Регулирование тепловой нагрузки реферат

Обновлено: 04.07.2024

Эффективность традиционных технологий выработки теплоты на ТЭЦ в последние годы существенно снизилась. В отечественных системах теплоснабжения почти повсеместно нарушаются основные принципы качественного регулирования, не работает прежняя структура отпуска теплоты. Это обусловлено целым рядом причин, о которых неоднократно говорилось в работах 2. На фоне снижения эффективности централизованного теплоснабжения существенно повысилась привлекательность децентрализованных систем теплоснабжения.

Сложилась ситуация, когда термодинамически более эффективные централизованные системы из-за нерациональной технической и сбытовой политики руководства энергетических компаний не могут конкурировать с децентрализованными системами. Нередки случаи, когда потребителям для подключения к централизованной системе теплоснабжения руководство энергетических компаний выдает неосуществимые технические условия. Часто потребители добровольно отключаются от централизованных систем теплоснабжения. В большинстве случаев децентрализованные системы применяются для ухода от централизованного теплоснабжения, а не в результате технико-экономического сравнения различных систем.

В настоящее время необходимо полностью пересмотреть концепцию отечественного теплоснабжения. Изменившаяся структура отпуска теплоты подразумевает применение новых более экономичных технологий в системах теплоснабжения. Одним из перспективных направлений развития отечественного теплоснабжения является совершенствование технологий регулирования тепловой нагрузки путем перехода к низкотемпературному теплоснабжению, количественному и качественно-количественному регулированию.

Методы центрального регулирования были разработаны с учетом технических и технологических возможностей первой половины ХХ века, которые претерпели значительные изменения.

При корректировке принципов регулирования тепловой нагрузки возможно частичное использование зарубежного опыта по применению других методов регулирования, в частности, количественного регулирования.

Перевод систем теплоснабжения на количественное и качественно-количественное регулирование тепловой нагрузки является, как показывает опыт зарубежных стран, эффективным энергосберегающим мероприятием [1]. Проведем сравнительный анализ способов регулирования тепловой нагрузки.

Качественное регулирование.

Преимущество: стабильный гидравлический режим тепловых сетей.

■ низкая надежность источников пиковой тепловой мощности;

■ необходимость применения дорогостоящих методов обработки подпиточной воды теплосети при высоких температурах теплоносителя;

■ повышенный температурный график для компенсации отбора воды на ГВС и связанное с этим снижение выработки электроэнергии на тепловом потреблении;

■ большое транспортное запаздывание (тепловая инерционность) регулирования тепловой нагрузки системы теплоснабжения;

■ высокая интенсивность коррозии трубопроводов из-за работы системы теплоснабжения большую часть отопительного периода с температурами теплоносителя 60-85 ОС;

■ колебания температуры внутреннего воздуха, обусловленные влиянием нагрузки ГВС на работу систем отопления и различным соотношением нагрузок ГВС и отопления у абонентов;

■ снижение качества теплоснабжения при регулировании температуры теплоносителя по средней за несколько часов температуре наружного воздуха, что приводит к колебаниям температуры внутреннего воздуха;

■ при переменной температуре сетевой воды существенно осложняется эксплуатация компенсаторов.

Количественное и качественно-количественное регулирование.

■ увеличение выработки электроэнергии на тепловом потреблении за счет понижения температуры обратной сетевой воды;

■ возможность применения недорогих методов обработки подпиточной воды теплосети при t,i110°C;

■ работа системы теплоснабжения большую часть отопительного периода с пониженными расходами сетевой воды и значительной экономией электроэнергии на транспорт теплоносителя;

■ меньшая инерционность регулирования тепловой нагрузки, т.к. система теплоснабжения более быстро реагирует на изменение давления, чем на изменение температуры сетевой воды;

■ постоянная температура теплоносителя в подающей магистрали теплосети, способствующая снижению коррозионных повреждений трубопроводов теплосети;

■ наилучшие тепловые и гидравлические показатели по режиму систем отопления за счет уменьшения влияния гравитационного напора и снижения перегрева отопительных приборов;

■ возможность применения при τ^110 ОС в местных системах и квартальных сетях долговечных трубопроводов из неметаллических материалов;

■ поддержание температуры сетевой воды постоянной, которое благоприятно сказывается на работе компенсаторов;

■ отсутствие необходимости в смесительных устройствах абонентских вводов.

■ переменный гидравлический режим работы тепловых сетей;

■ большие, по сравнению с качественным регулированием, капитальные затраты в теплосети.

В работах [1,7] показано, что в будущем в отечественных системах теплоснабжения все большее распространение получат способы количественного и качественно-количественного регулирования тепловой нагрузки. Однако количественное и качественно-количественное регулирование, которое обладает целым рядом преимуществ перед качественным регулированием, как было показано выше, не может быть внедрено в существующих системах теплоснабжения без их определенной модернизации и применения новых технологических решений. В настоящее время отсутствуют схемы ТЭЦ, на которых возможно реализовать новые способы регулирования.

За счет понижения максимальной температуры нагрева теплоносителя до 100- 110 ОС и использования количественного или качественно-количественного регулирования новые технологии позволяют повысить надежность пиковых водогрейных котлов ТЭЦ и шире использовать преимущества теплофикации. При разделении сетевой воды на параллельные потоки снижается гидравлическое сопротивление в оборудовании ТЭЦ, более полно используется тепловая мощность сетевых подогревателей турбин, а также водогрейных котлов за счет увеличения температурного перепада на их входе и выходе до 40-50 ОС, а также увеличивается электрическая мощность ТЭЦ и возрастает абсолютная величина комбинированной выработки электрической энергии.


Существующие методики расчета способов количественного и качественно-количественного регулирования тепловой нагрузки разработаны в 50-60 гг. ХХ века и не учитывают многих факторов, например, нагрузки на ГВС.

В НИЛ ТЭСУ разработаны методики расчета количественного и качественно-количественного регулирования тепловой нагрузки [1, 7]. В основу методик расчета положено уравнение гидравлики, связывающее потери напора в теплосети с расходами воды на отопление и ГВС. Существенной особенностью предложенных методик является более полный учет влияния нагрузки ГВС на работу систем отопления.

В результате расчетного исследования построены зависимости относительного располагаемого напора на коллекторах станции и относительного эквивалента расхода воды на отопление от температуры наружного воздуха при количественном регулировании (рис. 1, 2).

Построенные зависимости можно использовать в качестве графиков регулирования при осуществлении количественного и качественно-количественного регулирования нагрузки в открытых системах теплоснабжения.

При количественном и качественно-количественном регулировании организацию переменного расхода сетевой воды в теплосетях необходимо сопровождать полным оснащением местных систем теплопотребления приборами автоматического регулирования параметров теплоносителя и гидравлической защиты от возникновения аварийных режимов. В НИЛ ТЭСУ разработан ряд технических решений по стабилизации гидравлического режима местных систем отопления при переменном расходе воды в теплосети (рис. 3) [1].


Особенностью одного из предложенных решений является то, что регулирование тепловой производительности местной системы теплопотребления производят изменением расхода обратной сетевой воды с помощью регулятора расхода, установленного после системы отопления. Установка регулятора расхода после системы отопления позволяет свести к минимуму влияние нагрузки ГВС на работу системы отопления без значительного увеличения расхода сетевой воды в тепловой сети.

Полное оснащение всех потребителей тепловой энергии приборами автоматического регулирования и гидравлической защиты способствует перенесению основной доли регулирования на местные системы. Роль центрального регулирования при этом сводится к корректировке параметров теплоносителя на коллекторах теплоисточника в зависимости от параметров теплоносителя на абонентских вводах.

В НИЛ ТЭСУ УлГТУ разработаны технологии комбинированного теплоснабжения, особенностью которых является покрытие базовой части тепловой нагрузки системы теплоснабжения за счет высокоэкономичных отборов пара теплофикационных турбин ТЭЦ и обеспечение пиковой нагрузки с помощью автономных пиковых источников теплоты, установленных непосредственно у абонентов. Один из вариантов таких систем теплоснабжения [8] изображен на рис. 4.

В такой системе теплоснабжения ТЭЦ работает с максимальной эффективностью при коэффициенте теплофикации равном 1.

В качестве автономных пиковых источников теплоты могут быть использованы газовые и электрические бытовые отопительные котлы, электрообогреватели, тепловые насосы. В НИЛ ТЭСУ УлГТУ разработан и запатентован ряд технологий комбинированного теплоснабжения от централизованных и местных источников. Преимуществом этих технологий является возможность каждого абонента самостоятельно выбирать момент включения пикового теплоисточника и величину нагрева воды в нем, что повышает качество теплоснабжения и создает более комфортные условия индивидуально для каждого потребителя. Кроме того, при аварийных ситуациях на ТЭЦ и перебоях с централизованным теплоснабжением в работе остаются автономные источники теплоты абонентов, которые будут работать в качестве основных, что позволяет защитить систему теплоснабжения от замерзания и существенно повысить ее надежность.

Технико-экономическое исследование основных технических параметров систем теплоснабжения позволило доказать целесообразность перевода систем теплоснабжения на новые технологии регулирования тепловой нагрузки. Расчеты показывают, что приведенные затраты в системе теплоснабжения при реализации количественного регулирования тепловой нагрузки на 40-50% меньше затрат при качественном регулировании тепловой нагрузки.

1. В настоящее время необходимо пересмотреть положения концепции централизованного теплоснабжения, касающиеся регулирования тепловой нагрузки и структуры покрытия тепловых нагрузок потребителей. Одним из перспективных направлений развития отечественных систем теплоснабжения является низкотемпературное теплоснабжение при количественном и качественно-количественном регулировании тепловой нагрузки.

2. Разработанные в НИЛ ТЭСУ технологии позволяют добиться повышения экономичности и надежности работы систем теплоснабжения за счет повышения эффективности работы пиковых источников тепловой мощности, экономии топливно-энергетических ресурсов и увеличения выработки электроэнергии на тепловом потреблении, снижения расхода энергии на транспорт теплоносителя.

3. Разработана методика расчета количественного и качественно-количественного способов регулирования тепловой нагрузки. Построены зависимости относительного располагаемого напора на коллекторах станции и относительного эквивалента расхода воды на отопление от

температуры наружного воздуха при количественном регулировании. Эти зависимости при- 1. менимы в качестве графиков регулирования при осуществлении количественного и качественно-количественного регулирования нагрузки в от- 2. крытых системах теплоснабжения.

4. Предложены технологии стабилизации гидравлического режима местных систем отопления при переменном расходе воды в теплосети. Полное оснащение всех потребителей тепловой энергии приборами автоматического регулиро- 3. вания и гидравлической защиты способствует перенесению основной доли регулирования на местные системы. Роль центрального регулиро- л. вания при этом сводится к корректировке параметров теплоносителя на коллекторах теплоисточника в зависимости от параметров теплоно- 5. сителя на абонентских вводах.

5. Предложены технологии комбинированного теплоснабжения потребителей. Преимуществом этих технологий является возможность каж- 6. дого абонента самостоятельно выбирать момент включения пикового теплоисточника и величину нагрева воды в нем, что повышает качество теплоснабжения и создает более комфортные условия индивидуально для каждого потребителя.

6. Произведено технико-экономическое сравнение различных способов регулирования 8. нагрузки систем теплоснабжения. Способы количественного и качественно-количественного регулирования по большинству показателей превосходят распространенный в настоящее время способ качественного регулирования.

Шарапов В. И., Ротов П.В. Технологии регулирования нагрузки систем теплоснабжения. Ульяновск: УлГТУ, 2003. - 160 с.

АндрющенкоА.И., Николаев Ю.Е. Возможности повышения экономичности, надежности и экологичности систем теплофикации городов // Энергосбережение в городском хозяйстве, энергетике, промышленности: Материалы Третьей Российской научно-технической конференции. Ульяновск: УлГТУ. 2001. С. 194-197. Андрющенко А. И. Возможности повышения эффективности систем централизованного теплоснабжения городов // Промышленная энергетика. 2002. № 6. С. 15-18. Шарапов В.И., Орлов М.Е. Пиковые источники теплоты систем централизованного теплоснабжения. - Ульяновск: УлГТУ. 2002. 204 с.

Пат. 2184312(RU), МКИ7F22D 1/00, F24H1/00. Способ работы пиковой водогрейной котельной/В. И. Шарапов, М.Е. Орлов, П.В. Ротов//Бюллетень изобретений. 2002. № 18.

Пат. 2184313(RU), МКИ7F22D 1/00, F24 H 1/00. Способ работы пиковой водогрейной котельной / В. И. Шарапов, М.Е. Орлов, П.В. Ротов// Бюллетень изобретений. 2002. № 18.

Шарапов В.И., Ротов П.В. О регулировании нагрузки открытых систем теплоснабжения// Промышленная энергетика. 2002. № 4. С. 46-50.

Пат. 2235249 (RU). МКИ7 F24 D 3/08. Способ теплоснабжения / В.И.Шарапов, М.Е.Орлов, П.В. Ротов, И.Н.Шепелев // Бюллетень изобретений. 2004. №24.

Необходимость регулирования тепловой нагрузки. Тепловые характеристики теплообменных аппаратов. Качественное регулирование однородной, разнородной и отопительной нагрузок. Просчет расхода воды и температуры. Качественно-количественное регулирование.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 18.04.2010
Размер файла 120,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Регулирование тепловой нагрузки

Тепловая нагрузка в течение отопительного сезона меняется. Поэтому для поддержания требуемого теплового режима тепловую нагрузку необходимо регулировать.

Различают центральное, групповое, местное и индивидуальное регулирование. Центральное регулирование осуществляется на ТЭЦ и котельных. Групповое - на групповых тепловых подстанциях. Местное - на местных тепловых подстанциях. Индивидуальное - непосредственно у абонентов.

Если тепловая нагрузка у всех потребителей примерно одинакова, то можно ограничиться центральным регулированием. В большинстве же случаев тепловая нагрузка неоднородна. В этом случае центральное регулирование ведется по характерной тепловой нагрузке для большинства потребителей. В первую очередь это отопительная нагрузка и совместная нагрузка отопления и ГВС. Во втором случае расход воды в ТС увеличивается незначительно по сравнению с регулированием по отопительной нагрузке или не меняется.

Основное количества тепла в абонентских системах расходуется на нагрев. Поэтому тепловая нагрузка в первую очередь зависит от режима теплопередачи. Теплопередача описывается уравнением теплопередачи

где n - длительность работы системы; F - площадь поверхности теплообмена; k - коэффициент теплопередачи; Dt - средняя разность температур теплообменивающихся сред. В первом приближении

- температура сетевой воды; t - температура нагреваемой воды; индексы 1 и 2 относятся ко входу и выходу теплообменника. Из уравнения теплового баланса , найдем и подставим в (2.2).

Решая совместно (2.1) и уравнение баланса, получим

Т.о., тепловую нагрузку в принципе можно регулировать изменением пяти параметров - k, F, n, , . Изменение и имеют ограничения. Температура сетевой воды не может быть ниже 600С, необходимой для обеспечения температуры воды ГВС и не может быть выше температуры насыщения для данного давления. Расход воды определяется располагаемым перепадом давления на ГТП и МТП. Если один из теплоносителей - пар, то его температуру можно изменять меняя давление (дросселированием).

В водяных системах реально можно менять тепловую нагрузку тремя способами:

- изменением температуры сетевой воды - качественное регулирование;

- изменением расхода сетевой воды - количественное регулирование;

- изменением расхода и температуры воды - качественно-количественное регулирование.

Регулирование путем изменения длительности работы n называется регулированием пропусками. Применяется как местное в дополнение к центральному.

Выбор метода регулирования зависит от гидравлической устойчивости системы. Гидравлическая устойчивость - это способность системы поддерживать заданный гидравлический режим и характеризуется коэффициентом гидравлической устойчивости

Здесь - располагаемый перепад давления у наиболее удаленного потребителя;

- перепад давления, срабатываемый в сети. Если у 0,4 , то применяется качественное регулирование. Если y > 0.4, то применяется качественно-количественное регулирование. Центральное регулирование ориентируется на основной вид нагрузки района. Таковой может быть нагрузка отопления (регулирование по отопительной нагрузке), либо совмещенная нагрузка отопления и ГВС (регулирование по совмещенной нагрузке).

Обозначим через расчетные значения величин при . Текущие значения этих же величин обозначим через . Связь между можно представить в виде .

Рисунок 1 - Закон изменения расхода при различных видах регулирования тепловой нагрузки

Тепловые характеристики теплообменных аппаратов

В проектных расчетах теплообменников применяются уравнение теплопередачи

и уравнение теплового баланса

Если , то можно пользоваться среднеарифметической разностью температур. .

Для целей расчета регулирования тепловой нагрузки уравнение (2.3) неудобно, т.к. заранее величина Dt неизвестна. Поэтому удобнее пользоваться максимальной разностью температур.

где - максимальная разность температур сред. Пользуясь (2.5), можно получить аналитические выражения для D только для прямотока и противотока. Для более сложных схем этого сделать не удается. Поэтому пользуются приближенным выражением.

Dt=D-adtм - bdtб. (9)

Если вычислять Dt по (2.5), то b=0.65 для всех схем, 0.35 , в обратном - 1, то принимают в дальнейшем =1.

По формулам (2.21), (2.22) находим и .

Расход воды в прямом трубопроводе есть . В обратном трубопроводе .

Рисунок 15 - График температур и расходов в открытой системе

Качественно-количественное регулирование

Для получения одинакового закона изменения расхода воды у всех абонентов необходимо при выключенном расходе ГВС установить одинаковые напоры в подающем и обратном трубопроводах на всех абонентских вводах.

Рисунок 16 - Пьезометрический график

Расбаланс напоров на абонентских вводах гасится шайбами или диафрагмами.

На всех абонентских вводах должны быть обеспечены условия: Hпр=idem, Hoбр=idem, Hаб=idem. Степень изменения расхода воды у всех потребителей будет одинакова, если .

Если равенство не соблюдается, то требуется местная подрегулировка у этого потребителя.

Качественно - количественное регулирование нагрузки может выполняться:

- с заданным напором на станции;

- с искусственным изменением расхода воды в сети.

Разновидностью качественно-количественного регулирования является ступенчатое регулирование.

Подобные документы

Расчет отопительной нагрузки, тепловой нагрузки на горячее водоснабжение поселка. Определение расхода и температуры теплоносителя по видам теплопотребления в зависимости от температуры наружного воздуха. Гидравлический расчет двухтрубных тепловых сетей.

курсовая работа [729,5 K], добавлен 26.08.2013

Определение характеристики относительного прироста расхода топлива конденсационной тепловой электростанции. Расчет оптимального распределения нагрузки между агрегатами тепловой электростанции. Определение графика электрической нагрузки потребителей ЭЭС.

курсовая работа [2,3 M], добавлен 08.01.2017

Расчет тепловых нагрузок отопления вентиляции. Сезонная тепловая нагрузка. Расчет круглогодичной нагрузки, температур и расходов сетевой воды. Расчет тепловой схемы котельной. Построение тепловой схемы котельной. Тепловой расчет котла, текущие затраты.

курсовая работа [384,3 K], добавлен 17.02.2010

Факторы распространенности электроэнергии на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива. Виды тепловых электрических станций. Графики электрической и тепловой нагрузки, способы покрытия их пиков.

контрольная работа [62,5 K], добавлен 19.01.2011

Оценка расчетных тепловых нагрузок, построение графиков расхода теплоты. Центральное регулирование отпуска теплоты, тепловой нагрузки на отопление. Разработка генерального плана тепловой сети. Выбор насосного оборудования системы теплоснабжения.

курсовая работа [2,5 M], добавлен 13.10.2012

Построение графика изменения сезонной нагрузки ТЭЦ от температуры наружного воздуха и по продолжительности. Тепловые и материальные балансы элементов схемы. Проверка предварительного расхода пара на турбину. Электрическая мощность турбогенератора.

курсовая работа [1,2 M], добавлен 27.11.2012

Классификация теплообменных аппаратов. Конструктивный тепловой расчет. Предварительный выбор теплообменного аппарата по каталогу, действительные температуры теплоносителей. Шестиходовой кожухотрубчатый теплообменник с неподвижными трубными решетками.

Системы теплоснабжения представляют собой взаимосвязанный комплекс потребителей тепла, отличающихся как характером, так и величиной теплопотребления. Режимы расходов тепла многочисленными абонентами неодинаковы. Тепловая нагрузка отопительных установок изменяется в зависимости от температуры наружного воздуха, оставаясь практически стабильной в течение суток. Расход тепла на горячее водоснабжение и для ряда технологических процессов не зависит от температуры наружного воздуха, но изменяется как по часам суток, так и по дням недели.

В этих условиях необходимо искусственное изменение параметров и расходов теплоносителя в соответствии с фактической потребностью абонентов. Регулирование повышает качество теплоснабжения, сокращает перерасход тепловой энергии и топлива.

В зависимости от места осуществления регулирования различают центральное, групповое, местное и индивидуальное регулирование.

Центральное регулирование выполняется на ТЭЦ или в котельной по преобладающей нагрузке, характерной для большинства абонентов. В городских тепловых сетях такой нагрузкой может быть отопление или совместная нагрузка отопления и горячего водоснабжения.

Групповое регулирование производится в ЦТП для группы однородных потребителей. В ЦТП поддерживается требуемый расход и температура теплоносителя, поступающего в распределительные сети.

Местное регулирование предусматривается на абонентском вводе для дополнительной корректировки параметров теплоносителя с учетом местных факторов.

Индивидуальное регулирование осуществляется непосредственно у теплопотребляющих приборов, например, у нагревательных приборов систем отопления, и дополняет другие виды регулирования.

По способу регулирования тепловой нагрузки:

Качественное регулирование осуществляется изменением температуры теплоносителя в зависимости от тепловой нагрузки при постоянном расходе. Является наиболее распространенным видом регулирования.

Количественное регулирование производится изменением расхода теплоносителя при постоянной его температуре.

Качественно-количественное регулирование выполняется путем совместного изменения температуры и расхода теплоносителя.

Прерывистое регулирование достигается периодическим отключением систем, т.е. пропусками подачи теплоносителя, в связи с чем этот метод регулирования называется регулирование пропусками.

Регулирование однородной нагрузки

Сущность методов регулирования вытекает из уравнения теплового баланса

где Q – кол-во тепла, полученное прибором от теплоносителя и отданное нагреваемой среде, кВт×ч;

G – расход теплоносителя, кг/ч;

c – теплоемкость теплоносителя, кДж/кг×°С;

t1, t2 – температура теплоносителя на входе и выходе из теплообменника, °С;

k – коэффициент теплопередачи, кВт/м 2 ×°С;

F – поверхность нагрева теплообменника, м 2 ;

Dt – температурный напор между греющей и нагреваемой средой, °С.

Из уравнения (1) следует, что регулирование тепловой нагрузки возможно несколькими методами: изменением температуры теплоносителя – качественный метод; изменением расхода теплоносителя – количественный метод; периодическим отключением систем – прерывистое регулирование; изменением поверхности нагрева теплообменника.

Расчет режимов регулирования основан на уравнениях теплового баланса, составленных для любого вида нагрузки при нерасчетных и расчетных условиях

где Gп – расход первичного (греющего) теплоносителя;

Gв – расход вторичной (нагреваемой) среды;

t1,t2 – соответственно, температура нагреваемой среды на входе в теплообменник и на выходе из него. Индексом штрих обозначены все величины, относящиеся к расчетным условиям.

Из отношения равенств (2) и (3) получим общее уравнение регулирования

Рассмотрим центральное качественное регулирование отопительной нагрузки.

При качественном регулировании задача состоит в определении температуры воды в зависимости от тепловой нагрузки. Расход воды остается постоянным в течение всего отопительного сезона.

Уравнение (4) для регулирования отопительной нагрузки может быть представлено в виде

- относительный расход тепла на отопление;

Q0 – расход тепла на отопление при текущей температуре наружного воздуха tн;

t1,t2,0 – температура сетевой воды в подающем и обратном трубопроводах;

k – коэффициент теплопередачи;

Dt0 – температурный напор в нагревательном приборе при тех же условиях;

…. – те же величины при расчетной температуре наружного воздуха для проектирования отопления.

Заменив в уравнении отношение коэффициентов теплопередачи зависимостью k=A(Dt0) n =A(tср –ti) n

A, n – константы, зависящие от типа прибора и схемы его установки (n=0,25).

Температурный напор при смешении воды в узле ввода

Коэффициент смешения u определяют из уравнения теплового баланса смесительного устройства

Пояснительная записка – 22 страниц, 4 рисунка, 4 таблицы, 7 источников.

РАСХОД, ТЕМПЕРАТУРА, РЕГУЛИРОВАНИЕ ОТПУСКА ТЕПЛОТЫ, ТЕПЛОВЫЕ СЕТИ, ОТОПЛЕНИЕ, ВЕНТИЛЯЦИЯ, ГОРЯЧЕЕ ВОДОСНАБЖЕНИЕ

Объёктом разработки является жилой микрорайон.

Цель работы – проектирование и расчёт системы теплоснабжения микрорайона с разработкой чертежей и спецификаций.

В результате проектирования должны быть разработаны планы тепловых сетей и схемы трубопроводов, произведён гидравлический расчёт тепловых сетей, построены температурный, расходный и пьезометрический графики тепловых сетей, составлена спецификация оборудования и материалов.

Содержание

Реферат

1. Определение расчётных тепловых нагрузок, построение графика теплового потребления

2. Расчёт и построение графика регулирования отпуска теплоты

3. Определение расчётных расходов сетевой воды на отопление, вентиляцию и горячее водоснабжение

5. Пьезометрический график

6. Тепловой расчет

7. Подбор сетевых и подпиточных насосов

8. Подбор компенсаторной ниши и лоткового канала

Список использованной литературы

Введение

Теплоснабжение – подача тепловой энергии в виде горячей воды или пара к потребителям. Тепло подаётся по специальным трубопроводам – тепловым сетям. Тепловые сети делятся на магистральные, прокладываемые на главных направлениях населённого пункта, распределительные – внутри квартала, микрорайона и ответвления к зданиям.

Тепло может подаваться потребителям в систему отопления, вентиляции, горячего водоснабжения двумя путями:

Централизованно, когда тепло одного источника подаётся многочисленным потребителям. Источниками могут быть:

· районные котельные (водогрейные, промышленно-отопительные)

Теплоснабжение является одной из основных систем энергетики любой высокоразвитой страны. Теплоснабжение народного хозяйства требует приблизительно 1/3 всех используемых в стране топливно-энергетических ресурсов.

Водяные системы теплоснабжения применяют двух типов:

В закрытых системах вода, циркулирующая в тепловой сети, используется только как теплоноситель. В открытых системах циркулирующая вода частично или полностью разбирается у абонентов горячего водоснабжения.

Задание

Разработать систему теплоснабжения микрорайона с жилыми зданиями по соответствующему варианту:

2. Температура наружного воздуха наиболее холодной пятидневки, расчетная -25 0 С

3. Расчетная температура для вентиляции -14 0 С

4. Средняя скорость ветра в январе 4,9 м/с

5. Продолжительность отопительного периода 205 сут.

6. Число часов за отопительный период со среднесуточной температурой наружного воздуха:

всего часов 4920.

1. Основная часть

1.1. Определение тепловых потоков.

В процессе проектирования тепловых сетей, согласно рекомендациям СНиП 2.04.07-86*, максимальные тепловые потоки на отопление , вентиляцию и горячее водоснабжение жилых, общественных и производственных зданий следует принимать по соответствующим типовым проектам.

При отсутствии типовых проектов отопления, вентиляции и горячего водоснабжения допускается определять тепловые потоки для жилых районов городов и других населённых пунктов по формулам:

а) максимальный тепловой поток, Вт, на отопление жилых и общественных зданий

средний тепловой поток на отопление, Вт, следует определять

б) максимальный тепловой поток, Вт, на вентиляцию общественных зданий

средний тепловой поток, Вт, на вентиляцию при t 0

в) максимальный тепловой поток, Вт, на горячее водоснабжение жилых и общественных зданий

средний тепловой поток, Вт, на горячее водоснабжение жилых и общественных зданий

где q 0 – укрупнённый показатель максимального теплового потока на отопление жилых зданий на 1 м 2 общей площади [2];

k 1 – коэффициент, учитывающий тепловой поток на отопление общественных зданий, при отсутствии данных принять k 1 =0.25 [2];

k 2 – коэффициент, учитывающий тепловой поток на отопление общественных зданий, при отсутствии данных следует принимать равным: для общественных зданий, построенных до 1985 г. k 2 =0.4 , после 1985 г. k 2 =0.6 [2];

A – общая площадь жилых зданий, м 2 ;

qh укрупнённый показатель среднего теплового потока на горячее водоснабжение на одного человека.

норма расхода воды в жилых зданиях, 85….115 л/сут на одного

норма расхода воды в общественных зданиях, 25л/сут на

Считаем все административно-общественные здания равномерно распределёнными по микрорайонам, а расчёты проводим, исходя из величины предусматриваемой площади и числа жителей.

Определим тепловые потоки на отопление и горячее водоснабжение для зданий № 194, 196, 217, 218, 228, 208, 200, 214 (жилые дома.):

1. Жилые дома на 50 квартир - № 194:

2. Жилые дома на 80 квартир - № 208,209,210:

3. Жилой дом на 100 квартир - № 200:

Определим тепловые потоки на отопление, вентиляцию и горячее водоснабжение для зданий № 215, 214:

Кафе на 60 мест - №214:

Кинотеатр на 800 мест - №215:

Находим суммарные тепловые потоки на отопление, вентиляцию и горячее водоснабжение:

82158+96534+185348=584351 Вт.

1.2. Расчёт и построение графика регулирования отпуска теплоты.

Регулирование отпуска теплоты на разнородное теплопотребление может быть по отопительной тепловой нагрузке или по суммарной нагрузке отопления и горячего водоснабжения. Регулирование отпуска теплоты по отопительно-бытовому графику температур производится при центрально-вентиляционной нагрузки в основном диапазоне от точки излома температурного графика , которая делит его на две части от до расчётной температуры для проектирования отопления и при местном регулировании от начала отопительного сезона при +8 0 С до .

Построение графика центрального качественного регулирования отпуска теплоты по отопительной нагрузке основано на определении зависимости температуры сетевой воды в подающей и обратной магистралях от температуры наружного воздуха t .

Регулирование отпуска теплоты на отопление

Центральное качественное регулирование отопительной нагрузки в диапазонах от до ведётся по температуре горячей поды и обратной воды в тепловой сети.

где D t0 – температурный перепад в нагревательном приборе местной системы

- средняя температура нагревательного прибора в местной системе ;

- относительная тепловая нагрузка ;

- температура внутри помещения (принять 18 0 С);

- перепад температур в тепловой сети, 0 С; при

- перепад температур в местной системе; при

Температура воды после элеватора будет

Местное количественное регулирование отопительной нагрузки в диапазоне от +8 0 С до t’ производится путём местных пропусков или изменением количества воды, поступающей в местную систему из тепловой сети путём перекрытия задвижек. В этом диапазоне t1 и t2 являются постоянными и соответствуют температуре горячей и обратной воды в тепловой сети для летнего периода.

Температура обратной воды при количественном регулировании нагрузки в диапазоне +8 0 С до t’ определяется по формуле

где U - коэффициент инжекции при температуре в точке излома

Регулирование отпуска теплоты на вентиляцию

Местное количественное регулирование вентиляционной нагрузки в диапазоне +8 0 С до t’ ведётся изменением количества сетевой воды при постоянном расходе через калорифер. В этом случае температура воды после калорифера для различных значений в указанном диапазоне определяется методом подбора по уравнению

Методом подбора определена температура

Регулирование отпуска теплоты на горячее водоснабжение

Так как по тепловым сетям одновременно подаётся теплота на отопление, приточную вентиляцию и горячее водоснабжение, для удовлетворения тепловой нагрузки горячего водоснабжения необходимо внести коррективы в отопительный график. Температура нагреваемой воды на выходе из водонагревателя горячего водоснабжения должна быть 60…65 0 С. Поэтому минимальная температура сетевой воды в подающей магистрали принимается равной 70 0 С. Для этого отопительный график срезается на уровне 70 0 С.

Местное количественное регулирование нагрузки на горячее водоснабжение в диапазоне t’ до to ведётся авторегулятором путём изменения количества сетевой воды, поступающей в водоподогреватель в зависимости от температуры обратной воды после водоподогревателя. В этом случае температура воды после водоподогревателя для различных значений t в указанном диапазоне определяется методом подбора.

где - средняя разность температур греющей и нагревающей среды

4. Гидравлический расчёт

Расчётный расход сетевой воды для определения диаметров труб в водяных тепловых сетях при качественном регулировании отпуска теплоты следует определять отдельно для отопления, вентиляции и горячего водоснабжения.

Используя данные температурных графиков, можно определить расчётные часовые расходы теплоносителя по формулам.

Расчётный расход сетевой воды на отопление в диапазоне будет

Расчётный часовой расход сетевой воды на вентиляцию в диапазоне будет

Расчётный часовой расход сетевой воды на горячее водоснабжение при закрытых тепловых сетях в диапазоне будет

Суммарные расчётные расходы сетевой воды, т/ч, в закрытых системах теплоснабжения при качественном регулировании отпуска теплоты следует определять по формуле:

Коэффициент k3 , учитывающий долю среднего расхода воды на горячее водоснабжение при регулировании по нагрузке отопления, следует принимать для закрытых систем с тепловым потоком, МВт: 1000 и более –1.0, и менее 1000 - 1.2.

Определим расход сетевой воды на отопление, вентиляцию и горячее водоснабжение для зданий № 141, 142,145,146 (жилые дома):

Определим расход сетевой воды на отопление, вентиляцию и горячее водоснабжение для зданий № 147, 148, 151 (жилые дома):

Определим расход сетевой воды на отопление, вентиляцию и горячее водоснабжение для здания № 165 (жилой дом):

Определим расход сетевой воды на отопление, вентиляцию и горячее водоснабжение для здания № 185:

Определим расход сетевой воды на отопление, вентиляцию и горячее водоснабжение для здания № 105 (школа):

Определим расход сетевой воды на отопление, вентиляцию и горячее водоснабжение для здания № 122 (комбинат бытового обслуживания):

При гидравлическом расчёте определяется падение давления в подающей и обратной трубах.

Линейное падение давления на участке определяется;

где - удельное падение давления на 1 м длины трубы, Па/м;

- длина расчётного участка, м.

Падение давление на местные сопротивления:

- эквивалентная длина теплопровода, м.

Общая потеря давления на участке:

Таблица №2 Гидравлический расчёт тепловых сетей

5. Пьезометрический график тепловых сетей

Пьезометрический график составляется на основании данных гидравлического расчёта. При построении графика пользуются единицей измерения гидравлического потенциала – напором. Напор и давление связаны следующей зависимостью:

где H и D H – напор и потеря напора, м;

P и D P – давление и потеря давления, Па;

r - удельный вес теплоносителя, кг/м 3 .

h, R – удельная потеря напора и удельное падение давления, Па/м.

Величина напора, отсчитанная от уровня прокладки оси трубопровода в данной точке, называется пьезометрическим напором. Разность пьезометрических напоров подающего и обратного трубопроводов тепловой сети даёт величину располагаемого напора в данной точке. Пьезометрический график определяет полный напор и располагаемый напор в отдельных точках тепловой сети на абонентских вводах. На основании пьезометрического графика выбирают подпиточные и сетевые насосы, автоматические устройства.

При построении пьезометрического графика должны быть соблюдены условия:

1. непревышение допускаемых давлений в абонентских системах, присоединенных к сети. В чугунных радиаторах не должно превышать 0,6 МПа, поэтому давление в обратной линии тепловой сети не должно быть более 0,6 МПа и превышать 60м.

2. обеспечении избыточного (выше атмосферного) давления в тепловой сети и абонентских системах для предупреждения подсоса воздуха и связанного с этим нарушения циркуляции воды в системах.

3. обеспечение невскипания воды в тепловой сети и местных системах, где температура воды превосходит 100 ºС .

4. обеспечение требуемого давления во всасывающем патрубке сетевых насосов из условия предупреждения кавитации не менее 50 Па, пьезометрический напор в обратной линии должен быть не ниже 5м.

6. Тепловой расчёт

Назначением теплового расчёта является определение количество тепла, теряемого при его транспортировке, способов уменьшения этих потерь, действительной температуры теплоносителя, вида изоляции и расчёта её толщины.

Задачи теплового расчёта:

1. определение количества теплоты, теряемого при транспортировке;

2. поиск способов уменьшения этих потерь;

3. определение действительной температуры теплоносителя;

4. определение вида и толщины изоляции;

В теплоотдаче участвуют только термические сопротивления слоя и поверхности.

Для цилиндрических объектов диаметром менее 2 метров толщина теплоизоляционного слоя определяется:

где В=dиз /dн – отношение наружного диаметра изоляционного слоя к наружному диаметру;

α – коэффициент теплоотдачи от наружной изоляции, принимаемый по справочнику 9[6], для трубопроводов прокладываемых в каналах принимается равным 8,2 Вт/(м 3 о С);

λиз – теплопроводность теплоизоляционного слоя, определяемая по пп 2,7 3,11[6] для пенополиуритана 0,036 Вт/(м о С);

rm — термическое сопротивление стенки трубопровод.

— наружный диаметр изолируемого объекта, м.

– сопротивление теплопередаче на 1 м длины изоляционного слоя;

– температура окружающей среды;

– коэффициент, равный 1.

– норма плотности теплового потока, в нашем случае равный 42Вт/м;

Теперь рассчитаем термические сопротивления.

1. тепловое сопротивление наружной поверхности Rпиз :

2. тепловое сопротивление изоляции

3. Тепловое сопротивление грунта определяется по формуле:

где - коэффициент теплопроводности грунта, Вт/м 2 0 С

d – диаметр теплопровода цилиндрической формы с учетом всех слоев изоляции, м

Тепловое сопротивление канала:

Должно выполняться условие:

что свидетельствует о правильности выбора изоляции

Фактический тепловой поток:

Определим тепловые потери.

Тепловые потери в сети слагаются из линейных и местных потерь. Линейными теплопотерями являются теплопотери трубопроводов, не имеющих арматуры и фасонных частей. Местными теплопотерями являются фасонных частей, арматуры, опорных конструкций, фланцев и т.д.

Линейные потери определяются по формуле:

А падение температуры теплоносителя:

Следовательно, температура в конце расчетного участка:

7. Подбор сетевых и подпиточных насосов

Для теплоснабжения микрорайона города в котельной устанавливаются одинаковых попеременно работающих центробежных насоса – рабочий и резервный. Циркуляционные насосы имеют обводную линию, которая позволяет регулировать работу насосов ив случае их остановки (при авариях) поддерживать небольшою естественную циркуляцию.

По построенному пьезометрическому графику определяем напоры для сетевого и подпиточного насосов.

Читайте также: