Роль почек в адаптации к изменениям кос реферат

Обновлено: 07.07.2024

Развитие почечной реакции на смещение кислотно-основного состояния происходит в течение нескольких часов и даже дней.

Роль почек в регуляции сдвигов КОС заключается в изменении реабсорбции бикарбоната и секреции аммиака и титруемых кислот. Благодаря этим процессам рН мочи постепенно снижается до 4,5-5,2.

Специфические нейрогуморальные механизмы регуляции секреции и реабсорбции ионов Н+ отсутствуют.

В почках активно протекают три процесса, связанных с уборкой кислых эквивалентов:

1. Реабсорбция бикарбонатных ионов HCO 3 –.

2. Ацидогенез – удаление ионов Н+ с титруемыми кислотами

(в основном в составе дигидрофосфатов NaH2PO4).

3. Аммониегенез – удаление ионов Н+ в составе ионов аммония NH4+.

РЕАБСОРБЦИЯ БИКАРБОНАТ- ИОНОВ

В проксимальных канальцах ионы Na+ мигрируют в цитозоль эпителиальных клеток в силу концентрационного градиента, который создается на базолатеральной мембране при работе фермента Na+/К+-АТФазы. В обмен на ионы Na+ эпителиоциты канальцев активно секретируют в канальцевую жидкость ионы водорода.

Хотя в крови соотношение HРO4 2– : H2РO4 – равно 4 : 1, в клубочковом фильтрате оно меняется на 1 : 9. Происходит это из-за того, что менее заряженный H2РO4 – лучше фильтруется в клубочках. Связывание ионов Н + ионами HРO4 2– на протяжении всего канальца приводит к увеличению количества H2РO4 – . В дистальных канальцах соотношение может достигать 1 : 50

АММОНИЕГЕНЕЗ

Аммониегенез происходит на протяжении всего почечного канальца, но более активно идет в дистальных отделах – дистальных канальцах и собирательных трубочках коркового и мозгового слоев. В этих сегментах, в отличие от Na+/H+-антипорта проксимальных отделов, секреция ионов Н+ происходит с участием Н + -АТФазы, локализованной на апикальной мембране эпителиоцита. Ионы HCO3 – первичной мочи и секретируемые ионы Н + образуют угольную кислоту Н 2 СО 3 . В гликокаликсе эпителиоцитов фермент карбоангидраза катализирует распад угольной кислоты на СО 2 и воду. В результате возникает градиент концентрации углекислого газа между просветом канальцев и цитозолем и СО2 диффундирует в клетки. Внутриклеточная карбоангидраза использует пришедший СО2 и образует угольную кислоту, которая диссоциирует. Ионы НСО3 – транспортируются в кровь, ионы Н + – секретируются в мочу в обмен на ионы Na + . Таким образом, объем реабсорбции НСО3 – полностью соответствует секреции ионов Н + . В проксимальных канальцах происходит реабсорбция 90%

В петле Генле и дистальных канальцах реабсорбируется оставшееся количество карбонат- иона. Всего в почечных канальцах реабсорбируется более 99% от фильтруемых бикарбонатов. Глутамин и глутаминовая кислота, попадая в клетки канальцев, быстро дезаминируются ферментами

глутаминаза и глутаматдегидрогеназа с образованием аммиака. Являясь гидрофобным соединением, аммиак диффундирует в просвет канальца и акцептирует ионы Н+ с образованием аммонийного иона. Далее аммонийный катион способен взаимодействовать с анионами Cl–, SO42–, с органическими кислотами (лактат и другие) с образованием аммонийных солей.

АЦИДОГЕНЕЗ

В процессе ацидогенеза в сутки с мочой выделяется 10-30 ммоль кислот, называемых титруемыми кислотами. Фосфаты, являясь одной из этих кислот, играют роль буферной системы в моче. Роль ее состоит экскреции кислых эквивалентов без потерь бикарбонат-ионов за счет дополнительного иона водорода в составе выводимого NaH2PO4 (по сравнению с NaHCO3):

После того как бикарбонат натрия в почечных канальцах реабсорбируется, кислотность мочи зависит только от связывания ионов Н+ с HPO4 2– и содержания дигидрофосфата.

ВИДЫ НАРУШЕНИЙ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ

Можно выделить следующие причины:

1. Повышенное поступление кислых продуктов или недостаточность их удаления.

2. Изменение количества иона НСО3– в сторону увеличения или снижения.

3. Изменение концентрации компонентов буферных систем

Смещение КОС крови в сторону повышения концентрации ионов водорода (снижение рН до 7,0) и уменьшения резервной щелочности ― ацидоз . Смещение КОС крови в сторону понижения концентрации ионов водорода (повышение рН до 7,8) и увеличения резервной щелочности крови ― алкалоз .


3. Гусев Г.П. Роль почки в регуляции кислотно-щелочного баланса // Физиология почки: Руководство по физиологии. – Л., 1972. – С. 142–168.

4. Жалко-Титаренко В.Ф. Водно-электролитный обмен и кислотно-основное состояние в норме и патологии. – Киев, 1989.

6. Лосев Н.И., Войнов В.А. Физико-химический гомеостаз организма // Гомеостаз / Под ред. П.Д. Горизонтова. – М., 1981. – С. 186–240.

9. Тавс Г. Газы крови и кислотно-щелочное равновесие // Физиология человека. Т.3 / Под ред. Р. Шмидта и Г. Тавса. – М., 1986. – С. 241–268.

10. Хейтц У., Горн М. Водно-электролитный и кислотно-основный баланс: краткое руководство. – М.: БИНОМ. Лаборатория знаний, 2009. – 359 с.

11. Хруска К. Патофизиология кислотно-основного обмена // Почки и гомеостаз в норме и патологии. – М., 1987. – С. 170–216.

Кислотно-основное состояние (КОС) организма является одним из важнейших и наиболее строго стабилизируемых параметров гомеостаза. От соотношения водородных и гидроксильных ионов во внутренней среде организма зависят активность ферментов, гормонов, интенсивность и направленность окислительно-восстановительных реакций, процессы обмена белков, углеводов и жиров, функции различных органов и систем, постоянство водного и электролитного обмена, проницаемость и возбудимость биологических мембран и т.д. Активность реакции среды влияет на способность гемоглобина связывать кислород и отдавать его тканям.

Активную реакцию среды принято оценивать по содержанию в жидкостях ионов водорода.

Сдвиги рН крови за указанные границы приводят к существенным сдвигам окислительно-восстановительных процессов, изменению активности ферментов, прницаемости биологических мембран, обусловливают нарушения со стороны функции сердечно-сосудистой, дыхательной и других систем; сдвиг на 0,3 может вызвать коматозные состояния, а на 0,4 – зачастую несовместим с жизнью.

Кислотно-основное состояние поддерживается мощными гомеостатическими механизмами. В их основе лежат особенности физико-химических свойств буферных систем крови и физиологические процессы, в которых принимают участие системы внешнего дыхания, почки, печень, желудочно-кишечный тракт и др.

Химические буферные системы образуют первую линию защиты против изменений рН жидкости организма, действуют для быстрого их предотвращения.

Наиболее емкими буферными системами крови являются бикарбонатный, фосфатный, белковый и гемоглобиновый. Первые три системы особенно важную роль играют в плазме крови, а гемоглобиновый буфер, самый мощный, действует в эритроцитах.

mor01.wmf

Бикарбонатный буфер является наиболее важной внеклеточной буферной системой и состоит из слабой угольной кислоты Н2СО3 и соли ее аниона – сильного основания . Угольная кислота образуется в результате взаимодействия углекислого газа и воды: CO2 + H2O ↔ H2CO3. Угольная кислота в свою очередь диссоциирует на водород и бикарбонат: H2CO3 ↔ H+ + HCO3-.

В нормальных условиях (при рН крови около 7,4) в плазме бикарбоната в 20 раз больше, чем углекислоты.

Емкость бикарбонатной системы составляет 53 % всей буферной емкости крови. При этом на бикарбонат плазмы приходится 35 % и на бикарбонат эритроцитов 18 % буферной емкости.

mor02.wmf

При образовании в плазме избытка кислореагирующих продуктов ионы водорода соединяются с анионами бикарбоната (). Образующийся при этом в плазме избыток углекислоты поступает в эритроциты и там с помощью угольной ангидразы разлагается на углекислый газ и воду. Углекислый газ выделяется в плазму, возбуждает дыхательный центр и избыток СО2 удаляется из организма через легкие. Это быстрое преобразование бикарбонатом любой кислоты в угольную, которая легко удаляется легкими, делает бикарбонатный буфер самой лабильной буферной системой.

mor03.wmf

Бикарбонатный буфер способен нейтрализовать и избыток оснований. В этом случае ионы ОНˉ будут связаны углекислотой и вместо самого сильного основания ОНˉ образуется менее сильное , избыток которого в виде бикарбонатных солей выделяется почками.

До тех пор, пока количество угольной кислоты и бикарбоната натрия изменяется пропорционально и соотношение между ними сохраняется 1:20, рН крови остается в пределах нормы.

Фосфатный буфер представлен солями одно- и двузамещенных фосфатов. Фосфатная буферная система обеспечивает 5 % буферной емкости крови, является основной буферной системой клеток.

Однозамещенная соль обладает кислыми свойствами, так как при диссоциации дает ион , который далее способен выделять ион водорода: NаН2РО4 ⇒ Nа+ + ; ⇒Н+ + . Двузамещенный фосфат обладает свойствами основания, так как диссоциирует с образованием иона , который может связывать ион водорода: + Н+ ⇒ .

При нормальном рН в плазме соотношение фосфатных солей NаН2РО4: Nа2НРО4 = 1:4. Этот буфер имеет значение в почечной регуляции КОС, а также в регуляции реакции некоторых тканей. В крови же его действие главным образом сводится к поддержанию постоянства и воспроизводства бикарбонатного буфера.

Белковая буферная система является довольно мощным буфером, который способен проявлять свои свойства за счёт амфотерности белков. Белковая буферная система обеспечивает 7 % буферной емкости крови. Белки плазмы крови содержат достаточное количество кислых и основных радикалов, поэтому эта буферная система действует в зависимости от среды, в которой происходит диссоциация белков.

Гемоглобиновый буфер является самой емкой буферной системой. На ее долю приходится до 75 % всей буферной емкости крови. Свойства буферной системы гемоглобину придает главным образом его способность постоянно находиться в виде двух форм – восстановленного (редуцированного) гемоглобина ННb и окисленного (оксигемоглобина) НbО2.

Гемоглобиновый буфер, в отличие от бикарбонатного, в состоянии нейтрализовать как нелетучие, так и летучие кислоты. Окисленный гемоглобин ведёт себя как кислота, увеличивая концентрацию ионов водорода, а восстановленный (дезоксигенированный) – как основание, нейтрализуя H+.

Гемоглобин является классическим примером белкового буфера и эффективность его достаточно высока. Гемоглобин в шесть раз более эффективен как буфер, чем плазменные протеины.

Переход окисленной формы гемоглобина в восстановленную форму предупреждает сдвиг рН в кислую сторону во время контакта крови с тканями, а образование оксигемоглобина в легочных капиллярах предотвращает сдвиг рН в щелочную сторону за счет выхода из эритроцитов СО2 и иона хлора и образования в них бикарбоната.

Система аммиак/ион аммония (NH3/NH4+) – действует преимущественно в моче.

Помимо буферных систем в поддержании постоянства рН активное участие принимают физиологические системы, среди которых основными являются легкие, почки, печень, желудочно-кишечный тракт.

Система дыхания играет значительную роль в поддержании кислотно-щелочного баланса организма, однако для нивелирования сдвига рН крови им требуется 1–3 минуты. Роль легких сводится к поддержанию нормальной концентрации углекислоты, и основным показателем функционального состояния легких является парциальное напряжение углекислого газа в крови. Легочные механизмы обеспечивают временную компенсацию, так как при этом происходит смещение кривой диссоциации оксигемоглобина влево и уменьшается кислородная емкость артериальной крови.

При устойчивом состоянии газообмена легкие выводят углекислого газа около 850 г в сутки. Если напряжение углекислого газа в крови повышается сверх нормы на 10 мм рт. ст., вентиляция увеличивается в 4 раза.

Роль почек в регуляции активной реакции крови не менее важна, чем деятельность дыхательной системы. Почечный механизм компенсации более медленный, чем респираторный. Полноценная почечная компенсация развивается только через несколько дней после изменения pH.

Экскреция кислот при обычной смешанной пище у здорового человека превышает выделение оснований, поэтому моча имеет кислую реакцию (рН 5,3–6,5) и концентрация в ней ионов водорода примерно в 800 раз выше, чем в крови. Почки вырабатывают и выделяют с мочой количество ионов водорода, эквивалентное их количеству, непрерывно поступающему в плазму из клеток организма, совершая при этом замену ионов водорода, секретируемых эпителием канальцев, на ионы натрия первичной мочи. Этот механизм осуществляется с помощью нескольких химических процессов.

Первым из них является процесс реабсорбции натрия при превращении двузамещенных фосфатов в однозамещенные. При истощении фосфатного буфера (при рН мочи ниже 4,5) реабсорбция натрия и бикарбоната осуществляется за счет аммониогенеза.

Второй процесс, который обеспечивает задержку натрия в организме и выведение излишка ионов водорода, – это превращение в просвете канальцев бикарбонатов в угольную кислоту.

Третьим процессом, который способствует сохранению натрия в организме, является синтез в дистальных почечных канальцах аммиака (аммониогенез) и использование его для нейтрализации и выведения кислых эквивалентов с мочой.

mor10.wmf

Образовавшийся свободный аммиак легко проникает в просвет канальцев, где, соединяясь с ионом водорода, превращается в плохо диффундирующий аммонийный катион , не способный вновь вернуться в клетку стенки канальца.

В общем итоге концентрация водородных ионов в моче может превышать концентрацию водородных ионов в крови в несколько сотен раз.

Это свидетельствует об огромной способности почек выводить из организма ионы водорода.

Почечные механизмы регуляции КОС не могут скорректировать рН в течение нескольких минут, как респираторный механизм, но они функционируют в течение нескольких дней, пока рН не вернется к нормальному уровню.

Регуляция КОС с участием печени. Печень окисляет до конечных продуктов недоокисленные вещества крови, оттекающей от кишечника; синтезирует мочевину из азотистых шлаков, в частности из аммиака и из хлорида аммония, поступающих из желудочно-кишечного тракта в кровь портальной вены; печени присуща выделительная функция и поэтому при накоплении в организме избыточного количества кислых или щелочных продуктов метаболизма они могут выделяться с желчью в желудочно-кишечный тракт. При избытке кислот в печени усиливается их нейтрализация и одновременно тормозится образование мочевины. Неиспользованный аммиак нейтрализует кислоты и увеличивает выведение аммонийных солей с мочой. При возрастании количества щелочных валентностей мочекинообразование возрастает, а аммониогенез снижается, что сопровождается уменьшением выведения с мочой аммонийных солей.

Концентрация водородных ионов в крови зависит также от деятельности желудка и кишечника. Клетки слизистой желудка секретируют соляную кислоту в очень высокой концентрации. При этом из крови ионы хлора выделяются в полость желудка в соединении с ионами водорода, образующимися в эпителии желудка с участием карбоангидразы. Взамен хлоридов в плазму в процессе желудочной секреции поступает бикарбонат.

Поджелудочная железа активно участвует в регуляции рН крови, так как она генерирует большое количество бикарбоната. Образование бикарбоната тормозится при избытке кислот и усиливается при их недостатке.

Кожа может в условиях избытка нелетучих кислот и оснований выделять последние с потом. Это имеет особое значение при нарушении функции почек.

Костная ткань. Это наиболее медленно реагирующая система. Механизм ее участия в регуляции рН крови состоит в возможности обмениваться с плазмой крови ионами Са2+ и Na+ в обмен на протоны Н+. Происходит растворение гидроксиапатитных кальциевых солей костного матрикса, освобождение ионов Са2+ и связывание ионов НРО42– с Н+ с образованием дигидрофосфата, который уходит с мочой. Параллельно при снижении рН (закисление) происходит поступление ионов H+ внутрь остеоцитов, а ионов калия – наружу.

Оценка кислотно-основного состояния организма

При изучении кислотно-щелочного баланса наибольшее значение имеет исследование крови. Показатели в капиллярной крови близки к показателям артериальной. В настоящее время показатели КОС определяют эквилибрационным микрометодом Аструпа. Данная методика позволяет, помимо истинного рН крови, получить показатель напряжения СО2 в плазме (рСО2), истинный бикарбонат крови (АВ), стандартный бикарбонат (SB), сумму всех оснований крови (ВВ) и показатель дефицита или избытка оснований (ВЕ).

Почки оказывают значительное влияние на кислотно-основное равновесие, но оно сказывается по истечении значительно большего времени, чем влияние буферных систем крови и легких. Влияние буферных систем крови обнаруживается в течение 30 с. Легким требуется примерно 1–3 мин, чтобы сгладить наметившийся сдвиг концентрации водородных ионов в крови, почкам необходимо около 10–20 ч для восстановления нарушенного кислотно-основного равновесия.

Основным механизмом поддержания концентрации водородных ионов в организме, реализуемым в клетках почечных канальцев, являются процессы реабсорбции натрия и секреции ионов водорода. Этот механизм осуществляется с помощью нескольких химических процессов. Первый из них – реабсорбция натрия при превращении двузамещенных фосфатов в одноза-мещенные. Почечный фильтрат, формирующийся в клубочках, содержит достаточное количество солей, в том числе и фосфатов. Однако концентрация двузамещенных фосфатов постепенно убывает по мере продвижения первичной мочи по почечным канальцам. Так, в крови отношение однозаме-щенного фосфата к двузамещенному составляет 1:4, в клубочковом фильтрате – 9:1, в моче, которая проходит через дистальный сегмент нефрона,– 50:1. Это объясняется избирательным всасыванием канальцевыми клетками ионов натрия. Вместо них из канальцевых клеток в просвет почечного канальца выделяются ионы водорода. Таким образом, двузамещенный фосфат Na2HPO4превращается в однозамещенный NaH2PO4и в таком виде выделяется с мочой. В клетках канальцев из угольной кислоты образуется бикарбонат, увеличивая тем самым щелочной резерв крови.

Второй химический процесс, который обеспечивает задержку натрия в организме и выведение излишка водородных ионов,– это превращение в просвете канальцев бикарбонатов в угольную кислоту. В клетках канальцев при взаимодействии воды с углекислым газом под влиянием карбоан-гидразы образуется угольная кислота. Водородные ионы угольной кислоты выделяются в просвет канальца и соединяются там с анионами бикарбоната; эквивалентный этим анионам натрий поступает в клетки почечных канальцев. Образовавшаяся в просвете канальца Н2СО3 легко распадается на СО2 и Н2О и в таком виде покидает организм.

Третьим процессом, который также способствует сохранению натрия в организме, является образование в почках аммиака, который используется вместо других катионов для нейтрализации и выведения кислых эквивалентов с мочой. Основным источником этого служат процессы дезаминиро-вания глутамина, а также окислительного дезаминирования аминокислот, главным образом глутаминовой кислоты.

Распад глутамина происходит при участии фермента глутаминазы, при этом образуются глутаминовая кислота и свободный аммиак (см. главу 12). Глутаминаза обнаружена в различных органах и тканях человека, однако наибольшая ее активность отмечена в тканях почек. В общем итоге соотношение концентрации водородных ионов в моче и крови может составить 800:1 – настолько велика способность почек выводить из организма ионы водорода. Процесс усиливается в тех случаях, когда возникает тенденция к накоплению ионов водорода в организме.

Большинству из нас знакома лишь одна важная функция почек — выделительная, которая позволяет организму избавляться от ненужных соединений, поступивших с пищей, или продуктов обмена. Второй не менее важной функцией является регуляция объема и состава жидких сред организма. Баланс воды и практически всех электролитов, включая поступление (в результате пищеварительных или обменных процессов) и выведение (путем выделения или метаболической переработки), в основном поддерживается почками. Для осуществления клетками разнообразной деятельности необходимо постоянство окружающей их среды. Оно поддерживается с помощью регуляторной функции почек.

• выделение продуктов обмена и чужеродных веществ;

• регуляция водного и электролитного баланса;

• регуляция осмолярности жидких сред и концентрации электролитов;

• регуляция артериального давления;

• регуляция кислотно-щелочного равновесия;

• секреция, переработка и выделение гормонов;

а) Выделение продуктов обмена, чужеродных веществ, лекарственных препаратов и продуктов переработки гормонов. Почки играют ведущую роль в выведении продуктов обмена, в которых организм более не нуждается. Такими продуктами являются следующие метаболиты: мочевина (обмен аминокислот), креатинин (источник — креатин мышечной ткани), мочевая кислота (источник — нуклеиновые кислоты), конечные продукты расщепления гемоглобина (например, билирубин) и различные продукты метаболизма гормонов. Эти вещества необходимо вывести из организма сразу после их образования. Почки также выводят большинство токсинов и других чужеродных веществ, которые либо образуются в организме, либо попадают в него через пищеварительный тракт (например, пестициды, лекарственные препараты, пищевые добавки).

физиология почек

Влияние десятикратного (с 30 до 300 мэкв/л) увеличения поступления натрия в организм на выделение натрия с мочой и объем внеклеточной жидкости. Закрашенные области под кривой представляют суммарную задержку или потерю натрия, определяемую разницей между поступившим и выведенным натрием

б) Регуляция водного и электролитного баланса. Для поддержания гомеостаза выделение воды и электролитов должно в точности соответствовать их поступлению. Если поступление превышает выделение, количество данного вещества в организме будет возрастать. Если же вещества поступает меньше, чем выводится, то его количество уменьшится.

Поступление воды и многих электролитов определяется в основном индивидуальными особенностями питьевого и пищевого поведения субъекта. Почки приводят в соответствие скорость выведения различных веществ скорости их поступления в организм. На рисунке показана реакция почек на резкое десятикратное возрастание поступления натрия: от низкого уровня в 30 мэкв/сут до высшего значения в 300 мэкв/сут. В течение 2-3 сут после повышения потребления натрия выделение его почками также возрастает до 300 мэкв/сут. Таким образом, между поступлением и выведением натрия вновь установится равновесие. Однако во время 2-3-дневной адаптации к высокому потреблению натрия наблюдается его незначительное накопление, которое приводит к небольшому увеличению объема внеклеточной жидкости, активирует гормональные реакции и другие компенсаторные ответы, оповещая почки о необходимости вывести натрий.

Способность почек изменять выделение натрия велика. В эксперименте показано, что у многих лиц его поступление может быть увеличено до 1500 мэкв/сут (в 10 раз выше нормы) или уменьшено до 10 мэкв/сут (менее 1/10 от нормы). При этом объем внеклеточной жидкости или концентрация ионов Na+ в плазме изменяется незначительно. Это также справедливо для воды и большинства таких электролитов, как хлориды, калий, кальций, протоны, магний, фосфат-ион. В следующих главах мы рассмотрим особые механизмы, которые позволяют почкам проявлять поистине удивительные способности поддерживать гомеостаз.

в) Регуляция артериального давления. Почкам принадлежит ведущая роль в долговременной регуляции артериального давления, осуществляемая с помощью изменения выделения натрия и воды. Почки также вносят вклад в систему быстрой регуляции артериального давления путем секреции факторов или веществ, влияющих на сосуды, например ренина, приводящего к образованию ангиотензина II.

г) Регуляция кислотно-щелочного равновесия. Путем выделения кислых продуктов и регуляции буферной емкости жидких сред почки совместно с дыхательной системой принимают участие в регуляции кислотно-щелочного равновесия. Почки являются единственными органами, выделяющими определенные виды кислот, например серную и фосфорную, образовавшихся в результате обмена белков.

д) Регуляция образования эритроцитов. Почки вырабатывают эритропоэтин, который стимулирует образование эритроцитов. Одним из главных стимулов выработки эритропоэтина служит гипоксия. Практически весь выделяемый в кровоток эритропоэтин приходится на долю почек, поэтому у лиц с тяжелыми урологическими заболеваниями или с удаленными почками и проходящими процедуру гемодиализа в результате недостатка эритропоэтина развивается тяжелая анемия.

е) Участие в образовании витамина D3. Почками синтезируется активная форма витамина D: 1,25-дигидроксивитамин D3 (кальцитриол). Он образуется вследствие гидроксилирования молекулы данного витамина в первом положении. Кальцитриол необходим для процесса депонирования кальция в костях и его реабсорбции в пищеварительном тракте. Кальцитриол играет важную роль в регуляции содержания кальция и фосфатов (все это подробно расписано в отдельной статье на сайте - просим вас пользоваться формой поиска выше).

ж) Синтез глюкозы. При продолжительном воздержании от пищи почки вырабатывают глюкозу из аминокислот и других веществ. Данный процесс относится к глюконеогенезу. При длительном голодании способность почек к выработке глюкозы соперничает с печенью.

При хронической почечной патологии эти гомеостатические функции нарушаются, при этом быстро возникают тяжелые нарушения объема и состава жидких сред организма. В терминальной стадии почечной недостаточности калий, кислоты, жидкость и другие вещества в большом количестве накапливаются в организме в течение нескольких дней, пока с помощью гемодиализа хотя бы частично не будет восстановлен баланс жидкости и электролитов.

Видео физиология водно-солевого баланса - профессор, д.м.н. П.Е. Умрюхин

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Читайте также: