Реферат звуковые устройства компьютера

Обновлено: 02.07.2024

В настоящее время наша жизнь уже абсолютно не мыслима без каждодневного применения технологий, в частности, компьютерных. Компьютерные технологии сочетают в себе сотни различных функций являя собой пример неограниченной работоспособности, направленности и, конечно, практичности.

Содержание работы

Введение 3
1 СУЩНОСТЬ АКУСТИЧЕСКИХ СИСТЕМ ПК…………………………….4
1.1 Система ввода/вывода звука – аудио адаптер……………………………..4
1.2 Воспроизведение звука – акустическая стереосистема…………………. 5
2 ПАРАМЕТРЫ И НАЗНАЧЕНИЯ АКУСТИЧЕСКИХ СИСТЕМ ПК……. ..9
2.1Назначение……………………………………………………………………9
2.2 Классификация……………………………………………………………. 9
2.3.Основные принципы работы………………………………………………12
2.4 Основные характеристики…………………………………………………14
2.5 Основные фирмы производители………………………………………….14
Заключение……………………………………………………………………. 16
Список литературы. 17

Содержимое работы - 1 файл

реферат информ 2 рейтинг.docx

1 СУЩНОСТЬ АКУСТИЧЕСКИХ СИСТЕМ ПК…………………………….4

1.1 Система ввода/вывода звука – аудио адаптер……………………… ……..4

1.2 Воспроизведение звука – акустическая стереосистема…… ……………. 5

2 ПАРАМЕТРЫ И НАЗНАЧЕНИЯ АКУСТИЧЕСКИХ СИСТЕМ ПК……. ..9

2.3.Основные принципы работы………………………………………………12

2.4 Основные характеристики………………… ………………………………14

2.5 Основные фирмы производители…… …………………………………….14

Список литературы. . . . 17

В настоящее время наша жизнь уже абсолютно не мыслима без каждодневного применения технологий, в частности, компьютерных. Компьютерные технологии сочетают в себе сотни различных функций являя собой пример неограниченной работоспособности, направленности и, конечно, практичности.

Современный мультимедиа-ПК в полном “вооружении” напоминает домашний стереофонический Hi-Fi комплекс, объединенный с дисплеем-телевизором. Он укомплектован активными стереофоническими колонками, микрофоном и дисководом для оптических компакт-дисков. Кроме того, внутри компьютера укрыто новое для ПК устройство – аудиоадаптер, позволивший перейти к прослушиванию чистых стереофонических звуков через акустические колонки с встроенными усилителями.

Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.

Современные акустические системы являются готовым удобным решением для создания домашнего кинотеатра. Идеально подходят для небольших помещений, где важно рационально использовать имеющееся пространство. Отличительные достоинства - качественный звук и легкость использования.

1 СУЩНОСТЬ АКУСТИЧЕСКИХ СИСТЕМ ПК.

Акустическая система ПК – это устройство, предназначенное для вывода обрабатываемой на компьютере звуковой информации. Под акустической системой в широком смысле слова будем понимать электромеханический преобразователь электрических звуковых сигналов в акустические.

Мы все уже привыкли к тому, что современный персональный компьютер может издавать весьма разнообразные звуки. Вначале они могли только гудеть и пищать на разные лады, затем появились программы, произносящие вполне отчетливые слова и играющие отдаленное подобие музыки, слушаемой через водосточную трубу; компьютерные игры довольно быстро научились даже при помощи встроенного громкоговорителя издавать что-то вроде выстрелов и взрывов. А теперь повсеместное распространение недорогих звуковых карт позволило воспроизводить с их помощью любые теоретически возможные звуки. Однако, в большинстве случаев, мы с вами слышим только те звуки, которые были заложены при разработке той или иной программы, а между тем многим хочется гораздо большего. Все это вполне возможно – при наличии требуемых аппаратных средств и/или программ, а главное – знаний о способах извлечения нужных звуков из такого вроде бы немузыкального устройства, как компьютер, так как компьютер по первоначальному определению это устройство для хранения, обработки и передачи информации.

С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Персональный компьютер становится мультимедийным комплексом.

Мультимедиа – это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать (выводить) такие типы данных как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук и речь.

Компакт-диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD – для всего этого необходимо, чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта и акустическая система.

1.1 Система ввода/вывода звука – аудио адаптер

Микрофон используется для ввода звука в компьютер. Непрерывные электрические колебания, идущие от микрофона, преобразуются в числовую последовательность. Эту работу выполняет устройство, подключаемое к компьютеру, которое называется аудио адаптером, или звуковой картой. Воспроизведение звука, записанного в компьютерную память, также происходит с помощью аудио адаптера, преобразующего оцифрованный звук в аналоговый электрический сигнал звуковой частоты, поступающий на акустические колонки или стереонаушники.

Аудио адаптер имеет аналогово-цифровой преобразователь (АЦП), периодически определяющий уровень звукового сигнала и превращающий этот отсчет в цифровой код. Он и записывается на внешний носитель уже как цифровой сигнал.

Цифровые выборки реального звукового сигнала хранятся в памяти компьютера (например, в виде WAV–файлов). Считанный с диска цифровой сигнал подается на цифро-аналоговый преобразователь (ЦАП), который преобразует цифровые сигналы в аналоговые. После фильтрации их можно усилить и подать на акустические колонки для воспроизведения. Важными параметрами аудио адаптера являются частота квантования звуковых сигналов и разрядность квантования.

Из сказанного следует, что звуковая карта совмещает в себе функции ЦАП и АЦП (рисунок 1).

Рисунок 1 - Преобразование звука при вводе и выводе

Аудио адаптер – достаточно сложное техническое устройство, построенное на основе использования последних достижений в аналоговой и цифровой аудиотехнике.

1.2 Воспроизведение звука – акустическая стереосистема.

Какой бы современной ни была электронная система записи и воспроизведения звука, сколько бы форматов записи она ни обслуживала, объединенная в одном агрегате, в конце ее, на выходе будет "динамик" - так называли его раньше. И был он сначала один, ну два – для воспроизведения высоких и низких звуковых частот в одной коробке-ящике. С появлением в 1950-х годах стереофонических грампластинок ящиков стало два - отдельно для правого и левого звукового канала.

Известный давний опыт трансляции звуковой передачи был предпринят французом Клементом Адлером еще в 1881 году на Парижской электрической выставке. Восемьдесят пар телефонных проводов были протянуты со сцены Парижской оперы в четыре комнаты отеля, расположенного поблизости. Посетителям выставки таким образом демонстрировалась возможность слушать оперный спектакль на расстоянии. Музыкальные образы воздействовали на слушателя с помощью двух отдельно стоящих микрофонов, расположенных на театральных подмостках.

Спустя 50 лет в исследовательских подразделениях BELL Labs Харви Флетчер (Harvey Fletcher), знаменитый американский ученый-теоретик и практик, основатель и руководитель Акустического общества и президент Физического общества США, в соавторстве с Артуром Келлером (Arthur C. Keller) и в содружестве с именитым дирижером симфонического оркестра Леопольдом Стоковским (Leopold Stokowski) провели первые опыты по моно- и бинауральной звукозаписи. В Англии в то же время аналогичными исследованиями занимался инженер звукозаписывающей компании EMI Алан Блумлейн (Alan D. Blumlein), который 14 декабря 1931 года оформил документы на патентование пространственно-ощущаемой звукозаписи, также названной бинауральной.

В разработках и производстве современных широко применяемых электродинамических громкоговорителей до сих пор повторяются нововведения, известные еще с середины 1920-х годов. Идеи и реализующие их технические решения, положенные в основу акустического устройства, преобразующего электрические колебания в звуковые, были изложены инженерами американской компании GENERAL ELECTRIC Честером Райсом (Chester W. Rice) и Эдвардом Келлогом (Edward W. Kellog) в трудах американского института инженеров-электриков в 1925 году. Занимавшийся электроакустикой параллельно с ними и независимо от них в том же году инженер Эдвард Вент (Edward Wente) из американской компании BELL Laboratories также подал заявку на патентование аналогичного излучателя звуковых колебаний.

Однако Ч. Райс и Э. Келлог привели в статье еще и описание усилителя мощностью 1 Вт для своего громкоговорителя. И уже в 1926 году по их предложению американская фирма RCA (Radio Corporation of America) разработала и сделала громкозвучащий радиоприемник в одном корпусе. Помимо акустической головки он содержал входные контуры настройки, ламповый усилитель и выпрямитель питания электросети. Радиоприемник получил ставшее популярным наименование "радиола", а громкоговоритель динамического типа стали называть просто: "динамик".

Громкоговоритель – прибор для преобразования электрических колебаний в акустические колебания воздушной среды, является последним и одним из наиболее важных звеньев любого акустического тракта, так как его свойства оказывают чрезвычайно большое влияние на качество работы этого тракта в целом.

По способу преобразования колебаний громкоговорители подразделяются на электродинамические катушечные (подавляющее число современных типов громкоговорителей), электромагнитные, электростатические, пьезоэлектрические и некоторые другие; по виду излучения – на громкоговорители непосредственного излучения, диффузорные и рупорные; по воспроизводимому диапазону – на широкополосные, низко-, средне- и высокочастотные; по потребляемой электрической мощности – на мощные и маломощные.

Чувствительность (эффективность излучения) громкоговорителя на высоких частотах повышают, уменьшая индуктивность звуковой катушки, например, с помощью вихревых токов Фуко; уменьшение индуктивности снижает ее электрическое сопротивление и приводит к возрастанию тока на высоких частотах. На низких частотах чувствительность громкоговорителя повышают, применяя специальные акустические оформления.

В подавляющем большинстве современные звуковые колонки представляют собой набор из двух-трех электродинамических громкоговорителей, помещенных внутрь корпуса прямоугольной формы шириной 20-30 см.

Важным параметром, характеризующим звуковые колонки, является диаграмма направленности. При узкой диаграмме непосредственно в сторону слушателя направляется больше звуковых сигналов акустического излучателя, и звуковые образы проявляются более отчетливо.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Содержание

2) История звуковых карт для IBM PC

3) Типы звуковых карт

4) Тип подключения

5) Компоненты звуковой карты

6) Характеристики звуковой карты

7) Внешний вид звуковой карты

8) Список литературы

Введение

Звуковая карта (звуковая плата, аудиокарта; англ. soundcard) — дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных компьютерах чаще представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации Intel AC'97 или Intel HD Audio). [1]

История звуковых карт для IBM PC

Дополнительные сведения: SoundBlaster

Поскольку IBM PC проектировался не как мультимедийная машина, а инструмент для решения научных и деловых задач, звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер, был звук встроенного динамика, сообщавший о неисправностях. (На компьютерах фирмы Apple звук присутствовал изначально.)

В 1986 году в продажу поступило устройство фирмы CovoxInc. Оно присоединялось к принтерному порту IBM PC и позволяло воспроизводить монофонический цифровой звук. Пожалуй, Covox можно считать первой внешней звуковой платой. Covox был очень прост и дешев по устройству (практически простейший резистивный ЦАП) и оставался популярным в течение 90-х годов. Появилось большое количество модификаций, в том числе — для воспроизведения стереофонического[1] звучания.

В 1988 году фирма CreativeLabs выпустила устройство CreativeMusicSystem (С/MS, позднее также продавалась под названием GameBlaster) на основе двух микросхем звукогенератораPhilips SAA 1099, каждая из которых могла воспроизводить по 6 тонов одновременно. Примерно в это же время компания AdLib выпустила свою карту, одноимённую с названием фирмы, на основе микросхемы YM3812 фирмы Yamaha. Данный синтезатор для генерации звука использовал принцип частотной модуляции (FM, frequencymodulation). Данный принцип позволял получить более естественное звучание инструментов, чем у GameBlaster.

Вскоре Creative выпустили карту на той же микросхеме, полностью совместимую с AdLib, но превосходящую её по качеству звучания. Эта плата стала основой стандарта SoundBlaster, который в 1991 году Microsoft включила в стандарт Multimedia PC (MPC). Однако эти карты имели ряд недостатков: искусственное звучание инструментов и большие объёмы файлов, одна минута качества AUDIO-CD занимала порядка 10 Мегабайт.

С возрастанием мощности процессоров, постепенно стала отмирать шина ISA, на которой работали все предыдущие звуковые карты, и многие производители переключились на выпуск карты для шины PCI. В 1998 году компания Creative вновь делает широкий шаг в развитии звука и выпуском карты SoundBlasterLive! на аудиопроцессоре EMU10K, который поддерживал технологию EAX, устанавливает новый стандарт для IBM PC, который остаётся (в усовершенствованном виде) актуален и по сей день. [1]

Типы звуковых карт

Внутренняя звуковая карта устанавливается в компьютер в свободный слот расширения.

Внешняя звуковая карта подключается интерфейсным кабелем и защищена от электрических помех. На ней может быть установлено не ограниченное количество разъемов и регуляторов.

Внутренняя карта с внешним блоком такой блок защищает аудиовходы от электрических помех компьютера, на нем обычно расположены разъемы и регуляторы. [2]

Тип подключения

PCI - стандартная шина для персональных компьютеров.

USB используется для подключения внешних звуковых карт к ноутбукам и настольным компьютерам.

FireWire (IEEE 1394) - высокоскоростная внешняя последовательная шина для обмена данными между компьютерами и мультимедийными периферийными устройствами.

PCMCIA, или PC Card - интерфейс для подключения компактных периферийных устройств.

ExpressCard - стандарт карт расширения для ноутбуков, который приходит на замену PCMCIA. ExpressCard использует скоростную шину PCI Express. Модули ExpressCard имеют размеры 34x75x5 или 54x75x5 мм.[2]

Компоненты звуковой карты

1. Блок цифpовой записи/воспpоизведения. Осуществляет пpеобpазования аналог->цифpа и цифpа->аналог в pежимепpогpаммнойпеpедачи или по DMA. Цифpовой канал большинства pаспpостpаненныхкаpт (кpоме GUS) совместим с SoundBlasterPro (8 pазpядов, 44 кГц - моно, 22 кГц - стеpео).

2. Блок синтезатоpа. Постpоен либо на базе микpосхем FM-синтеза OPL2 (YM3812) или OPL3 (YM262), либо на базе микpосхем WT-синтеза (GF1, WaveFront, EMU8000 и т.п.), либо того и дpугого вместе. Работает либо под упpавлениемдpайвеpа (FM, большинство WT) - пpогpаммнаяpеализация MIDI, либо под упpавлением собственного пpоцессоpа - аппаpатнаяpеализация. Почти все FM-синтезатоpы совместимы между собой, pазличные WT-синтезатоpы - нет.

3. Блок MPU. Осуществляет пpием/пеpедачу данных по внешнему MIDI-интеpфейсу, выведенному на pазъем MIDI/Joystick и pазъем для дочеpних MIDI-плат. Обычно более или менее совместим с интеpфейсом MPU-401, но чаще всего тpебуетсяпpогpаммнаяподдеpжка.

4. Блок микшеpа. Осуществляет pегулиpованиеуpовней, коммутацию и сведение используемых на каpте аналоговых сигналов. [3]

Характеристики звуковой карты

Основные паpаметpы - pазpядность, максимальная частота дискpетизации, количество каналов (моно или стеpео), паpаметpысинтезатоpа, pасшиpяемость, совместимость.

Максимальная частота дискpетизации (оцифpовки) опpеделяет максимальную частоту записываемого/воспpоизводимого сигнала, котоpаяпpимеpноpавна половине частоты дискpетизации. Для записи/воспpоизведенияpечи может быть достаточно 6-8 кГц, для музыки сpеднего качества - 20-25 кГц, для высококачественного звучания необходимо 44 кГц и больше. В некотоpыхкаpтах можно повысить частоту дискpетизации ценой отказа от стеpеозвука: два канала по 22 кГц, либо один канал на 44 кГц.

Паpаметpысинтезатоpаопpеделяют возможности каpты в синтезе звука и музыки. Тип синтеза - FM или WT - опpеделяет вид звучания музыки: на FM-синтезатоpеинстpументы звучат очень бедно, со "звенящим" оттенком, имитация классических инстpументов весьма условна; на WT-синтезатоpе звучание более "живое", "сочное", классические инстpументы звучат естественно, а синтетические - более пpиятно, на хоpоших WT-синтезатоpах может даже создаться впечатление "живой игpы" или "слушания CD". Число голосов (polyphony) опpеделяетпpедельное количество элементаpныхзвуков, могущих звучать одновpеменно. Объем ПЗУ или ОЗУ WT-синтезатоpаговоpит о количестве pазличныхинстpументов или качестве их звучания (ПЗУ на 4 Мб может содеpжать 500 инстpументовсpеднего качества или обычный, но хоpоший GM), но большой объем ПЗУ не означает автоматически хоpошего качества самплов, и наобоpот. Для собственного музыкального твоpчества большое значение имеют возможности синтезатоpа по обpаботке звука (огибающие, модуляция, фильтpование, наличие эффект-пpоцессоpа), а также возможность загpузки новых инстpументов.

Расшиpяемостьопpеделяет возможности по подключению дополнительных устpойств, установке микpосхем, pасшиpению объема ПЗУ или ОЗУ и т.п. Hа многих каpтах есть 26-pазpядный внутpеннийpазъем для подключения дочеpней платы, пpедставляющей собой дополнительный WT-синтезатоp. Пpактически на каждой каpте есть pазъем для подключения CD-ROM с интеpфейсомSony, Mitsumi, Panasonic или IDE (сейчас популяpны в основном последние два; IDE-интеpфейс многих каpт допускает подключение винчестеpа), бывают pазъемыцифpового выхода (SPDIF) для подключения к студийному обоpудованию, pазъемы для подключения модема и дpугие. Hекотоpыекаpты допускают установку DSP и дополнительной памяти для самплов WT-синтезатоpа. [3]

Внешний вид

Начнем с YMF724, интегрированного в материнскую плату. Сам чип расположен далеко от аудио разъемов, но это не внушает опасения, благодаря внешнему AC'97 кодеку. Кодек TriTech 28023 распаян в непосредственной близости от разъемов и, что явилось немаловажным сюрпризом, аудио сигналы выведены на разъемы напрямую, без каких либо активных буферных или усилительных элементов. Разумеется, присутствуют выходные RC фильтры, но не более того. Забегая вперед, заметим, что именно это способствовало поразительным для 16 бит аудио решения результатам в тестах на соотношение сигнал/шум. Подобный подход имеет свои плюсы и минусы, за более высокое качество передачи сигнала приходится расплачиваться незащищенностью и слабой нагрузочной способностью аудио входов и выходов. Еще одно преимущество интегрированного решения - многослойная материнская плата способная обеспечить гораздо более качественную разводку аудио сигналов, нежели многие двусторонние PCI платы. Присутствуют два разъема для подключения кнопок цифрового регулятора общей громкости, если таковой имеется в корпусе компьютера или сделан самостоятельно. Есть разъем для подключения CD привода или любого другого источника линейного сигнала. Не распаяны два разъема, судя по всему, один из них цифровой выход, назначение второго не ясно. Еще присутствует не упомянутый в документации разъем моно входа для модема, обозначенный на плате как CN19 и находящийся в непосредственной близи от кодека.

SoundBlasterLive! Value порадовал многослойной платой с позолотой, высоким процентом распаянных деталей (не были распаяны лишь несколько маловажных разъемов и один буферный усилитель непонятного назначения). На плате присутствует гребенка цифрового интерфейса (4 SPDIF выхода и один вход, обозначены как SPDIF_EXT), и что крайне приятно, распайка всех разъемов приводится в электронной документации. Цифровые входы и выходы имеют нестандартный для аудио оборудования уровень сигнала (соответствующий цифровой логике), в результате чего не все источники могут быть успешно к ним подключены. А вот на раздельно микшируемом отдельном цифровом входе для CD (обозначен как CD_SPDIF), наоборот присутствует буферный элемент, позволяющий подключать не только CD приводы (с как правило логическим уровнем сигнала), но и другое SPDIF оборудование. Четыре цифровых выхода от этого не страдают, т.к. небольшая перегрузка подключаемого к ним оборудования не существенна, в отличии от недостатка сигнала для нормальной работы входа. Есть не распаянный разъем для кнопок регулировки громкости. Распаяны два различных разъема TAD (моно вход-выход для модемов) и два дополнительных линейных входа - CD_IN и AUX_IN. Еще есть не распаянный разъем I2S - цифровой многоканальный интерфейс для декодеров DVD и прочего пока несколько футуристического оборудования. На аналоговых входах активные буферные элементы отсутствуют (за исключением микрофонного), на выходах дело обстоит несколько странно. Если фронтальные колонки выведены с главного 18 бит AC'97 кодека CT1297, через микросхему буферного усилителя, то тыльный сигнал идет с дополнительной микросхемы 18 бит ЦАП (Phillips 1330A) напрямую, обладая меньшей нагрузочной способностью. Но самое интересное, что в результате, на тыльных выходах присутствует более качественный сигнал, вероятно благодаря более высокому качеству дополнительного ЦАП.

DiamondMonsterSound MX300 поражает своими размерами. Он больше Live! в полтора раза, при этом количество элементов на плате приблизительно во столько же раз меньше. Размеры продиктованы не только соображениями солидности, но и наличием корректно расположенного разъема для дочерней платы волнового синтеза. Присутствует большой разъем для дополнительной карты цифрового ввода вывода, но его распайка не известна и, в отличие от Live!, он не может быть использован без этой самой платы. Цена $30 скорее всего не напугает желающих подключить декодер AC-3 или другое цифровое оборудование, но вот наличие этой платы на нашем рынке, к сожалению, не гарантированно. Позолоченные внешние аудио разъемы вне конкуренции, как и благородный черный цвет планки, на которую они крепятся. Есть два внутренних линейных входа и разъем TAD. Непонятно назначение не распаянного дополнительного стерео выхода, дублирующего фронтальные колонки. Монтаж аккуратен, но не столь качественен, как в случае Live!. Количество не распаянных деталей выше. Один четырехканальный AC'97 18 бит кодек SigmaTel. Буферные усилители присутствуют как на фронтальном, так и на тыльном выходе. [3]

В настоящее время мы не можем представить себе компьютер без звукового сопровождения. Мы привыкли, что музыка сопровождает нас во время работы с персональной машиной, и даже не задумываемся: откуда же, собственно, берутся эти звуки? Встроенная звуковая плата - явление настолько привычное, что этим уже никого не удивишь. И в то же время процессы звукозаписи и воспроизведения и особенности работы звуковых карт известны далеко не каждому.

В данной работе рассматриваются устройство звуковых карт и их принципы функционирования. Также будут рассмотрены методы генерации звука, применяющиеся в звуковых платах и система объемного звука Dolby Digital, которая позволяет даже в домашних условиях наслаждаться "живым звуком" кинотеатра.

В самом начале своей истории компьютер фирмы IBM был оснащен примитивным динамиком, позволявшем (посредством драйвера SPEAKER. DRV) одновременно воспроизводить звуки одного тона без регулировки уровня громкости; именно в это время были разработаны основные принципы преобразования звука для бытовых компьютеров.

Звуковая карта (которая также называется звуковой платой) - это плата, которая позволяет работать со звуком на компьютере. Она является неотъемлемой частью любого персонального компьютера. В настоящее время звуковые карты бывают как встроенными в материнскую плату, так и отдельными платами расширения или внешними устройствами.

Несмотря на все разнообразие моделей звуковых карт, их возможностей, качества звука и размеров все они имеют примерно одну структуру и основные блоки. Понимание устройства и принципов работы карты сильно облегчает разрешение возникающих при установке и работе проблем.

Для начала рассмотрим простейшую и наиболее распространенную карту типа Edison Gold 16 на микросхеме ESS1688 или 1868. Эта единственная микросхема на самом деле состоит из трех функционально независимых узлов, составляющих три основных устройства большинства звуковых карт:

звуковая карта dolby digital

узел цифрового тракта, ответственный за преобразование звука из аналоговой формы в цифровую и обратно, и обмен цифровым потоком с центральным процессором или памятью компьютера;

узел музыкального синтезатора, построенного по частотно-модуляционному (FM) принципу и выполненному в стандарте OPL3;

узел аналогового микшера, выполняющего смешивание сигналов с двух предыдущих узлов, а также с линейного и микрофонного входов карты.

Эти три устройства функционально полностью независимы и программируются отдельно друг от друга.

Аналогичным образом работает и обратный процесс: последовательность цифровых отсчетов, забираемая системой управления цифрового тракта карты из памяти, подается на ЦАП, который преобразует числовые значения в уровни напряжения, а затем объединяет дискретную последовательность этих уровней в непрерывный звуковой сигнал, который и снимается с выхода карты.

В микросхемах ESS1868, Yamaha YM718/719, а также почти во всех остальных современных наборах микросхем для звуковых карт, реализован режим дуплекса (Full Duplex), позволяющий ЦАП и АЦП работать одновременно, параллельно записывая звук со входа в одни области памяти и воспроизводя его из других областей памяти на выход. Благодаря этому режиму можно реализовать весьма интересные возможности - голосовую связь по сети, обработку поступающего звука каким-либо алгоритмом с одновременным (точнее - с небольшой задержкой на обработку) выводом результата, и т.п.

Музыкальный синтезатор OPL3, имеющийся в простых картах, сейчас включается в их состав скорее по традиции и ради совместимости с ранними моделями, нежели для проигрывания музыки. В нем используется частотно-модуляционный (FM) способ синтеза звука. В FM-синтезе каждый из управляемых генераторов называется оператором. Несколько генераторов одновременно модулируют синусоидальные сигналы. В операторе выявляются два базовых элемента: фазовый модулятор и генератор огибающей. Фазовый модулятор задает частоту (высоту) звука, а генератор огибающую его амплитуду (громкость). Также в звуковых картах обычно присутствует специальный генератор шума, обрабатываемый одним оператором (оператором огибающей). Но вместо 6-операторной конфигурации, реализованной в инструментах Yamaha DX7 и DX100, в OPL3 есть только двух - и четырехоператорная, причем последняя допускает только самые примитивные способы соединения операторов. Кроме этого, набор управляющих параметров операторов в OPL3 крайне беден. Все это в совокупности приводит к тому, что OPL3 в состоянии издавать лишь очень малую часть звуков, традиционных для FM, да еще и с довольно низким качеством. Поэтому чаще всего карты, оборудованные только этим синтезатором, считают чисто звуковыми и неспособными исполнять музыку по нотам. На профессиональных звуковых картах OPL3 не ставиться ввиду его явной бесполезности в этих применениях.

Наконец, микшер представляет собой многовходовый аналоговый сумматор с управляемыми коэффициентами усиления по каждому входу, за счет чего он может объединять звук с разных источников карты в одну выходную линию с независимой регулировкой как всех входных, так и выходного уровня и стереобаланса. Помимо цифрового тракта и OPL3, микшер получает сигналы с микрофонного и линейного входов, входа проигрывателя CD, а в ряде моделей - с дополнительной дочерней платы-синтезатора, с добавочного внутреннего входа и входа для подключения сигнала PC Speaker. К последнему разъему при помощи специального провода подключается выход громкоговорителя с системной платы, чтобы издаваемые им звуки можно было слышать в наушниках или колонках.

Кроме смешивания сигналов для подачи на звуковой выход, микшер обеспечивает также смешивание сигналов для подачи на АЦП цифрового тракта - проще говоря, для записи звука. При этом, в зависимости от модели микшера, регулировки уровней записи и контроля могут быть раздельными или совмещенными, выбор источников для записи может быть независимым, с возможностью любой их комбинации, или же с возможностью выбора для записи только одного источника.

Теперь о дополнительных устройствах звуковых карт. Чаще всего таким устройством является та или иная модель музыкального синтезатора; если цифровой тракт способен лишь просто воспроизвести звуковой поток, то синтезатор способен создавать звучания прямо внутри себя, и играть этими звуками под управлением компьютера. Наиболее распространенные синтезаторы - GF1 и Interwave (Gravis Ultrasound), EMU8000 (Sound Blaster AWE), ICS WaveFront (семейство карт Turtle Beach). Все они построены по таблично-волновому (Wave Table) принципу. Идея применения WT-синтеза состоит в использовании специальных алгоритмов, позволяющих по одному лишь характерному тону (выборке) музыкального инструмента воспроизвести все остальные тона.

Выборки сигналов (таблицы) сохраняются в ROM (Read Only Memory) или программно загружаются в RAM (Random Access Memory) звуковой карты, после чего специализированный WT-процессор выполняет операции над выборками сигнала, изменяя их амплитуду и частоту. При этом генерируемое WT-методом звучание ближе к звуку реальных инструментов, нежели при FM-технологии. Дополнительную гибкость WT-методу дает возможность простого изменения таблиц выборок. Современные WT-синтезаторы способны до неузнаваемости менять высоту, амплитуду и спектр исходных звуков, создавая из них совершенно новые.

Для того чтобы воспроизводить звуки, WT-синтезатор нуждается в памяти, куда они записываются. Обычно это ПЗУ, в котором записан базовый набор звуков - General MIDI (GM); в ряде карт имеется еще и ОЗУ, куда можно загружать дополнительные звуки и их наборы, расширяя тембровую палитру синтезатора. Некоторые карты не имеют ПЗУ, сразу загружая звуки во внутреннее ОЗУ (GUS, EWS64XL) или в системное ОЗУ компьютера (карты на S3 SonicVibes). Последняя технология носит названия UMA (Unified Memory Architecture).

Синтезаторы звуковых карт - как FM, так и WT - управляются из прикладных программ при помощи MIDI - цифрового интерфейса музыкальных инструментов, включающего команды исполнения нот, смены тембров, управления громкостью, высотой, панорамой и другими параметрами звука. Однако MIDI содержит только команды исполнителю - это очень похоже на нотную партитуру. Несмотря на то, что стандартные тембры разных синтезаторов похожи друг на друга, они все же имеют различные оттенки и динамику звучания, поэтому MIDI-музыка, отлично звучащая на одном типе синтезатора, может совершенно "неправильно" звучать на другом, и наоборот; об этом не следует забывать, оценивая звучание MIDI-файлов, сделанных на других картах и инструментах.

Многие звуковые карты снабжены разъемом для дополнительной дочерней платы (Daughterboard). Дочерняя плата фактически является внутренним MIDI-синтезатором, получая через MIDI-интерфейс основной карты команды, отыгрывая их и возвращая звук в аналоговом виде обратно на основную карту. Идея дочерней платы была впервые реализована в плате Creative Wave Blaster, поэтому и другие дочерние платы часто ошибочно называют Wave Blaster'ами - так же, как и обычные звуковые - Sound Blaster'ами. Установка дочерней платы позволяет получить на простой карте таблично-волновой синтез, а при его наличии - расширить возможности и палитру базового синтезатора.

Dolby Digital (AC-3, ATSC A/52) - система пространственного звуковоспроизведения, разработанная фирмой "Dolby Laboratories, Inc." ("Dolby Labs"), руководителем которой является Рей Долби. Впервые технология Dolby Digital была продемонстрирована зрителям в июне 1992 года в фильме “Бэтмен возвращается” (“Batman Returns”) и с тех пор вышла уже не одна тысяча лент со звуком в этом формате. Более того, в настоящее время формат Dolby Digital в США принят в качестве звукового стандарта для телевидения высокой четкости (HDTV), используется для передачи по спутниковым и кабельным каналам.

Dolby Digital предоставляет в общей сложности шесть раздельных каналов звука. Как и Dolby Surround Pro Logic, она включает в себя левый, центральный и правый каналы во фронтальной части комнаты. Dolby Surround Pro Logic предоставляет дополнительно еще один канал с ограниченной полосой частот (от 100 до 7000Гц) для объемного ("окружающего") звука, который обычно усиливается через два канала усилителя и подается потом на два динамика. Тогда как Dolby Digital предоставляет раздельные левый и правый каналы объемного звука для более точного определения местоположения звуков и более натуральной, реалистичной передачи атмосферы и фона. И ко всему прочему все пять основный каналов передают полный спектр частот (от 3 до 20000 Гц), к которым можно добавить низкочастотные динамики (сабвуферы). Шестой канал - Low Frequency Effects Channel (канал для низкой частоты и эффектов), иногда содержит дополнительную низкочастотную информацию для усиления эффекта от некоторых сцен, например, таких как взрывы, катастрофы и т.д. Из-за того, что этот канал сильно ограничен сверху по частоте (от 3 до 120Гц), его иногда называют".1" каналом. Если его добавляют к полным 5 каналам Dolby Digital, то про такие системы говорят, как про имеющие "5.1" канала. Все 6 каналов звука закодированы в один стереофайл, который распаковывается с помощью специального декодера и разводится на шесть аудиоколонок.

Зачем вообще нужен объемный звук потребителю? Если слова о "восстановлении естественности пространственного звучания" вас не впечатлили, то скажем по-другому: применение объемного звука позволяет значительно усилить эмоциональное воздействие музыки на слушателя. А это уже не может игнорировать никто: ни исполнитель, ни звукорежиссер, ни фирма звукозаписи, ни сам слушатель (если, конечно, он приобретает записи для получения эмоционального воздействия, а не пополнения коллекции). Интересно также, что прослушивание музыки в многоканальном объемном формате меньше приводит к усталости по сравнению со стерео форматом. Это в первую очередь отмечают звукоинженеры, которым приходится заниматься подобным прослушиванием в течении многих часов.

При переходе от аналоговой записи сигнала к записи на цифровой носитель такой как компакт-диск, обнаруживается, что цифровое кодирование аудио сигналов используемое в CD производит слишком большие объемы данных для того чтобы их эффективно хранить или передавать в электронном виде, особенно в случаях, когда необходимо кодировать несколько каналов. В результате появились новые формы цифрового кодирования аудио сигналов - известных под общим названием "perceptual coding - чувствительное (восприимчивое) кодирование" - которые были разработаны так, чтобы можно было использовать низкоскоростные потоки данных с минимально ощущаемой потерей звукового качества. Примером такого алгоритма кодирования является третье поколение кодеров Dolby - AC-3.

Предположим, что вам необходимо доставить 4000 человек (полезная информация) из одного места в другое в течении часа. По шоссе может проехать только 1000 машин в час. Если разместить все 4000 человек в 1000 автомобилей, то можно избавиться от лишней информации (оставим 3000 машин дома). Это высокоэффективная доставка, и именно для этого предназначена система Dolby Digital.

Шумоподавление Dolby работает путем уменьшения уровня шума в отсутствии аудио сигнала, а также позволяя более сильному полезному аудио сигналу перекрывать или "маскировать" шум. Но это позволяет замаскировывать только шум, близкий по частотам к полезному сигналу. Поэтому Dolby Digital разбивает звуковой спектр для каждого канала на узкие полоски разного размера, оптимизированные с расчетом на частотную избирательность человеческого слуха. Это позволяет очень точно отфильтровывать шум оцифровки так, чтобы он оказался очень близко по частоте к частоте кодируемого сигнала. Аудио сигнал эффективно заглушает шум, делая его неслышным для уха. Там где отсутствие сигнала не позволяет маскировать шум оцифровки, Dolby Digital прикладывает максимум усилий чтобы его уменьшить. Можно сказать, что Dolby Digital это очень эффективная система шумоподавления, и в результате качество звука субъективно очень близко к оригиналу.

Dolby Digital использует технологию "shared bitpool" ("разделяемых битов"), и также модель маскирования человеческого слуха, чтобы достичь наибольшей эффективности передаваемых данных. Разряды неравномерно распределяются между множеством узких полосок частоты, причем в каждом конкретном случае по-разному, в зависимости от спектра и динамической структуры кодируемого сигнала. Применяя модель слухового маскирования, кодер предоставляет оптимальное количество разрядов для аудио сигнала в каждой полосе. Дополнительно происходит перераспределение разрядов между разными каналами в соответствии с моделью, по которой более насыщенный частотами канал потребует больше данных для передачи, чем другие, слабо заполненные, а также учитывается, что сильный сигнал в одном канале может маскировать появляющийся шум в других каналах. В результате Dolby Digital может использовать пропорционально больше передаваемых данных для кодирования звука, выдавая более качественный сигнал и позволяя кодировать несколько звуковых каналов в более низкоскоростные потоки данных чем требует даже один канал на компакт диске.

В киноиндустрии звуковая дорожка Dolby Digital кодируется оптически прямо на киноленту в промежутках между перфорационными отверстиями. Размещение цифровой звуковой дорожки на том же носителе что и фильм позволяет ей сосуществовать вместе с аналоговой дорожкой без привлечения дополнительных носителей данных, таких как CD. Это позволяет упростить производство, а для владельцев кинотеатров использование фильмов, а также позволяет подготовить дорожку Dolby Digital практически без дополнительных затрат. Поскольку часть ленты с перфорированными отверстиями изготавливают с расчетом на высокую сопротивляемость износу и повреждениям, дорожка Dolby Digital не будет подвержена треску и шипению на протяжении всего времени эксплуатации ленты.

С развитием компьютерных технологий звуковые платы также претерпевали изменения. Они снабжались все новыми разъемами, дополнительными устройствами, менялись материалы изготовления. В настоящее время на рынке существует огромное количество разновидностей звуковых карт от различных производителей, находящихся в различных ценовых категориях. Звуковая карта может превратить компьютер в самую настоящую аудиостудию, где можно микшировать звук, добавлять различные звуковые эффекты, накладывать фоновую мелодию и так далее.

Развитие самих акустических систем также не стоит на месте. Dolby Digital внедряется в домашний обиход посредством технологии DVD, ведь звук, записанный в AC-3, можно найти и на DVD-Video, и на обычных DVD-ROM. При записи фильмов на DVD применяют три основных звуковых стандарта: PCM, Dolby Digital и MPEG. Поэтому, принимая во внимание, что практически любой современный DVD-проигрыватель имеет встроенный декодер AC-3, оказывается, что звуковые дорожки в формате Dolby Digital имеются почти на всех дисках DVD.

1. Борисов А. Энциклопедия обработки звука на персональном компьютере/ А. Борисов - М.: “Новый издательский дом”, 2004. - 688 с.

2. Ковалгин Ю.А. Радиовещание и электроакустика: Учебник-пособие / Под ред. Ю.А. Ковалгина. - М.: Радио и связь, 2002. - 790 с.

Гост

ГОСТ

С развитием информационных технологий сферы использования звука самые разнообразные: от образовательных, развивающих (чтение, музыка и пр.), бизнес-приложений (тренингов, пресс-конференций, презентаций) до профессиональных программ (прослушивание шумов в сердце, обучение радиотелеграфистов) и профессиональных мультимедиа (озвучивание фильмов, музыкальные редакторы).

К устройствам вывода звука в современных ПК относят: колонки, наушники, динамики.

Колонки

Колонки – периферийное устройство вывода, которое служит для воспроизведения звука.

В основном используется акустическая система, которая состоит их двух колонок, но существуют варианты с большим числом. Колонки различаются размерами, формой и мощностью.

Колонки (или акустическая система) преобразуют электрический сигнал в звуковое давление.

Колонки бывают однополосными (с одним широкополосным излучателем, например, динамической головкой) и многополосными (с двумя и большим количеством головок, которые создают звуковое давление в своей частотной полосе).

Также колонки разделяют на:

  • активные (имеют встроенный усилитель, регулятор громкости и тембра, нужны дополнительные источники питания);
  • пассивные (малой мощности).

Активные колонки

Рисунок 1. Активные колонки

Пассивные колонки

Рисунок 2. Пассивные колонки

Готовые работы на аналогичную тему

Наушники

Наушники являются устройством для персонального прослушивания звуковой информации.

По способу передачи звука наушники разделяют на:

  • проводные – соединены с источником с помощью провода, могут обеспечить звук максимального качества;
  • беспроводные – соединяются через беспроводной канал (bluetooth, радио- или инфракрасный). Такие устройства вывода звука мобильны, но имеют привязку к базе и ограниченный радиус действия. Обеспечивают более низкое качество звука, чем проводные.

По типу конструкции (виду) наушники делятся на:

По акустическому оформлению наушники разделяют на:

  • наушники открытого типа – частично пропускают внешние звуки, при этом достигается более естественное звучание. Преимуществом использования является отсутствие давления на внутреннее ухо;
  • наушники полуоткрытого типа – обеспечивают частичную звукоизоляцию;
  • наушники закрытого типа – обеспечивают полную звукоизоляцию.

Наушники открытого типа

Рисунок 3. Наушники открытого типа

Наушники закрытого типа

Рисунок 4. Наушники закрытого типа

В наушниках используется один из трех типов соединительных разъемов: jack, mini jack или micro jack.

Наушники могут крепиться на голове с помощью вертикальной дужки или с помощью затылочной дужки, на ушах с помощью заушины или клипс, или не иметь креплений (вставные или канальные наушники).

Разъем jack

Рисунок 5. Разъем jack

Принцип работы разъема

Рисунок 6. Принцип работы разъема

Основные технические характеристики наушников:

Частотная характеристика влияет на качество звука наушников. Среднее значение частоты от $18$ Гц до $20000$ Гц. Некоторые профессиональные наушники имеют интервал частот от $5$ Гц до $60000$ Гц. Наиболее часто используется частота от $5$ Гц до $125000$ Гц.

Чувствительность влияет на громкость звука в наушниках. Обычно наушники обеспечивают чувствительность не менее $100$ дБ, если чувствительность меньше, звук может быть слишком тихим.

Сопротивление (импеданс). Наушники делятся на низкоомные и высокоомные, причем это разделение зависит от их типа. Например, полноразмерные наушники с сопротивлением до $100$ Ом считаются низкоомными, а наушники внутриканального типа с сопротивлением выше $32$ Ом – высокоомные. Большинство современных наушников имеют величину сопротивления $32$ Ом. Наушники со значением сопротивления $16$ Ом обладают повышенной излучаемой акустической мощностью. Для студийной работы используют наушники с максимальным значением сопротивления.

Максимальная входная мощность влияет на громкость звучания.

Уровень искажений в наушниках измеряется в процентах, причем чем он меньше, тем выше качество звучания. Для частот от $100$ Гц до $2000$ Гц приемлемым является искажение до $1\%$, для частот ниже $100$ Гц – $10\%.$

Динамик

Динамик – является простейшим устройством вывода звука.

До появления сравнительно дешевых звуковых плат динамик являлся основным устройством воспроизведения звука. Обеспечивает достаточно низкое качество и примитивность звуков.

Динамик все же и сегодня остаётся штатным устройством ПК и в основном используется для подачи сигналов об ошибках, в частности при работе программы $POST$. Некоторые программы можно настроить на вывод звуковых сигналов через динамик, что бывает удобно, если к звуковой плате подключены наушники (по умолчанию не надетые).

Читайте также: