Реферат системы впрыска топлива

Обновлено: 02.07.2024

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Централизованная система впрыска

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления – обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска – осуществляет импульсную подачу бензина во впускной коллектор двигателя. – выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления – состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Как работает распределенный впрыск

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Как происходит непосредственный впрыск

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

  • Топливный насос высокого давления.
  • Регулятор давления топлива.
  • Топливная рампа.
  • Предохранительный клапан (установлен на топливной рампе для защиты элементов системы от повышения давления больше допустимого уровня).
  • Датчик высокого давления.
  • Форсунки.

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

  • Послойное – реализуется на малых и средних оборотах двигателя. Воздух подается в камеру сгорания на большой скорости. Топливо впрыскивается по направлению к свече зажигания и, смешиваясь на этом пути с воздухом, воспламеняется.
  • Стехиометрическое. При нажатии на педаль газа происходит открытие дроссельной заслонки и осуществляется впрыск топлива одновременно с подачей воздуха, после чего смесь воспламеняется и полностью сгорает.
  • Гомогенное. В цилиндрах провоцируется интенсивное движение воздуха, при этом на такте впуска происходит впрыск бензина.

Непосредственный впрыск топлива в бензиновом двигателе – наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Так как причин возникновения неисправностей, связанных с системой впрыска топлива, достаточно много, в первую очередь рекомендуется провести диагностику автомобильным сканером на наличие ошибок. Без посещения сервиса это можно сделать с помощью универсального устройства Rokodil ScanX Pro.

фото50

Также с помощью данного сканера можно отрегулировать положение дроссельной заслонки, проверить систему выхлопных газов, считать параметры работы двигателя и многое другое.

Задача систем впрыска состоит в обеспечении двигателя возможно наилучшей смесью — оптимальным соотношением компонентов горючей смеси — при постоянно изменяющихся условиях эксплуатации двигателя.

Что такое система впрыска топлива?

Дроссель бензинового двигателя регулирует только поток воздуха в двигатель. Используются специальные механизмы, измеряющие количества топлива, проходящего в потоке воздуха. Назовем ее системой подачи топлива. Система подачи топлива может быть любого типа, может управляться дросселем и регулироваться, для непрерывной подачи горючей смеси из воздуха и топлива в двигатель. Система впрыска топлива — точный и сложный вариант системы подачи топлива.

Подача топлива

У современных бензиновых двигателей есть два основных типа систем подачи топлива: карбюраторная и впрыск. Эти системы смешивают топливо и воздух, но делают это по-разному.

Карбюраторы

Карбюраторы пользуются преимущественно принципом диффузора. Вкратце этот принцип заключается в том, что при увеличении воздушного потока происходит уменьшение давления. Воздушный поток, проходя через сужение в карбюраторе, создает разряжение, которое позволяет вовлечь топливо во впускной воздушный поток, где оно распыляется, чтобы сформировать горючую смесь. Открывая шире дроссель, пропускается большее количество топлива. Аналогично, меньшее открытие дросселя создает меньший поток топлива. Поэтому количество поступающего топлива изменяется пропорционально воздушному потку.

Эта сравнительно простая и несовершенная система снабжает топливом бензиновые двигатели с приемлемым уровнем производительности в течение многих десятилетий. В недавнем прошлом этим достигались довольно неплохие результаты. Большая производительность требует более точного управления измерением топлива. Карбюраторы, хотя и хорошо отлаженные в последние десятилетия, ограничены по их способности точного измерения топлива, особенно при чрезвычайных нагрузках, даже с их множеством топливных цепей, жиклеров, воздухопрокачек, заслонов и клапанов.

Система питания дизельного двигателя

. дизельного двигателя Назначение системы дизельного двигателя — подача топлива в цилиндры в необходимом количестве и под достаточным давлением вовремя при любых условиях эксплуатации и при любой температуре окружающего воздуха. Дизельная двигательная установка состоит из: Система подачи топлива; Система . системы питания дизельных двигателей. Задача обеспечения качества диагностических работ .

Система впрыска топлива

Системы впрыска подают топливо, вовлекая его во входящий воздушный поток. Системы впрыска фактически измеряют поступающий воздух и поддерживают давление топлива, чтобы подвесит его в точных количествах, основанных непосредственно на этом измерении. Так как топливо подводится к коллектору под давлением, его количество может положительно управляться. Это позволяет удовлетворить потребности двигателя при чрезвычайных эксплуатационных условиях, что приводит к большей эффективности в более широком диапазоне действия.

Преимущества систем впрыска бензина

Основными преимуществами систем впрыска по сравнению с карбюраторными системами являются следующие:

  • Отсутствие добавочного сопротивления потоку воздуха на впуске в виде карбюратора с диффузорами способствует улучшению наполнения цилиндров и получению более высокой литровой мощности двигателя;
  • Система впрыска уменьшает соотношение компонентов горючей смеси;
  • Подается топливо по определенным эксплуатационным требованиям;
  • Предотвращается остановка двигателя, вызванная уходом топлива во время движения на повороте;
  • Улучшение продувки камер сгорания за счет за счет использования возможности большего перекрытия клапанов (когда открыты одновременно оба клапана) и продувки камер сгорания чистым воздухом, а не смесью, что улучшает качество приготовляемой рабочей смеси;
  • Более точное при распределенном впрыске распределение топлива по цилиндрам (при распределенном впрыске состав смеси в цилиндрах может различаться на 6…7%, а при питании от карбюратора на 11…17%);
  • Существенно более высокая степень оптимизации состава топливовоздушной смеси на всех режимах работы двигателя с учетом его состояния, за счет чего возрастает топливная экономичность двигателя и одновременно снижается токсичность отработавших газов;

— * Улучшение продувки и большая равномерность распределения смеси по цилиндрам снижает температуру стенок цилиндра, днищ поршней и выпускных клапанов, что в свою очередь уменьшает возможность детонации и позволяет обеспечить снижение потребного октанового числа бензина на 2-3 единицы, либо увеличить степень сжатия (а значит, и мощность) двигателя без опасности детонации. Кроме того, при этом уменьшается образование окислов азота при сгорании и улучшаются условия смазки зеркала цилиндров. Устраняется работа двигателя при выключенном зажигании.

Основным недостатком систем впрыска бензина является их более высокая, по сравнению с карбюраторными, сложность из-за большого числа прецизионных деталей и электронных элементов, поэтому они имеют более высокую стоимость и требуют более квалифицированного обслуживания при эксплуатации.

2. Типы систем впрыска топлива

Почти все существующие системы впрыска можно условно разделить на группы:

  • по месту впрыскивания — системы центрального и распределенного (многоточечного) впрыска;
  • по принципу действия — дискретного и непрерывного действия.

Все системы центрального и большая часть систем распределенного впрыска являются системами дискретного действия, т.е. используют электромагнитные форсунки, управляемые специальными электронными блоками. Существует также довольно многочисленное семейство систем распределенного впрыска, использующие в основе своей работы механические и гидравлические принципы. Эти системы являются системами непрерывного действия, они разработаны и серийно выпускаются исключительно фирмой BOSCH. К ним относятся системы K- , KE-Jetronic, KE-Motronic различных версий и модификаций. Наиболее перспективными является группа систем распределенного впрыска непосредственно в цилиндр. Их серийный выпуск начат с 1996 года фирмой MITSUBISHI

Система питания двигателя от впрыска топлива презентация

. неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта. Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск — одна форсунка на все цилиндры, .

Многоточечный впрыск (или впрыск во впускные каналы)

Многоточечные системы впрыска подают топливо ко впускным каналам двигателя возле впускных клапанов. Это означает, что впускной коллектор подводит только воздух, в отличие от карбюраторов или одноточечных систем впрыска топлива, в которых впускной коллектор подводит смесь. В результате эти система предлагают следующие преимущества:

  • Большая мощность, избегая потерь в карбюраторе и допуская использование настройки впускных рабочих шкивов для лучших рабочих характеристик;
  • Улучшенная общая характеристика управляемости автомобиля, уменьшение изменения задержки дросселя, которое происходит во время, когда топливо проходит от корпуса дросселя к впускным каналам;
    • Увеличение экономии топлива, избегая смачивания коллектора;
    • Упрощенное использование турбогенератора; компрессору турбогенератора нужен только воздух.

    Рисунок 1 — При впрыске во впускные каналы топливо подводится к коллектору возле впускного клапана

    2.1 Импульсные (электронные) системы

    Во всех импульсных системах поступающий воздух измеряется датчиком, который передает электронный сигнал, уровень которого пропорционален воздушному потоку. Электронное устройство управления (ECU), отвечая на сигналы от датчика воздушного потока и других датчиков, подает топливо к двигателю посредством электрически управляемых соленоидальных клапанов инжектора.

    Топливо нагнетается серией импульсов, всегда управляемых электроникой. В системах Bosch, число импульсов пропорционально числу оборотов двигателя в минуту. Отрезок времени каждого импульса управляется с помощью электроники, так что инжекторы подводят топливо импульсами, в зависимости от требований к смеси.

    2.2 Системы непрерывного впрыска

    Системы непрерывного впрыска иногда называются как механические или гидромеханические, потому что измерение топлива определяется механической связью между датчиком воздушного потока и топливным распределителем.

    Первые непрерывные системы явно отличались от EFI систем, пока не было введено электронное управление основной подачей топлива. Семейство систем впрыска выросло и породило более совершенные версии, начиная с 1980-го года электронное управление стало частью почти всех систем впрыска топлива CIS.

    В непрерывных системах поступающий воздух измеряется сенсорной пластиной воздушного потока, которая соединена механически с топливным распределителем. Количество топлива отмеряется в пропорции к потоку поступающего воздуха и подается в двигатель через приводимые в действие давлением инжекторы.

    Загрязнение воздуха автотранспортом

    . - 60 - 90%. Цель работы: определение количества антропогенных загрязнений, попадающих в окружающую среду в результате работы автотранспорта на заданном участке автомобильной дороги. 1. Загрязнение атмосферного воздуха автотранспортом Автотранспорт, как источник загрязнения отличается следующими особенностями: во-первых, .

    Топливный распределитель управляется давлением, регулируя объем топлива, требуемого для различных условий эксплуатации.

    3. Импульсный впрыск — теория

    Существует множество различных систем впрыска топлива, которые основаны на электронно-временном импульсном принципе впрыска. Вот основные импульсные системы:

    Для детального описания импульсных систем впрыска начнем с L-Jetronic.

    Системы импульсного впрыска топлива

    Все данные системы определяют количество топлива для двигателя с помощью электронного блока управления (ЭБУ), следящего за интервалами времени, в течении которых топливные форсунки открыты. В отличие от непрерывных систем, где инжекторы открыты и топливо течет с момента запуска двигателя, импульсные инжекторы открыты только на время подачи топлива в двигатель. Главные детали импульсных систем — измеритель воздушного потока, электронное устройство управления и топливные форсунки. См. Рис. 3

    В системе импульсного впрыска весь воздух, входящий в двигатель, сначала прокачивается через измеритель воздушного потока (ИВП).

    ИВП отмеряет количество воздуха, которое определяется по нагрузке двигателя, и преобразует это измерение в электрический сигнал, идущий к ЭБУ. Блок управления использует входные сигналы о воздушном потоке и частоте вращения двигателя, и по ним вычисляет количество топлива, необходимое для образования оптимальной смеси, затем электрическим способом открывает инжекторы во впускном канале каждого цилиндра, чтобы впрыснуть соответствующее количество топлива в воздушный поток. Время впрыскивания определяется ЭБУ по частоте вращения коленвала. Главный топливный насос обеспечивает систему топливом под давлением.

    Импульсные системы BOSCH используют также много дополнительных датчиков, которые контролируют эксплуатационные условия двигателя. ЭБУ контролирует сигналы этих датчиков и увеличивает время открытия инжектора или уменьшает количество топлива, подводимого для создания лучшей смеси при различных состояниях.

    Рисунок 3 — Схемное решение действия импульсной системы впрыска.

    4. Непрерывный впрыск — теория

    Системы непрерывного впрыска включают в себя такие системы:

    * K- Jetronic с Лямбда-управлением

    * KE-Jetronic и вариации: KES- Jetronic, и KE-Motronic

    Система непрерывного впрыска (CIS)

    Как было сказано выше, цель системы впрыска топлива состоит в том, чтобы измерить количество воздуха, которое берет двигатель и измерить точное количество герметичного топлива, чтобы согласовать его с количеством воздуха и создать правильную смесь. Все системы непрерывного впрыска обеспечивают основную функцию — измерение количества воздуха и топлива в дозаторе-распределителе.

    Автоматизация систем кондиционирования воздуха

    . 1998 году инверторы заняли 95% японского рынка. 3. Классификация систем кондиционирования Кондиционирование воздуха - это создание и автоматическое поддержание (регулирование) в . самочувствия людей или ведения технологического процесса. Кондиционирование воздуха осуществляется комплексом технических средств, называемым системой кондиционирования воздуха (СКВ). В состав СКВ входят технические .

    Дозатор-распределитель топлива

    Дозатор-распределитель топлива — основа системы непрерывного впрыска. Как показано на рисунке 4.1, это место, где взаимодействуют система измерения воздушного потока и система подачи топлива. Дозатор-распределитель топлива — фактически комбинация двух отдельных блоков: измерителя расхода воздуха и распределителя топлива. Измеритель расхода воздуха измеряет воздушный поток входящий в двигатель. Топливный распределитель, в свою очередь, подводит пропорциональное количество герметичного топлива к инжекторам.

    Измерение воздушного потока и измерение топлива

    Рис. 4.1 показывает конструктивную схему действия регулятора состава рабочей смеси. Круглая пластина измерителя расхода воздуха установлено во впускном тракте так, чтобы весь воздух, входящий в двигатель, тек мимо нее. Пластина присоединена к рычагу, который имеет точку поворота, разрешающую двигаться пластине вверх и вниз. Впускной воздух, проходящий сквозь коллектор, поднимает напорный диск. Движение напорного диска и рычага находится в прямой зависимости к объему поступающего воздуха.

    Такое измерение воздуха превращаются во впрыскиваемую величину управляющим плунжером в дозаторе топлива. Плунжер опирается на рычаг измерителя расхода воздуха, поднимается и падает пропорционально напорному диску. Положение плунжера управляет потоком топлива к инжекторам. Когда воздушный поток в двигателе увеличивается и измеритель воздуха поднимается, то плунжер пропорционально увеличивает поток топлива. Это позволяет поддерживать правильное соотношение горючей смеси.

    Рисунок 4.1 — Электронная система распределенного впрыска

    В системе непрерывного впрыска все измерения топлива происходят в дозаторе. Во время работы двигателя топливные форсунки подают топливо непрерывно; их назначение — только распыление топлива. Это отличие от импульсных систем, где измерение топлива управляется открытием и закрытием инжекторов.

    Рисунок 4.2 — Измерение топлива управляющим золотником в дозаторе топлива:

    При малом воздушном потоке (а), отклонение измерителя расхода воздуха и управляющего золотника мало, так что меньшее количество топлива подается к инжекторам. При увеличении воздушного потока (b), когда измеритель расхода воздуха поднимается, управляющий золотник в свою очередь поднимается и большее количество топлива подается к инжекторам.

    Государственная система обеспечения единства измерений в России

    . и стандартизации Российской Федерации Руководство и организация работ по обеспечению единства измерений в нашей стране осуществляется не только через государственные научные центры, . в установленной сфере деятельности; организационно-методическое руководство работами по созданию федеральной системы каталогизации для федеральных государственных нужд; функции национального органа по стандартизации .

    Список литературы

    1. Системы впрыска топлива BOSCH, /Сост. В.А. Деревянко;

    — Пер. с пол. В. Мицкевич. — М.: Петит, 2000. — 200с.

    2. Шестопалов С.К. Устройство, техническое обслуживание и ремонт легковых автомобилей: Учеб. Для нач. проф. Образования: Учеб. Пособие для сред. Проф. Образования. — М.: ПрофОбрИздат, 2001. — 544 с.

    Примеры похожих учебных работ

    Винтомоторные поршневые двигатели

    . (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень. 2.2. Классификация поршневых двигателей Авиационные поршневые двигатели могут быть классифицированы по различным признакам: по числу цилиндров – на .

    Реактивные двигатели

    . основных класса реактивных двигателей: воздушно-реактивные двигатели -тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. ракетные двигатели- содержат все компоненты рабочего тела на борту .

    Принцип работы двигателя автомобиля

    . на типы по различным признакам (рис.1). Рис.1. Основные типы автомобильных двигателей, классифицированных по различным признакам У четырехтактных двигателей полный рабочий процесс (цикл) совершается за четыре такта (впуск, .

    Система питания двигателя от впрыска топлива презентация

    . требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта. Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск — одна форсунка на все .

    Дизельные двигатели

    Техническое обслуживание дизельного двигателя

    . турбокомпрессора. Техническое обслуживание и ремонт грузовых автомобилей. курсовая работа [812,2 K], добавлен 11.04.2015 Техническое обслуживание и ремонт автомобилей. Общее устройство топливной системы. Устройство и работа карбюраторного двигателя .

    Введение
    Свой путь инжекторные двигатели начали в авиации — первый авиамотор с впрыском топлива был создан еще в 1916 году (причем в России, выдающимися конструкторами Б.С. Стечкиным и А.А. Микулиным), однако массовое производство таких систем было начато перед Второй Мировой войной в Европе. Уже тогда о себе заявила фирма Bosch, которая одной из первых стала создавать инжекторные системы подачи топлива.

    В автомобилях инжекторы появились в 1950-х годах, однако в то время они были не слишком интересны ни производителям, ни потребителям. И только с 1970-х годов, когда остро встал вопрос об экологической безопасности двигателей, а техника достигла достаточного для создания сложной автоматики уровня, инжекторные системы стали получать все большее и большее распространение. На сегодняшний день инжекторные моторы занимают наибольшую долю рынка.

    Что такое инжекторный двигатель?
    Инжекторный двигатель — Именно им оснащается любая современная машина. Реализация ресурса такого двигателя внутреннего сгорания (ДВС) рассчитана на экономный расход топлива, минимизацию его выхлопа в окружающую среду. Проведем небольшой экскурс по изучению агрегата .


    1. Заполнение горючим цилиндров.

    2. Сжатие его поршнем для сгорания.

    3. Рабочий ход — получение механической энергии путем детонации горючего вещества.

    4. Вывод переработанного сырья в атмосферу.

    При первом такте поршень максимально опускается вниз — через клапан подается перемешанный с воздухом бензин. Далее, поршень поднимается до упора, закрывая клапан и сжимая смесь. После этого свеча отсекает искру — она запускает детонацию сдавленного вещества.

    Повышение температуры в камере и образование газов продвигают поршень вперед, а коленвал за счет инерции возвращает его на верхнюю позицию. При высокой скорости оборотов давление нагнетается еще больше, открывается выходной клапан. Продукты переработки бензина устремляются к нему. Для более рационального функционирования используется комплекс датчиков, которые определяют получаемую на механизмы нагрузку, рассчитывают порции компонентов детонирующей смеси для обеспечения движения с циклом, равным такту.

    в настоящее время системами подачи топлива управляют специальные микроконтроллеры, этот вид управления называется электронным. принцип работы такой системы основан на том, что решение о моменте и длительности открытия форсунок принимает микроконтроллер, основываясь на данных, поступающих от датчиков. на ранних моделях системы подачи топлива, в роли контроллера выступали специальные механические устройства.
    Моновпрыск инжкторной системы .
    Моновпрыск - это инжекторная система подачи топлива в двигатель, которая используется современных автомобилях. Это переходная система подачи топлива, которая была внедрена в широкое использование вместо карбюратора. Особенностью впрыска топлива в этой системе является то, что для этого используется одна форсунка, которая располагается на месте карбюратора.
    Эта форсунка распрыскивает топливо во все цилиндры. К сожалению из за новых экологических стандартов, на сегодняшний день, этот способ подачи топлива для бензинового двигателя не востребован, на смену ему пришел распределенный впрыск.
    Конечно же, система моновпрыска выигрывает у карбюраторной системы подачи топлива, и имеет как достоинства так и недостатки, какие именно - рассмотрим немного ниже.
    Достоинства системы моновпрыска:
    • Упрощенный запуск двигателя. С помощью электромагнитного клапана, который контролирует все процессы работы моновпрыска, возможен более легкий запуск двигателя, по сравнению с карбюраторными двигателями, ведь он забирает часть процессов запуска на себя.
    • Уменьшение расхода топлива. Карбюраторные автомобили подвержены повышенному расходу топлива из за неправильной настройки карбюратора, с помощью использования системы моновпрыска, можно сэкономить топливо как при запуске двигателя, так и в процессе передвижения автомобиля.
    • Не требуется ручная настройка системы. Опять таки, если в карбюраторной системе подачи топлива, требуется вмешательство мастера и кропотливая настройка, то система моновпрыска настраивается благодаря данным, которые передают датчики кислорода.
    • Уменьшение выбросов углекислого газа.
    • Улучшенные показатели. Благодаря высокой точности работы всей системы моновпрыска можно достичь улучшенных динамических характеристик автомобиля
    Как и у любой техники, система моновпрыска имеет и свои недостатки:
    • Большая стоимость ремонта и комплектующих. Как правило, никто не рассчитывает на поломку, но так или иначе она произойдет и в этот момент необходимо быть готовым к этой процедуре. Отремонтировать или заменить один из функциональных узлов системы обойдется в хорошую копеечку.
    • Низкая пригодность большинства узлов к ремонту. Практически всегда ремонт дешевле, чем полная замена, поэтому возможность ремонта очень важна для дорогостоящих элементов. Система моновпрыска этим похвастаться не может, как правило поломка ведет за собой полную или частичную замену функционирующих узлов.
    • Необходимость в качественном топливе. В нашей стране приобрести по праву качественное топливо практически невозможно, ведь большая часть заправочных станций попросту используется для закупки и реализации топливо низкого качества.
    • Зависимость от электропитания. Для работы системы моновпрыска необходимо электропитание. В этом случае карбюраторная система выигрывает, ведь для запуска двигателя достаточно прокрутить двигатель и подать искру, топливо подается механическим путем. Используя моновпрыск - нужно иметь всегда хороший заряд АКБ, в противном случае Вы рискуете не завести автомобиль.
    • Обслуживание и диагностика. Для определения проблем в работе моновпрыска, необходимо использование специального оборудования для диагностики, а также ремонта. Без обращения на автомобильный сервис - не обойтись.
    Моновпрыск по сути, это электронно-управляемая, одноточечная система впрыска низкого давления, которая используется в бензиновых двигателях. Особенность моновпрыска, как уже говорилось ранее, это форсунка, которой управляет электромагнитный клапан. Для дозирования воздуха при создании топливной смеси, используется дроссельная заслонка. Во впускном трубопроводе происходит то самое распределение топлива по цилиндрам двигателя, этому также способствуют специальные датчики, которые контролируют все характеристики двигателя. Форсунка располагается над дроссельной заслонкой. Струя топлива направлена прямо в отверстие между корпусом и самой дроссельной заслонкой. Впрыск топлива через форсунку синхронизирован с импульсами зажигания.
    Во время пуска холодного двигателя, а также сразу после пуска - время впрыскивания топлива увеличено, специально для обогащения топливной смеси. При непрогретом двигателе - положение дроссельной заслонки устанавливается так, чтобы в двигатель попадало побольше топливной смеси для поддержания оборотов коленчатого вала. Весь процесс впрыска топлива, контролируется электронным блоком управления. По сигналам различных датчиков (датчик положения дроссельной заслонки, датчик лямба-зонд, датчик температуры) вычисляется необходимое количество топлива и эти данные передаются на форсунку. Воздух в свою очередь, попадает через воздушный фильтр во впускной коллектор, топливо и воздух смешиваются между собой, создавая топливную смесь, которая поступает в цилиндры двигателя.
    Неисправности в работе моновпрыска. Владельца автомобиля, всегда подстерегают скрытые неприятности, которые немного позже выливаются экономическими тратами. Обычно на деньги попадают владельцы подержанных автомобилей. Неисправностями моновпрыска может выступать как банальное засорение форсунки так и серьезные поломки в электронике.
    Устройство и принцип работы


    В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков. Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам. Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения. Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Датчик положения коленчатого вала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ - полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный "жизненно важный" в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса. Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него). Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.



    Форсунки


    • Электромагнитная форсунка– довольно проста и ставится на бензиновые моторы (в большинстве случаев). Ею оснащают и двигатели с непосредственным впрыском. Ее главными составными частями являются оснащенный иглой электромагнитный клапан, а также сопло. В процессе функционирования на обмотку клапана подается электрический разряд. Частотой его подачи ведает специальный электронный блок управления. В ходе процесса происходит образование электромагнитного поля. Оно втягивает иглу, освобождает сопло и происходит впрыск, причем делается это одновременно со сжиманием пружины, которая разжимается после исчезновения электромагнитного поля и возвращает иглу в исходное положение.

    • Пьезоэлектрическая форсунка– это наиболее совершенный (в техническом отношении) вариант. Как правило, ею оснащают дизельные движки. У нее немало достоинств, среди которых скорость работы (по сравнению электромагнитным устройством она быстрее в 4 раза), а также предельно точная и выверенная дозировка. В данном случае применяется пьезокристалл, который изменяет свою длину под напряжением. Это устройство состоит из толкателя, пьезоэлемента, клапана и иглы.

    • Принцип работы схож с электрогидравлической форсункой. Здесь также применена схема с разницей в давлении топлива. Электрический ток удлиняет пьезоэлемент, который давит на толкатель. В результате переключающий клапан открывается, и топливо вливается в магистраль. Давление на иглу уменьшается, и она отходит вверх, производя впрыск.

    • Электрогидравлическая форсунка– применяется на дизельных моторах (в том числе с системой Common Rail). Основные элементы данной форсунки – это камера управления, дроссели (впускной и сливной) и электромагнитный клапан. Работают они благодаря разнице в давлении солярки на форсунку и поршень: иглу форсунки топливо прижимает к седлу, тогда как электромагнитный клапан закрыт (обесточен).

    • Когда блок управления открывает клапан, открывается и дроссель (сливной). Далее происходит заполнение топливной магистрали соляркой, вытекающей через дроссель. При этом начинает уменьшаться давление дизтоплива на поршень, тогда как на игле оно остается прежним. Из-за этого игла приподнимается и осуществляется впрыск.

    Каталитический нейтрализатор. Внешне он имеет сходство с сотами, которые покрыты специальным слоем. Его задача состоит в дожигании несгоревшего топлива, вылетающего из камеры сгорания вместе с выхлопными газами. Но он теряет эту способность в результате всего нескольких заправок этилированным бензином. Однако не только топливо может стать причиной неисправности. Часто нейтрализатор просто оплавляется в результате длительной езды на обогащенной смеси – соты попросту забиваются нагаром. Это происходит в результате поломки датчика кислорода или неисправностей в системе зажигания



    Датчик кислорода


    • Датчик кислорода. Чаще всего автомобили оснащают циркониевыми датчиками, которые прогреваются до рабочей температуры (свыше 300 °С) и подают блоку управления информацию о состоянии смеси, ориентируясь на состав выхлопа. Если смесь слишком богатая или бедная – компьютер корректирует подачу топлива, соответственно увеличивая или уменьшая его количество.

    • Как вы могли убедиться, инжектор представляет собой весьма сложный механизм. Поэтому такие операции, как чистка инжектора или его ремонт, не рекомендуется проводить самостоятельно.


    Заключение
    Согласно моего написанного реферата по теме «Инжекторные системы.

    Наверное, уже нет никакой нужды доказывать всем преимущества автомобильных двигателей, оснащенных системами впрыска топлива, и массовый переход даже отечественных автопроизводителей лишь очередное подтверждение превосходства данных систем над их карбюраторными собратьями. Во всем мире такой переход осуществился порядка 20-25 лет назад, автолюбители сразу ощутили все плюсы эксплуатации автомобилей с такими двигателями: уверенный холодный пуск, отсутствие провалов при езде с непрогретым двигателем, повышенные тяговые характеристики двигателей, пониженный расход топлива, и самое главное — это высокая экологичность. Поэтому судьба двигателей с карбюраторной системой питания была предрешена в одночасье.

    С середины 1980-х годов карбюраторы стали вытесняться более эффективными инжекторными системами. Главными их преимуществами являются лучшие пусковые свойства (они меньше зависят от окружающей температуры), надежность, экономичность, лучшие мощностные характеристики, а также меньшая токсичность выхлопа. Однако инжекторные системы более привередливы к качеству бензина. Так, не допускается работа двигателей с системой впрыска топлива на этилированном бензине. Это приводит к выходу из строя нейтрализатора и датчика концентрации кислорода.

    Российские автолюбители, не избалованные техническими изысками, сначала приняли в штыки решение отечественных автопроизводителей оснащать автомобили системами впрыска топлива, одно время была даже такая ситуация, что за автомобиль с карбюраторным двигателем просили на 200—300 у.е. меньше, чем за впрысковый автомобиль той же комплектации. Нежелание покупать автомобиль с системой впрыска топлива было связано с тем, что она гораздо сложнее по конструкции, чем карбюратор, и ее диагностикой и ремонтом в то время занимались единицы СТОА, к тому же запчасти стоили на порядок дороже.

    Прошло время, автопроизводители решили проблемы с надежностью, прилавки магазинов завалены запчастями, и вот теперь большинство автомобилей сходят с конвейера с двигателями, оснащенными системами впрыска топлива. Автолюбители к ним привыкли, но у многих сформировалось стойкое убеждение, что пока система работает, к ней прикасаться не надо. Это убеждение в корне неверно, потому как только качественное и своевременное обслуживание — залог здоровья двигателя. В первую очередь это важно для нас, ведь качество российского топлива оставляет желать лучшего. Содержание серы и различных смол в отечественном бензине часто превосходит все разумные пределы, и вся эта гадость осаждается на форсунках, топливной рампе и регуляторе давления топлива в виде нерастворимых в бензине лаковых отложений. Эти отложения

    уменьшают проходные сечения топливных каналов, ухудшают распыл

    топлива, попадая под запорные иглы форсунок, лишают последних герметичности, вследствие чего снижается мощность двигателя, растет токсичность отработавших газов и повышается расход топлива.

    Поэтому, становится вполне понятна необходимость создания на станциях технического обслуживания и ремонта специализированных участков по диагностике и ремонту топливной аппаратуры транспортных средств.

    И здесь мы переходим к важному вопросу. В целом системы впрыска устроены логичнее и даже проще карбюраторов. Но уровень их технического исполнения таков, что найти неисправность без специального диагностического оборудования сложно, а уж отремонтировать - тем более. И вряд ли здесь поможет умелец в робе с продранными локтями, который регулирует карбюраторы на улице. И хотя ломаются системы впрыска крайне редко, ищите хорошую станцию заранее.

    В данной работе будут рассмотрены разнообразные системы впрыска топлива, их история развитие в жизни автомобильной промышленности, особенности строения, которые с каждым годом становятся всё более и более продвинутыми и принципиальные различия. Главной же целью этой работы будет исследование работы, технической эксплуатации топливной аппаратуры. Также будут рассмотрены стенды и установки для диагностики и ремонта топливной аппаратуры различных фирм, будет приведена конструкция данных стендов и их характеристика, в том числе будут предложены конструкции установок, предназначенных для промывки и диагностики форсунок. В конце работы будут сделаны соответствующие выводы.

    1. Исследовательская часть

    1.1 Конструктивные особенности систем питания

    1.1.1 Конструктивные особенности систем питания бензиновых двигателей

    Среди модификаций различаются системы центрального и распределенного впрыска (одновременного и последовательного), системы зажигания с распределителем и без распределителя. Система самодиагностики совершенствуется за счет увеличения параметров, регистрируемых системой. В настоящее время таких параметров может быть более сотни.

    Существует несколько способов впрыска топлива: прямой, при котором топливо впрыскивается непосредственно в каждый цилиндр, а также непрямой, при котором топливо смешивается с воздухом перед впускным клапаном цилиндра.

    Прямой способ впрыска топлива не используется из-за ряда чисто технических трудностей его реализации. Во-первых, топливо необходимо впрыскивать в цилиндр под большим давлением что требует мощного насоса и вызывает повышенную шумность, во-вторых, моменты впрыска топлива должны быть синхронизированы с вращением коленчатого вала двигателя.

    При непрямом впрыске топлива топливо распыляется под небольшим давлением во впускной тракт, причем впрыск производится одновременно всеми форсунками, независимо от тактов в цилиндрах.

    При непрямом впрыске существует два способа подачи топлива:

    1) Непрерывный впрыск. При работе двигателя топливо непрерывно распыляется форсунками, а регулирование состава рабочей смеси осуществляется изменением давления впрыска. Однако отношение потребления топлива на холостом ходу и при работе с полной нагрузкой достигает 1:60, причем регулировка должна осуществляться с высокой точностью. Это приводит к неоправданному усложнению конструкции топливной системы.

    2) Дробный впрыск. Топливо распыляется через равномерные интервалы времени при постоянном давлении (подробнее см. ниже). Эти интервалы времени могут быть как синхронизированы, так и не синхронизированы с открытием впускных клапанов двигателя.

    Так же в двигателе может быть установлена одна форсунка (одноточечный или дроссельный впрыск) или для каждого цилиндра устанавливается своя форсунка (многоточечный или разделенный впрыск).

    Форсунка для одноточечного впрыска устанавливается над дроссельной заслонкой, поэтому такая система иногда называется системой с дроссельным впрыском топлива. Она является относительно дешевой. В

    большинстве систем используется установка форсунок для каждого цилиндра, поскольку, несмотря на дополнительную стоимость, эти системы обладают рядом преимуществ. Независимо от типа системы, их общие принципы работы поясняются.

    1.1.1.1 Конструктивные особенности устройства систем питания двигателя с впрыском топлива

    Рисунок 1.1 - Электромагнитная форсунка

    Моновпрыск направляет подготовленную смесь во впускной коллектор. В этом он схож с карбюратором. На современных транспортных средствах работой инжекторов и моновпрысков управляют электронные процессоры. Они контролируют работу каждого цилиндра.

    Рассмотрим устройство простейшей инжекторной системы (рисунок 1.3).

    Она включает в себя следующие элементы:

    -электронный блок управления;

    -датчики угла поворота дроссельной заслонки, температуры охлаждающей жидкости и количества оборотов коленчатого вала;

    Во впрысковой системе питания используют двухступенчатый неразборный электрический бензонасос роторно-роликового типа. Его устанавливают в топливном баке. Такой насос подает топливо под давлением свыше 280 кПа.

    Регулятор давления поддерживает необходимую разницу давлений между топливом в форсунках и воздухом во впускном коллекторе. Он выполнен в виде мембранного клапана, установленного на топливной рампе. При повышении нагрузки двигателя этот регулятор увеличивает давление топлива, подаваемого к форсункам, а при снижении — уменьшает, возвращая избыток топлива по сливной магистрали в бак.

    а — одноточечная; б — многоточечная

    Рисунок 1.2 - Системы впрыска

    1 — топливный бак; 2 — электробензонасос; 3 — топливный фильтр; 4 — регулятор давления топлива; 5 — форсунка; 6 — электронный блок управления; 7 — датчик массового расхода воздуха; 8 — датчик положения дроссельной заслонки; 9 — датчик температуры ОЖ; 10 — регулятор ХХ; 11 — датчик положения коленвала; 12 — датчик кислорода; 13 — нейтрализатор; 14 — датчик детонации; 15 — клапан продувки адсорбера; 16 — адсорбер.

    Рисунок 1.3 - Инжекторная система

    При возникновении неполадок в системе электронный блок управления предупреждает о них водителя с помощью контрольной лампы Check Engine (этот индикатор может быть выполнен как в виде указанной надписи, так и в виде пиктограммы с изображением двигателя). В его оперативной памяти сохраняются диагностические коды, указывающие места возникновения неисправностей. Специалисты с помощью определенных манипуляций или специального считывающего устройства могут получить информацию об этих кодах и быстро обнаружить неполадки.

    Датчик положения дроссельной заслонки размещен на дроссельном патрубке и связан с осью дроссельной заслонки. Он представляет собой

    потенциометр. При нажатии на педаль газа поворачивается дроссельная заслонка и увеличивается напряжение на выходе датчика.

    Обрабатывая эту информацию, электронный блок управления корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (то есть в зависимости от того, насколько сильно вы нажмете на педаль газа).

    Датчик температуры охлаждающей жидкости — это термистор, то есть резистор, сопротивление которого зависит от температуры: при низкой температуре он имеет высокое сопротивление, а при высокой температуре — низкое. Датчик расположен в потоке охлаждающей жидкости двигателя. Электронный блок управления измеряет падение напряжения на датчике и таким образом определяет температуру охлаждающей жидкости. Эту температуру он постоянно учитывает, управляя работой большинства систем.

    Датчик положения коленвала (индуктивный) координирует работу форсунок. С его помощью блок управления, получив информацию о положении коленчатого вала и соответственно о тактах двигателя, дает сигнал на срабатывание конкретной форсунки, которая в нужный момент подает распыленное топливо к соответствующему цилиндру.

    Системы впрыска современных автомобилей, в отличие от простейшего инжектора, оборудуют целым рядом дополнительных устройств и датчиков, улучшающих работу двигателя: лямбда-зондом, каталитическим нейтрализатором, датчиками детонации и температуры впускного воздуха и т. д.

    Система LH Jetronic отличается от системы L Jetronic только установкой датчика массового расхода воздуха с нагретым проводом.

    Работа системы L Jetronic заключается в обеспечении оптимального соотношения воздуха и топлива в рабочей смеси для всех режимов работы двигателя, а также в определении времени и длительности впрысков топлива для каждой из форсунок.

    Для обеспечения разделенного впрыска топлива требуется установка форсунок позади впускных клапанов для каждого цилиндра. При открывании клапана облако топлива втягивается вместе с воздухом в цилиндр двигателя, где и образуется рабочая смесь.

    Читайте также: