Реферат типы современных тэс

Обновлено: 12.05.2024

Электрическая станция – энергетическая установка, служащая для преобразования какого-либо энергии в электрическую. Тип электрической станции определяется, прежде всего, видом энергоносителя. Наибольшее распространение получили тепловые электрические станции (ТЭС), на которых используется тепловая энергия, выделяемая при сжигании органического топлива (уголь, нефть, газ и др.). На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.[2]

Типы ТЭС и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы электростанций на органическом топливе.

Среди ТЭС преобладают тепловые паротурбинные (ПТУ),на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращения ротор паровой турбины, соединённый с ротором электрического генератора(обычно синхронного генератора).В качестве топлива на таких ТЭС используют уголь(преимущественно), мазут, природный газ.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

ТЭС с приводом электрогенератора от газовой турбины называются газотурбинными электростанциями (ТЭС с ГТУ – газотурбинная установка).В камере сгорания ГТУ сжигают газ или жидкое топливо; продукты сгорания с температурой 750-900  С поступают в газовую турбину, вращающую электрогенератор. КПД таких ТЭС с ГТУ обычно составляет 30-33 %, мощность - до нескольких сотен МВт. ГТУ обычно применяются для покрытия пиков электрической нагрузки.

ТЭС с парогазотурбинной установкой, состоящей из паротурбинного и газотурбинного агрегатов, называется парогазовой электростанцией (ТЭС с ПГУ, а часто - ПГУ ). КПД которой может достигать 56-58 %. ТЭС с ГТУ или ПГУ могут отпускать тепло внешним потребителям, то есть работать как ТЭЦ. [2]

Немаловажную роль среди тепловых установок играют конденсационные электростанции (КЭС). Простейшая принципиальная схема КЭС, работающей на угле, представлена на рис.2. Топливо поступает в топку парогенератора (парового котла) 1, имеющего систему трубок, в которых циркулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 400—650°С и под давлением 3—24 МПа поступает по паропроводу в паровую турбину 2. Параметры пара зависят от мощности агрегатов. Далее одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 3 и затем поступает в конденсатор 4, а другая отбирается от промежуточных ступеней турбины и используется для подогрева питательной воды в подогревателях 6 и 9. Конденсат насосом 5 через деаэратор 7 и далее питательным насосом 8 подается в парогенератор. Тепловые конденсационные электростанции имеют невысокий кпд (35— 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. [3]

Рис.2 Принципиальная схема КЭС

1 – паровой котел; 2 – паровая турбина; 3 – электрический генератор;
4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления;
7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления;
10 – дренажный насос.

Особенностью теплоэлектроцентрали (ТЭЦ) является то, что отработанный в турбине пар или горячая вода затем используются для отопления и горячего водоснабжения промышленной и коммунальной сферы. ТЭЦ строятся преимущественно в крупных городах, поскольку эффективная передача пара или горячей воды из-за высоких тепловых потерь в трубах возможна на расстоянии не более 20-25 км. Кроме того, чтобы уменьшить потери тепла, ТЭЦ необходимо дополнять небольшими подстанциями, которые должны размещаться вблизи от потребителя. При всех указанных недостатках ТЭЦ представляют собой установки по комбинированному производству электроэнергии и тепла, в связи с чем суммарный коэффициент полезного использования топлива повышается до 70-76% против типовых значений 35-40% на КЭС. При этом, как правило, максимальная мощность ТЭЦ меньше, чем КЭС. [2]

Принципиальная схема ТЭЦ представлена на рис.3

Рис.3 Принципиальная схема ТЭЦ

1 – паровой котел; 2 – РОУ; 3 – турбогенератор; 4 – тепловой потребитель;5 – насос; 6 – регенеративные подогреватели; 7 – питательный насос;8 – конденсатор; 9 – конденсатный насос; 10, 11 – пар из отборов.

Топливо поступает в топку парогенератора (парового котла) 1, имеющего систему трубок, в которых циркулирует химически очищенная вода, называемая питательной. . В котле вода нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 400—650°С и под давлением 3—24 МПа поступает по паропроводу . Одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 3 и затем поступает в конденсатор 8, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и используется для теплоснабжения 4. Количество отбираемого пара зависит от потребности предприятий в тепловой энергии. Выработка электроэнергии зависит от пропуска этого пара. Для теплофикационных турбин(такие турбины работают на ТЭЦ) выработка электроэнергии и отпуск тепла могут изменяться в широких пределах.

Некоторые преимущества тепловых станций по сравнению с другими типами станций заключаются в следующем:

1. В относительно свободном территориальном размещении, связанном с широким распространением топливных ресурсов;

2.В способности (в отличие от ГЭС) вырабатывать энергию без сезонных колебаний мощности;

3.В том, что площади отчуждения и вывода из хозяйственного оборота земли под сооружение и эксплуатацию ТЭС, как правило, значительно меньше, чем это необходимо для АЭС ;

4.ТЭС, в связи с массовым освоением технологий их строительства, сооружаются гораздо быстрее, чем ГЭС или АЭС, а их стоимость на единицу установленной мощности значительно ниже по сравнению с АЭС и ГЭС.

В то же время ТЭС обладают и крупными недостатками, в том числе некоторые из них:

1. для эксплуатации ТЭС обычно требуется гораздо больший персонал, чем для ГЭС сопоставимой мощности, связанной с обслуживанием очень масштабного по объему топливного цикла;

2. ТЭС постоянно зависят от поставок невозобновляемых (и нередко привозных) топливных ресурсов (уголь, мазут, газ, реже торф и горючие сланцы);

3. ТЭС весьма критичны к многократным запускам и остановкам; смены режима их работы резко снижают эффективность, повышают расход топлива и приводят к повышенному износу основного оборудования;

4. ТЭС оказывают прямое и крайне неблагоприятное воздействие на экологическую обстановку. [1]

В данном реферате рассмотрены виды тепловых электрических станций. Особое внимание уделено конденсационным станциям (КЭС) и теплоцентралям (ТЭЦ). Отмечены особенности принципов работы каждого из этих видов ТЭС, а так же основные параметры характеризующие их. Представлены их принципиальные схемы. Приведены некоторые преимущества и недостатки тепловых станций по сравнению с другими типами станций.

Стерман Л.С. Тепловые и атомные электрические станции: Учебник для вузов / Л.С. Стерман, В.М. Лавыгин, С.Г. Тишин. – М.: Энергоатомиздат, 1995. – 416 с.

Рыжкин В.Я. Тепловые электрические станции: Учебник для вузов / Под ред. В.Я. Гиршфельда. – М: Энергоатомиздат, 1987. – 328 с.

Елизаров Д.П. Теплоэнергетические установки электростанций: Учебник для вузов / Д.П. Елизаров. – М.: Энергоиздат, 1982. – 264 с.

4. Лекции профессора Щинникова П.А. 2008г.

Похожие страницы:

Общая энергетика. Энергетические ресурсы земли и их использование

. топлива. По типу энергетического оборудования, установленного на ТЭС (типу первичного двигателя), их подразделя­ют на . , по крайней мере, две кардинальные особенности. Первая особенность связана с большой ролью капиталовложений .

Особенности природоохранных мероприятий на ТЭС

. промышленных центров с их теплоцентралями. Отличительной особенностью ТЭЦ является комбинированная . экологическими факторами действия угольных ТЭС являются золоотвал, загрязнения с . режима работы котла, типа присадок и способа их ввода и т.п.) можно .

Типы электростанций

. почти полностью вырабатывается тремя основными типами электростанций: тепловыми, атомными и . оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - . экологически чистый источник энергии. Их функционирование не приводит к возникновению .

Особенности ценообразования во Франции

. 2011 Содержание Введение 3 1 Особенности государственного контроля цен 4 2 . предприятий, определять их соответствие нормам законодательства . Переход к энергосберегающему типу производства, высокая зависимость . составила 76%, доля ТЭС снизилась до 7%. .

Особенности культуры Древнего Рима (2)

. аэрозольных загрязнений воздуха являются ТЭС, обогатительные фабрики, металлургические, . эколого-экономическому развитию. Существенная особенность современной демографической картины мира . для их развития территория. Площадь для разных типов электростанций .

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного). [4]

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.[2]

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.[1]

Типы ТЭС и их особенности

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.[1]

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).[1]

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.[1]

Заключение

В данном реферате рассмотрены виды современных тепловых электрических станций, представлена их классификация. Определены основные критерии разделения теплоэлектростанций. Отмечены особенности всех станций, а также представлены принципиальные схемы конденсационной станции (КЭС) и теплоэлектроцентрали (ТЭЦ).

Список литературы

Трухний А.Д. Основы современной энергетики: учебник для вузов: в 2т./ под общей редакцией чл.-корр. РАН Е.В. Аметистова. – М.: Издательский дом МЭИ, 2008. – 472с.

Рыжкин В.Я. Тепловые электрические станции: Учебник для вузов / Под ред. В.Я. Гиршфельда. – М: Энергоатомиздат, 1987. – 328 с.

Елизаров Д.П. Теплоэнергетические установки электростанций: Учебник для вузов / Д.П. Елизаров. – М.: Энергоиздат, 1982. – 264 с.

Баскаков А.П., Берг Б.В., Витт О.К. и др. Теплотехника: Учебник для вузов / Под ред. А.П. Баскакова. – М.:Энергоатомиздат, 1991. – 224с.

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного). [4]

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.[2]

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.[1]

Типы ТЭС и их особенности

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.


Рис.1. Типы тепловых электростанций на органическом топливе.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.[1]

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).[1]

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.[1]

В данном реферате рассмотрены виды современных тепловых электрических станций, представлена их классификация. Определены основные критерии разделения теплоэлектростанций. Отмечены особенности всех станций, а также представлены принципиальные схемы конденсационной станции (КЭС) и теплоэлектроцентрали (ТЭЦ).

Список литературы

Трухний А.Д. Основы современной энергетики: учебник для вузов: в 2т./ под общей редакцией чл.-корр. РАН Е.В. Аметистова. – М.: Издательский дом МЭИ, 2008. – 472с.

Рыжкин В.Я. Тепловые электрические станции: Учебник для вузов / Под ред. В.Я. Гиршфельда. – М: Энергоатомиздат, 1987. – 328 с.

Елизаров Д.П. Теплоэнергетические установки электростанций: Учебник для вузов / Д.П. Елизаров. – М.: Энергоиздат, 1982. – 264 с.

Баскаков А.П., Берг Б.В., Витт О.К. и др. Теплотехника: Учебник для вузов / Под ред. А.П. Баскакова. – М.:Энергоатомиздат, 1991. – 224с.

Электрическая станция – энергетическая установка, служащая для преобразования какого-либо энергии в электрическую. Тип электрической станции определяется, прежде всего, видом энергоносителя. Наибольшее распространение получили тепловые электрические станции (ТЭС), на которых используется тепловая энергия, выделяемая при сжигании органического топлива (уголь, нефть, газ и др.). На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.[2]

Типы ТЭС и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.


Рис.1. Типы электростанций на органическом топливе.

Среди ТЭС преобладают тепловые паротурбинные (ПТУ),на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращения ротор паровой турбины, соединённый с ротором электрического генератора(обычно синхронного генератора).В качестве топлива на таких ТЭС используют уголь(преимущественно), мазут, природный газ.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

ТЭС с приводом электрогенератора от газовой турбины называются газотурбинными электростанциями (ТЭС с ГТУ – газотурбинная установка).В камере сгорания ГТУ сжигают газ или жидкое топливо; продукты сгорания с температурой 750-900 ° С поступают в газовую турбину, вращающую электрогенератор. КПД таких ТЭС с ГТУ обычно составляет 30-33 %, мощность - до нескольких сотен МВт. ГТУ обычно применяются для покрытия пиков электрической нагрузки.

ТЭС с парогазотурбинной установкой, состоящей из паротурбинного и газотурбинного агрегатов, называется парогазовой электростанцией (ТЭС с ПГУ, а часто - ПГУ ). КПД которой может достигать 56-58 %. ТЭС с ГТУ или ПГУ могут отпускать тепло внешним потребителям, то есть работать как ТЭЦ. [2]

Немаловажную роль среди тепловых установок играют конденсационные электростанции (КЭС). Простейшая принципиальная схема КЭС, работающей на угле, представлена на рис.2. Топливо поступает в топку парогенератора (парового котла) 1, имеющего систему трубок, в которых циркулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 400—650°С и под давлением 3—24 МПа поступает по паропроводу в паровую турбину 2. Параметры пара зависят от мощности агрегатов. Далее одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 3 и затем поступает в конденсатор 4, а другая отбирается от промежуточных ступеней турбины и используется для подогрева питательной воды в подогревателях 6 и 9. Конденсат насосом 5 через деаэратор 7 и далее питательным насосом 8 подается в парогенератор. Тепловые конденсационные электростанции имеют невысокий кпд (35— 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. [3]


Рис.2 Принципиальная схема КЭС

1 – паровой котел; 2 – паровая турбина; 3 – электрический генератор;
4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления;
7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления;
10 – дренажный насос.

Особенностью теплоэлектроцентрали (ТЭЦ) является то, что отработанный в турбине пар или горячая вода затем используются для отопления и горячего водоснабжения промышленной и коммунальной сферы. ТЭЦ строятся преимущественно в крупных городах, поскольку эффективная передача пара или горячей воды из-за высоких тепловых потерь в трубах возможна на расстоянии не более 20-25 км. Кроме того, чтобы уменьшить потери тепла, ТЭЦ необходимо дополнять небольшими подстанциями, которые должны размещаться вблизи от потребителя. При всех указанных недостатках ТЭЦ представляют собой установки по комбинированному производству электроэнергии и тепла, в связи с чем суммарный коэффициент полезного использования топлива повышается до 70-76% против типовых значений 35-40% на КЭС. При этом, как правило, максимальная мощность ТЭЦ меньше, чем КЭС. [2]

Принципиальная схема ТЭЦ представлена на рис.3


Рис.3 Принципиальная схема ТЭЦ

1 – паровой котел; 2 – РОУ; 3 – турбогенератор; 4 – тепловой потребитель;5 – насос; 6 – регенеративные подогреватели; 7 – питательный насос;8 – конденсатор; 9 – конденсатный насос; 10, 11 – пар из отборов.

Топливо поступает в топку парогенератора (парового котла) 1, имеющего систему трубок, в которых циркулирует химически очищенная вода, называемая питательной. . В котле вода нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 400—650°С и под давлением 3—24 МПа поступает по паропроводу . Одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 3 и затем поступает в конденсатор 8, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и используется для теплоснабжения 4. Количество отбираемого пара зависит от потребности предприятий в тепловой энергии. Выработка электроэнергии зависит от пропуска этого пара. Для теплофикационных турбин(такие турбины работают на ТЭЦ) выработка электроэнергии и отпуск тепла могут изменяться в широких пределах.

Некоторые преимущества тепловых станций по сравнению с другими типами станций заключаются в следующем:

1. В относительно свободном территориальном размещении, связанном с широким распространением топливных ресурсов;

2.В способности (в отличие от ГЭС) вырабатывать энергию без сезонных колебаний мощности;

3.В том, что площади отчуждения и вывода из хозяйственного оборота земли под сооружение и эксплуатацию ТЭС, как правило, значительно меньше, чем это необходимо для АЭС ;

4.ТЭС, в связи с массовым освоением технологий их строительства, сооружаются гораздо быстрее, чем ГЭС или АЭС, а их стоимость на единицу установленной мощности значительно ниже по сравнению с АЭС и ГЭС.

В то же время ТЭС обладают и крупными недостатками, в том числе некоторые из них:

1. для эксплуатации ТЭС обычно требуется гораздо больший персонал, чем для ГЭС сопоставимой мощности, связанной с обслуживанием очень масштабного по объему топливного цикла;

2. ТЭС постоянно зависят от поставок невозобновляемых (и нередко привозных) топливных ресурсов (уголь, мазут, газ, реже торф и горючие сланцы);

3. ТЭС весьма критичны к многократным запускам и остановкам; смены режима их работы резко снижают эффективность, повышают расход топлива и приводят к повышенному износу основного оборудования;

4. ТЭС оказывают прямое и крайне неблагоприятное воздействие на экологическую обстановку. [1]

Заключение

В данном реферате рассмотрены виды тепловых электрических станций. Особое внимание уделено конденсационным станциям (КЭС) и теплоцентралям (ТЭЦ). Отмечены особенности принципов работы каждого из этих видов ТЭС, а так же основные параметры характеризующие их. Представлены их принципиальные схемы. Приведены некоторые преимущества и недостатки тепловых станций по сравнению с другими типами станций.

Список литературы

1. Стерман Л.С. Тепловые и атомные электрические станции: Учебник для вузов / Л.С. Стерман, В.М. Лавыгин, С.Г. Тишин. – М.: Энергоатомиздат, 1995. – 416 с.

2. Рыжкин В.Я. Тепловые электрические станции: Учебник для вузов / Под ред. В.Я. Гиршфельда. – М: Энергоатомиздат, 1987. – 328 с.

3. Елизаров Д.П. Теплоэнергетические установки электростанций: Учебник для вузов / Д.П. Елизаров. – М.: Энергоиздат, 1982. – 264 с.

Читайте также: