет 32 0 , тогда как оптимум температуры для накопления токсина составляет 25 0 , а при 32 0 токсина мало или нет вообще (так как он быстро разлагается). При оптимальной температуре выход токсина не зависти от освещенности: он одинаково высокий как при низкой освещенности, так и при высокой.

2.Характеристика Aphanizomenon flos-aquae

как продуцента токсинов

Aphanizomenon flos-aquae (L.) Ralfs относится к классу Hormogoneae , порядку Nostocales, подпорядку Symmetriae, семейству Aphanizomenonaceae Elenk., роду Aphanizomenon Morr.

Для семейства Aphanizomenасeae характерны трихомы без видимой слизи, одиночные или собранные в свободно плавающие пучки, с ясно выраженными срединными и конечными клетками. Для рода Aphanizomenon Morr. и вида Aphanizomenon flos-aquae (L.) Ralfs типичны прямые или изогнутые трихомы, большей частью собранные в пучки. Конечные клетки удлинненные, расположенные в середине – более короткие. Имеются гетероцисты. Вид широко распространен на территории России.

Существенные изменения в токсичности водорослей связаны с различными стадиями роста водорослей. Токсичность увеличивается с увеличением возраста и плотности культуры. Низкая токсичность на ранних стадиях развития водоросли обусловлена особенностями обмена в культуре. Образование токсина также зависит от температуры и освещенности. Оптимальной температурой для образования токсина является 25 0 С, при 15 0 С его образуется вдвое меньше, а при 30 0 С образование токсина подавляется полностью. Что касается освещенности, то чем она выше, тем больше образуется токсина.

Токсин Aphanizomenon flos-aquae также является эндотоксином, который сохраняется внутри здоровых клеток и высвобождается только после их лизиса. Он является очень активным блокирующим агентом для нервной и мышечной тканей, нарушающим их проводимость, без воздействия на мембранный потенциал покоя. По химической природе он является производным гуанидина, слабым основанием.

3.Действие токсинов водорослей на человека, животных и гидробионтов

Действие синезеленых водорослей на животных при отравлении имеет сходный характер, несмотря на разных возбудителей и таксономическое различие животных. Так, при действии водорослей Microcystis, Aphanizomenon, Anabaena, Rivularia и др., на желудочно-кишечный тракт крупного рогатого скота, лошадей, собак и птиц клиническими проявлениями были слабость, тошнота, рвота, вследствие сильного воспалительного процесса, кровоизлияний и омертвения слизистой. Действие этих же водорослей на нервно-мышечные ткани тех же животных проявлялось виде частного или общего паралича, летаргии, пониженной температуры, бессознательного состояния и смерти, что являлось следствием закупорки мозговых и спинномозговых кровеносных сосудов и оболочек мозга. О действии на сердце известны данные только по трем видам: Microcystis, Anabaena и Nodularia. Симптомы отравления проявлялись в слабом и редком или наоборот усиленном пульсе, перикардиальных или эндокардиальных кровоизлияниях.

Предполагается, что человек менее чувствителен к действию токсичных сине-зеленых водорослей, кроме того, для отравления с летальным исходом человеку весом 70 кг необходимо выпить 2,5 литров воды, насыщенной водорослями. Действие водорослей на человека может быть и косвенным – через рыбу, животных и растения. При интоксикации водорослями выделяют желудочно-кишечное, дыхательное, кожное воздействие, которое выражается в виде конъюнктивитов и аллергии. Установлено, что синезеленые водоросли выделяют с окружающую среду фенолы, которые также вызывают поражения кожи.

Токсины синезленых водорослей также воздействуют на разные группы гидробионтов: простейших, беспозвоночных и рыб. Например, известны случаи гибели при массовом развитии синезеленых водорослей таких рыб, как карпы, окуни и сомики. Токсичное действие водорослей проявляется в нарушении равновесия между деятельностью кроветворной и кроверазрушающей систем.

Некоторые виды рыб способны аккумулировать токсины синезеленых водорослей.

Что касается действия на беспозвоночных, то Microcystis очень токсичен для дафний, циклопов и коловраток. Более слабое действие оказывает Aphanizomenon flos-aquae . Известно, что пищевая ценность планктонных синезеленых водорослей невелика, и многие планктонные животные избегают заглатывать эти формы. Кроме того, при вспышках развития синезеленых водорослей некоторые представители зоопланктона уходят в другие слои воды. Но некоторые виды устойчивы к выделениям синезеленых водорослей (ракообразные Eurycercus lamellatus, Lathonura rectirostris).

Таким образом, синезеленые водоросли и их токсины оказывают существенное влияние на гидробионтов. Кроме того, они могут наносить вред здоровью животных и человека. Например, при интоксикации синезелеными водорослями питьевых водоемов и попадании этих вод в водозаборные станции есть риск возникновения эпидемических гастроэнтеритов.

Поэтому изучение явления токсичности водорослей имеет важное значение в науке и практике.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное казенное общеобразовательное учреждение

2.Экология сине-зеленых водорослей и лишайников

3.Значение первичных сообществ для формирования экосистем

4.Экспериментальная часть. Обнаружение сине-зеленых водорослей и лишайников на изучаемых объектах

5.Оценка полученных результатов

7.Список Интернет-ресурсов и использованной литературы

Я живу в селе, в котором много старых заброшенных деревянных построек. На большинстве из них можно увидеть налет зеленовато- бурого, желто- бурого цвета (фото 1.2). Мне стало интересно, что за организмы поселяются на поверхности древесины.

Гипотеза: учитывая, что первоначально эти поверхности были свободны от каких- либо живых организмов, предполагаем, что первые организмы, которые на них поселяются, это сине-зеленые водоросли (цианобактерии) и лишайники, формирующие первичные сообщества. Таким образом, мы наблюдаем начальный этап первичной сукцессии.

Цель: установить, что налет на поверхностях деревянных построек образован живыми организмами, а именно, сине-зелеными водорослями и лишайниками и что они образуют первичное сообщество.

изучить экологию сине-зеленых водорослей и лишайников;

собрать образцы налета и рассмотреть их под микроскопом;

сравнить полученные данные с данными научной литературы

Актуальность исследования заключается в моем личном желании познания окружающего мира.

Новизна исследования заключается в отсутствии подобных публикаций среди школьных исследовательских работ;

Объект исследования – колонии сине-зеленых водорослей и лишайников, произрастающих на деревянных поверхностях.

Предмет исследования – клетки сине- зеленых водорослей и лишайников.

Методика исследования . Микроскопическое исследование биоматериала.

Работа имеет теоретический интерес.

2. Экология сине-зеленых водорослей и лишайников.

Цианобакте́рии , сине-зелёные водоросли , или цианопрокариоты , или цианеи ( лат. Cyanobacteria от греч. κυανός — сине-зелёный) — тип крупных бактерий , способных к фотосинтезу , сопровождающемуся выделением кислорода .

В морфологическом отношении цианопрокариоты - разнообразная и полиморфная группа. Общие черты их строения заключаются только в отсутствии жгутиков и наличии слизистой оболочки. Ширина или диаметр клеток варьируется от 0,5 мкм до 100 мкм. Цианобактерии - одноклеточные , нитчатые и колониальные микроорганизмы. Отличаются выдающейся способностью адаптировать состав фотосинтетических пигментов к спектральному составу света, так что цвет варьируется от светло-зелёного до тёмно-синего.

Морские и пресноводные, почвенные виды, участники симбиозов (например, в лишайнике ). Составляют значительную долю океанического фитопланктона . Способны к формированию толстых бактериальных матов . Некоторые виды токсичны и условно-патогенны (например, Anabaena ). Главные участники цветения воды , которое вызывает массовые заморы рыбы и отравления животных и людей. Уникальное экологическое положение обусловлено наличием двух трудно сочетаемых способностей: к фотосинтетической продукции кислорода и фиксации атмосферного азота (у 2/3 изученных видов).

В настоящее время, являясь значительной составляющей океанического планктона, цианобактерии стоят в начале большей части пищевых цепей и производят значительную часть кислорода (вклад точно не определен: наиболее вероятные оценки колеблются от 20 % до 40 %).

В настоящее время цианобактерии служат важнейшими модельными объектами исследований в биологии. В Южной Америке и Китае бактерии родов спирулина и носток из-за недостатка других видов продовольствия используют в пищу: их высушивают, а затем готовят муку. Рассматривается возможное применение цианобактерий в создании замкнутых циклов жизнеобеспечения.

Лишайники — это симбиотические организмы, тело которых (таллом) образовано соединением грибных ( микобионт ) и водорослевых и/или цианобактериальных ( фотобинт ) клеток во внешне кажущемся однородным . Микобионт получает от фотобионта питательные вещества, производимые тем в результате фотосинтеза. Гриб же создаёт водоросли более оптимальный микроклимат: защищает её от высыхания, экранирует от ультрафиолетового излучения, обеспечивает жизнь на кислых субстратах, смягчает действие ряда других неблагоприятных факторов. Из зелёных водорослей поступают органические вещества, которые легко усваиваются грибом. Цианобактерии поставляют в гриб в основном глюкозу, а также азотсодержащие вещества, образуемые благодаря осуществляемой ими фиксации азота.

По внешнему виду различают лишайники:

Листоватые . Листоватые лишайники имеют вид пластин разной формы и размера, они более или менее плотно прикрепляются к субстрату при помощи выростов нижнего коркового слоя.

Кустистые . У наиболее сложных с точки зрения морфологии кустистых лишайников таллом образует множество округлых или плоских веточек. Такие лишайники могут расти как на земле, так и свисать с деревьев, древесных остатков, скал.

hello_html_m565c77d1.jpg

Тело лишайников (таллом) представляет собой переплетение грибных гиф, между которыми находится популяция фотобионта.

Лишайники не способны к регуляции водного баланса, поскольку у них нет настоящих корней для активного поглощения воды и защиты от испарения. Поверхность лишайника может удерживать воду на короткое время в форме жидкости или пара. В сухих условиях вода быстро теряется на поддержание метаболизма и лишайник переходит в фотосинтетически неактивное состояние, при котором вода может составлять не более 10 % массы. В отличие от микобионта, фотобионт не может долго находиться без воды. Но лишайники нашли способы предотвращения полной потери влаги. У многих видов наблюдается утолщение коры, чтобы обеспечить меньшую потерю воды. Способность поддерживать воду в жидком состоянии очень важна в холодных районах, поскольку замёрзшая вода не пригодна для использования организмом.

Описанный выше ритм жизни является одной из причин для очень медленного роста большинства лишайников. Иногда лишайники растут всего лишь на несколько десятых миллиметра в год, в основном менее чем на один сантиметр. Ростовая зона лишайников у накипных форм находится по краю лишайника, у листоватых и кустистых — на каждой верхушке.

Лишайники являются одними из самых долгоживущих организмов и могут достигать возраста нескольких сотен лет, а в некоторых случаях — более 4500 лет, как например ризокарпон географический ( Rhizocarpon geographicum ), живущий в Гренландии [13] .

В связи с очень медленным ростом лишайники могут выжить только в местах, не заросших другими растениями, где есть свободные площади для фотосинтеза. Кроме того, лишайники проявляют повышенную чувствительность к химическому загрязнению и могут служить его индикаторами. Устойчивости к неблагоприятным условиям способствует невысокая скорость роста, наличие различных способов извлечения и накопления влаги, развитые механизмы защиты.

Лишайники, как правило, предъявляют скромные требования к потреблению минеральных веществ, получая их, большей частью, из пыли в воздухе или с дождевой водой, в связи с этим они могут жить на открытых незащищённых поверхностях (камни, кора деревьев, бетон и даже ржавеющий металл). Преимуществом лишайников является терпимость к экстремальным условиям (засухе, высоким и низким температурам (от −47 до +80 градусов по Цельсию, около 200 видов обитают в Антарктике), кислой и щелочной среде, ультрафиолетовому излучению). Многие лишайники специфичны к субстрату: одни хорошо развиваются только на щелочных породах, например, известняке или доломите, другие на кислых, не содержащих извести силикатных породах, таких как кварц, гнейс и базальт. Лишайники-эпифиты также предпочитают определённые деревья: выбирают кислую кору хвойных или берёзовых или осно́вную ореховых, клёна или бузины. Ряд лишайников сам выступает в качестве подложки для других лишайников.

Лишайники являются организмами-индикаторами (биоиндикаторы) для определения условий окружающей среды, в частности, качества воздуха ( лихеноиндикация ). Высокая чувствительность лишайников к загрязнениям вызвана тем, что взаимодействие его компонентов легко нарушить. Из воздуха или с дождём поступают без всяких препятствий в лишайник вместе с питательными и токсичные вещества, это происходит потому, что лишайники не имеют никаких специальных органов для извлечения влаги из субстрата, а поглощают её всем талломом. Поэтому они особенно уязвимы к загрязнению воздуха.

В районах с интенсивным сельским хозяйством велико внесение удобрений, азотные соединения из которых распространяются с водой, делая реакцию почвы слабоосновной. Это ведёт к исчезновению видов лишайников, которые предпочитают кислые почвы. Лишайники служат также показателями наличия в воздухе токсичных тяжёлых металлов, накапливающихся в тканях, которые в итоге могут привести к гибели лишайника. Накапливают лишайники и радиоактивные вещества. Поэтому они могут быть использованы для контроля за радиоактивными осадками после атмосферных ядерных испытаний.

3.Значение первичных сообществ для формирования экосистем

Первичная сукцессия - это процесс формирования и развития экосистемы на незаселенном месте: голые скалы, песчаные дюны, отвалы пустой породы у шахт и карьеров, насыпи .

Голый камень мало пригоден для жизни. Семена с трудом находят место, пригодное для закрепления и прорастания, а если даже они и прорастут, то всходы, скорее всего погибнут из-за действия ветра и солнца, из-за нехватки воды. Только цианобактерии и лишайники могут расти в подобных условиях. Их крошечные споры закрепляются в мельчайших трещинах. Они улавливает частицы породы и гумуса, приносимые водой или ветром. При засухе переходят в неактивное состояние покоя: не развиваются, но и не гибнут. Малейшее увлажнение влечет за собой его рост. Постепенно начинает накапливаться почва. Вместе с моховым покровом она обеспечивает место для поселения семенных растений, причем мох удерживает воду, нужную для прорастания семян. Крупные растения, в свою очередь, накапливают почву, разрушая скалу своими корнями. Наконец, слой почвы оказывается достаточным для развития кустарников и деревьев. Их опадающие листья и ветви не дают расти мхам и другим мелким видам, начавшим первичную сукцессию. На первоначально голой скале мхи сменяются травами, а затем и лесом. Первичная сукцессия - от стадии голой скалы и до климакса (зрелого леса) может длиться многие сотни лет.

На скалах и утёсах лишайники являются важными первоначальными организмами. Они крепятся к поверхности горной породы или даже проникают внутрь. При этом сильно меняют внешний вид горных пород, особенно их цвет, и образуют вокруг себя углубления. Лишайники не делают различий между естественными и искусственными субстратами, покрывая стены, крыши, заборы, надгробия и другие постройки.

Сукцессия любого масштаба заканчивается формированием зрелого сообщества, и в экосистеме все популяции приходят в состояние динамического равновесия. Далее эти экосистемы существуют в соответствии с рассмотренными ранее законами и принципами функционирования экосистем.

Сукцессии любого масштаба характеризуются рядом общих закономерностей, многие из которых важны для практической деятельности человека:

- в ходе сукцессии постепенно нарастает видовое разнообразие. Это ведет к усложнению связей внутри сообщества, разветвлению цепей питания и усложнению трофической сети, усилению регуляторных возможностей внутри системы, ее стабильности.

- происходят серьезные преобразования в энергетическом балансе системы. С энергетических позиций сукцессия - это такое неустойчивое состояние сообщества, которое характеризуется несоответствием двух показателей: валовой продуктивности и энергетических затрат всей системы на поддержание жизнедеятельности - дыхания.

- в ходе сукцессии общая биомасса сообщества сначала возрастает, но затем темпы этого роста снижаются и на стадии климакса биомасса системы стабилизируется.

- на первых этапах сукцессии чистая продуктивность сообщества относительно высока. В зрелых, устойчивых экосистемах практически весь прирост растительности поступает и расходуется в цепях питания гетеротрофами, поэтому чистая продуктивность сообщества приближается к нулю.

4. Экспериментальная часть. Обнаружение сине-зеленых водорослей и лишайников

Для выполнения поставленных задач, были взяты соскобы с деревянных поверхностей и помещены в чашечках Петри, в водную среду на целлюлозный субстрат.

Образцы выдерживались при комнатной температуре в течении одной недели.

Затем были изготовлены микропрепараты и рассмотрены под микроскопом.

В ходе исследования были сделаны фотографии при помощи электронного объектива и записан видеоролик. Препараты не окрашивались. Увеличение микроскопа –160 раз (16*10)

hello_html_107d4229.jpg

hello_html_1a9cc8bb.jpg

hello_html_m5ab6d71b.jpg

hello_html_5f48ae30.jpg

Фото 4.

hello_html_m42679b30.jpg

hello_html_m11e8150d.jpg

hello_html_m2b5d9a31.jpg

Фото 7

hello_html_m7f482593.jpg

hello_html_m1cdbdf81.jpg

hello_html_m5517930f.jpg
hello_html_760259c1.jpg

Фото 10 Фото 11

4.Оценка полученных результатов

Обнаруженные объекты имеют явно клеточное строение, что говорит об обнаружении колонии живых организмов (фото 3).

Зеленая окраска свидетельствует о фотосинтетической деятельности клеток (фото 4,5,6).

Имеется четко выраженная клеточная стенка, что характерно для сине-зеленых водорослей (фото 4,5). Так же характерным является слизистая оболочка вокруг клеточной стенки, это явление привело к ослизнению раствора в чашечке Петри.

Образование в центральной части клеток, по нашему предположению, является ядроподобным образованием и называют его нуклеоидом (фото 4,5).

То, что нуклеоид не имеет четко выраженной ядерной оболочки, является доказательством принадлежности к сине-зеленым водорослям (цианобактериям) .

Большинству синезеленых водорослей свойственно образование колоний, в которых они тесно сомкнуты, а клетки сохраняют физиологическую самостоятельность.

Колониальное строение изучаемых объектов также хорошо видно (фото 6).

Доказательства наличия лишайников не составляют труда. На фото 7, 8, 9 отчетливо видны грибные нити, между которыми прослеживаются скопления клеток водорослей зеленого цвета.

Первичные сообщества заселяются также животными организмами, представленные различными видами простейших (фото 10. 11).

Голые поверхности мало пригодны для жизни. Семена с трудом находят место для закрепления и прорастания, а если даже они и прорастут, то всходы, скорее всего погибнут из-за действия ветра и солнца, из-за нехватки воды. Только цианобактерии и лишайники могут расти в подобных условиях. Их крошечные споры закрепляются в мельчайших трещинах, неровностях, которые становятся местом обитания новых колоний. Они улавливают частицы породы и гумуса, приносимые водой или ветром. При засухе переходят в неактивное состояние покоя: не развиваются, но и не гибнут. Малейшее увлажнение влечет за собой их рост. Постепенно начинает накапливаться почва, появляются условия для поселения мхов. Моховой покров она обеспечивает место для поселения семенных растений, причем мох удерживает воду, нужную для прорастания семян.

Таким образом, мы наблюдаем начальный этап первичной сукцессии.

В ходе сукцессии постепенно нарастает видовое разнообразие. Это ведет к усложнению связей внутри сообщества, разветвлению цепей питания и усложнению трофической сети, усилению регуляторных возможностей внутри системы, ее стабильности.

При заселении необжитых участков живые организмы за счет своего метаболизма изменяют условия проживания и сменяют друг друга. Основная роль принадлежит накоплению отмерших остатков растений и продуктов разложения. Постепенно формируется почвенный профиль , изменяется гидрологический режим участка, микроклимат . Такие сукцессии называются — экогенетическими, так как ведут к преобразованию самого местообитания. Процесс первоначального формирования растительного покрова называется также сингенетической сукцессией .

Читайте также: