Рибозимы биологические катализаторы небелковой природы реферат

Обновлено: 02.07.2024

2 Содержание: Определение Определение Определение Открытие Открытие Действие Действие Известные рибозимы Известные рибозимы Использование против вирусов растений Использование против вирусов растений

3 Рибозим – молекула РНК, обладающая каталитическим действием.

4 Влияние света на скорость реакции

5 Исследование скорости реакции Cn1n2n3 10 % % в растворах с разной концентрацией

8 рибозимы а – "головка молотка", б – шпилька, в – рибозим вируса гепатита, г – рибозим Neurospora VS. Стрелки обозначают точки расщепления РНК; нуклеозид N может быть A, U, G или C, H – A, U или C, Y – любой пиримидин; приведены общепринятые обозначения элементов вторичных структур рибозимов

9 Подавления вирусной инфекции с помощью рибозимов основано на их способности связываться с определенными участками вирусной мРНК и разрезать ее на куски. В результате исчезновения целостной полноразмерной мРНК синтез соответствующего ей белка происходить не может. Это предотвращает размножение вируса. Подавления ВИЧ инфекции с помощью рибозимов

10 Различают: Молоточковый рибозим Рибозим типа hammerhead

11 РибозимРибозим: молекула РНК, обладающая каталитическим действием; молекула РНК, обладающая каталитическим действием; молекулаРНКкаталитическим молекулаРНКкаталитическим естественного происхождения катализируют расщепление самого себя или других молекул РНК естественного происхождения катализируют расщепление самого себя или других молекул РНК (образование пептидной связи в белках происходит при помощи рРНК рибосомы); (образование пептидной связи в белках происходит при помощи рРНК рибосомы);пептидной связибелкахрРНК рибосомыпептидной связибелкахрРНК рибосомы удалось создать искусственные рибозимы типа РНК-полимеразы, способные при определенных условиях катализировать свою собственную сборку; удалось создать искусственные рибозимы типа РНК-полимеразы, способные при определенных условиях катализировать свою собственную сборку;РНК-полимеразыкатализировать свою собственную сборкуРНК-полимеразыкатализировать свою собственную сборку успевают собрать в цепочку не более 14 нуклеотидов за 24 часа, по истечении которых они разлагаются за счет гидролиза фосфодиэфирных связей. успевают собрать в цепочку не более 14 нуклеотидов за 24 часа, по истечении которых они разлагаются за счет гидролиза фосфодиэфирных связей.нуклеотидовгидролизафосфодиэфирных связейнуклеотидовгидролизафосфодиэфирных связей

До начала 80-х годов ХХ века основополагающей аксиомой биохимии было утверждение, что все метаболитические реакции происходят с надлежащими для обеспечения жизни скоростями только благодаря высокоэффективным специфическим катализаторам белковой природы - ферментам или энзимам. Однако в 1981-1982 г. группой американских биохимиков во главе с Т.Чехом было обнаружено, что в природе имеются виды РНК, которые, подобно белкам, обладают высокоспецифической каталитической активностью. Их субстратсвязывающий домен присоединяется к комплементарному участку РНК-мишени с помощью водородных и, возможно, других связей, а каталитический расщепляет ее в специфическом сайте. Такие РНК-катализаторы были названы рибозимами. Открытие рибозимов имело огромное теоретическое и практическое значение для биохимии, молекулярной биологии и биотехнологии.

Во-первых, был положен конец представлению об исключительной роли белков в катализе биохимических реакций. В настоящее время установлено, что рибозимы играют важнейшую роль в процессах синтеза и превращения РНК, например в процессах сплайсинга у эукариот и способны осуществлять практически весь спектр ферментативных реакций (рестрикция, сшивка, трансформации и др.). В настоящее время рибосому тоже принято рассматривать как рибозим. Действительно, все имеющиеся экспериментальные данные свидетельствуют о том, что синтез полипептидной цепи белка в рибосоме катализируется рибосомной РНК, а не рибосомными белками. Идентифицирован каталитический участок большой рибосомной РНК, ответственный за катализ реакции транспептидации, посредством которой осуществляется наращивание полипептидной цепи белка в процессе трансляции.

По ряду соображений именно РНК, а не ДНК, могла представлять собой первичный генетический материал.

Во-первых, и в химическом синтезе, и в биохимических реакциях рибонуклеотиды предшествуют дезоксирибонуклеотидам; дезоксирибонуклеотиды - продукты модификации рибонуклеотидов.

Во-вторых, в самых древних, универсальных процессах жизненного метаболизма широко представлены именно рибонуклеотиды, а не дезоксирибонуклеотиды, включая основные энергетические носители типа рибонуклеозид-полифосфатов (АТФ и т.п.).

В-третьих, репликация РНК может происходить без какого бы то ни было участия ДНК, а механизм редупликации ДНК даже в современном живом мире требует обязательного участия РНК-затравки в инициации синтеза цепи ДНК.

В-четвертых, обладая всеми теми же матричными и генетическими функциями, что и ДНК, РНК способна также к выполнению ряда функций, присущих белкам, включая катализ химических реакций. Таким образом, имеются все основания рассматривать ДНК как более позднее эволюционное приобретение - как модификацию РНК, специализированную для выполнения функции воспроизведения и хранения уникальных копий генов в составе клеточного генома без непосредственного участия в биосинтезе белков.

Продуцируя свои копии, РНК размножались. Неизбежные ошибки в копировании (мутации) и рекомбинации в самореплицирующихся популяциях РНК создавали все большее разнообразие этого мира. Таким образом, предполагаемый древний мир РНК - это самодостаточный биологический мир, в котором молекулы РНК функционировали и как генетический материал, и как энзимоподобные катализаторы. В настоящее время в природе известно только восемь рибозимов, обладающих достаточно низкой каталитической активностью по сравнению с белковыми катализаторами. Возможно раньше, рибозимов было гораздо больше, и они обеспечивали все многообразие необходимых для биосинтеза реакций, а затем они исчезли в процессе эволюционного отбора наиболее эффективных способов хранения и обработки наследственной информации. Что касается низкой эффективности катализа рибозимами, то у эволюции, было, достаточно времени и ее начальные стадии могли проходить очень медленно. В настоящее время в лабораториях разных стран проводятся работы по искусственному синтезу различных рибозимов. Наибольших успехов достигла группа во главе с Д.Бартелом. Используя разработанную ими селекс-технологию (метод эволюции искусственного мира РНК в пробирке) они синтезировали 65 новых рибозимов и сумели повысить их активность в десятки и сотни раз.

Природных ДНК-ферментов (дезоксирибозимов) пока не обнаружено, но уже синтезированы олигодезоксинуклеотиды, обладающие каталитической активностью. Преимущество дезоксирибозимов состоит в том, что для их получения не нужно использовать экспрессирующий вектор: ДНК-ферменты можно просто упаковать в липосомы и доставить в клетку-мишень. Однако создание эффективных ДНК-ферментов находится пока на начальном этапе развития.

Применение ферментов в технологических процессах:

На коммерческий уровень поставлено ферментативное разделение рацемических смесей аминокислот и эфиров терпенов. Такие смеси образуются при химическом синтезе, и разделение их по оптическим свойствам составляющих имеет важное практическое значение. Известно, что для этого можно использовать традиционные физико-химические и химические методы (хроматография; механическое разделение, избирательное взаимодействие энантиомеров с другими оптически активными веществами), но гораздо более эффективными и удобными оказываются процессы, основанные на стереоспецифичности ферментов.

Весьма перспективным представляется использование ферментов в качестве датчиков вредных и ядовитых веществ. Так, в качестве индикатора на фосфорорганические отравляющие вещества нервно-паралитического действия применяется холинэстераза. Ее так же возможно использовать и для определения многих пестицидов. Степень ингибирования этого фермента в присутствии ОВ или пестицидов оценивают электрохимическими или колориметрическими методами.

Аналогично карбонгидраза весьма чувствительна к хлорпроизводным алифатических, а гексокиназа – ароматических углеводородов.

Для деградации и модификации антропогенных органических соединений, поступающих в окружающую среду, используют ферменты разных классов и в том числе лакказу, лигниназу, тирозиназу, монооксигеназу, диоксигеназу и др. Перспективна для очистки сточных вод новая технология, основанная на использовании реакции пластеинообразования, открытой А. Я. Данилевским в 1886 г. Сущность работ Данилевского состоит в экспериментальном доказательстве обращения протеолиза и возможности синтеза белковоподобных веществ (пластеинов) под действием ряда протеолитических ферментов. Сточные воды содержат аминокислоты и пептиды, концентрация которых возрастает в результате гидролиза белковых компонентов отходов под воздействием пептидогидролаз микроорганизмов. Данная технология, активно внедряющаяся во Франции, нацелена на производство в промышленных масштабах кормовых белков из аминокислот и пептидов сточных вод.

Развитие клеточной и генной инженериибыло бы невозможно, если бы в распоряжении исследователей не было целого набора специфических ферментов (рестриктаз, лигаз, синтетаз, ферментов избирательно разрушающих клеточную оболочку и др.). Так, в настоящее время в продаже имеется более 300 различных рестриктаз.

Вы можете изучить и скачать доклад-презентацию на тему Рибозимы. Строение. Презентация на заданную тему содержит 8 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500

Рибозимы В 1981 г. группой американских биохимиков во главе с Томасом Чехом было обнаружено, что в природе имеются виды РНК, которые, подобно белкам, обладают высокоспецифической каталитической активностью. Их субстратсвязывающий домен присоединяется к комплементарному участку РНК-мишени с помощью водородных и других связей, а каталитический участок расщепляет ее в специфическом сайте. Такие РНК-катализаторы были названы рибозимами.

Строение Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил. Аденин и гуанин относятся к пуриновым основаниям, цитозин и урацил к пиримидиновым. В отличие от молекулы ДНК, в качестве углеводного компонента рибонуклеиновой кислоты выступает не дезоксирибоза, а рибоза.

Образующие пространственную структуру типа "головки молотка" (hammerhead - HH) ( рис. а ). Такие РНК были найдены у сателлитных РНК вирусов растений, вироидов, а также среди Другими примерами рибозимов являются РНК, образующие структуры типа шпилек , а также РНК вируса гепатита дельта (ВГД) и сателлитная РНК Варкуда (Varcud satellite - VS) нейроспоры ( рис. б,в,г ).

Естественные рибозимы В природе обнаружены следующие рибозимы: Интроны групп I и II: Свинцовый рибозим (leadzyme) — обнаружено несколько естественных образцов, хотя впервые был создан в лаборатории; Рибозим, содержащий шпильку; Рибозим типа hammerhead; Рибозим вируса дельта-гепатита; Рибозим Tetrahymena; Рибозим VS; Рибозим глюкозамин-синтазы (рибозим, активируемый глюкозамин-6-фосфатом).

Синтетические рибозимы Тан и Брейкер выделили саморасщепляющиеся РНК путем отбора фрагментов из РНК, сформированных случайным образом. Среди синтетических рибозимов есть как обладающие уникальной структурой, не встречающейся или не обнаруженной в живой природе, как и другие, весьма схожие с естественным рибозимом-молотком.

Созданы рибозимы, синтезирующие зеркальные копии самих себя Так на заре жизни могла происходить взаимная репликация левых (L) и правых (D) рибозимов. Левый рибозим (L-Ribozyme) сшивает (лигирует) правые олигонуклеотиды (D-oligonucleotide), присоединившиеся к комплементарной правой матрице (D-Template). В результате образуется двойная спираль из двух комплементарных нитей правой РНК (Duplex D-product). Затем она расплетается на две нити (Strand separation), одна из которых (D-Ribozyme) катализирует соединение левых олигонуклеотидов (L-Oligonucleotide) на левой матрице (L-Template

Содержание

Открытие

До открытия рибозимов ферменты — белки, обладающие каталитическими свойствами [2] , — считались единственными органическими катализаторами. В 1967 году Карл Вёзе, Френсис Крик и Лесли Оргель впервые выдвинули предположение, что РНК может быть катализатором. Это предположение основывалось на том, что РНК может образовывать сложную вторичную структуру [3] . Сейчас известно, что рибозимы и многие другие молекулы РНК имеют сложную третичную структуру [4] .

Каталитическая активность РНК впервые была обнаружена в 1980-е годы у пре-рРНК Томасом Чеком, изучавшим сплайсинг РНК у инфузории Tetrahymena thermophila, и Сидни Альтманом, работавшим с бактериальной рибонуклеазой P.

Рибозимом оказался участок молекулы пре-рРНК Tetrahymena, кодируемый интроном внехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК. Каталитическая активность также была обнаружена в РНК-субъединице комплекса рибонуклеазы P, участвующей в обработке пре-тРНК (впоследствии Альтман доказал, что эта активность может обеспечиваться рибозимом без участия белков).

Термин рибозим был введён Келли Крюгер и др. в статье, опубликованной в журнале Cell в 1982 году.

Действие

Несмотря на то, что большинство рибозимов достаточно редко встречаются в клетках, иногда они очень важны для их существования. Например, активная часть рибосомы — молекулярной машины, осуществляющей трансляцию белков из РНК — является рибозимом.

В качестве кофакторов некоторые рибозимы часто содержат двухвалентные ионы металлов, например, Mg 2+ .

То обстоятельство, что РНК может содержать наследственную информацию, позволило Уолтеру Гилберту выдвинуть предположение, что в древности РНК использовалась как в качестве генетического материала, так и в качестве катализаторов и структурных компонентов клетки, а впоследствии эти роли были перераспределены между ДНК и белками. Эта гипотеза сейчас известна как Гипотеза мира РНК.

Если РНК были первыми молекулярными машинами, использовавшимися в ранних живых клетках, то рибозимы, существующие сегодня (например, аппарат рибосомы), могут считаться живыми ископаемыми — образцами живых существ, состоящих из нуклеиновых кислот.

Недавние исследования свертывания прионов показывают, что РНК может катализировать свёртывание белка в патологические конфигурации подобно ферментам-шаперонам [6] .

Известные рибозимы

Естественные рибозимы

В природе обнаружены следующие рибозимы:

    ; (leadzyme) — обнаружено несколько естественных образцов, хотя впервые был создан в лаборатории; ; ;
  • Рибозим вируса дельта-гепатита;
  • Рибозим Tetrahymena;
  • Рибозим VS;
  • Рибозим глюкозамин-синтазы (рибозим, активируемый глюкозамин-6-фосфатом).

Синтетические рибозимы

После обнаружения естественных рибозимов начались и исследования новых синтетических рибозимов, созданных в пробирке. Например, получены саморасщепляющиеся РНК, обладающие высокой каталитической активностью.

Тан и Брейкер [7] выделили саморасщепляющиеся РНК путём отбора фрагментов из РНК, сформированных случайным образом. Среди синтетических рибозимов есть как обладающие уникальной структурой, не встречающейся или не обнаруженной в живой природе, как и другие, весьма схожие с природным рибозимом типа hammerhead.

Одна из методик обнаружения синтетических рибозимов — эволюционный метод. Этот подход полагается на двойственную природу РНК, которая является как катализатором, так и информационной цепочкой. За счёт такой двойственности довольно просто создать большие разнообразия РНК-катализаторов при помощи ферментов типа полимераз. Полученные рибозимы подвергаются мутациям путём обратной транскрипции при помощи обратных транскриптаз с образованием фрагментов кДНК в процессе мутагенной полимеразной цепной реакции.

Читайте также: