Реферат по теме катушка тесла

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Выполнил ученик 11Б класса

МБОУ Гимназии№22

Корзун Виктор

Руководитель: Лой Инна Станиславовна

Катушка Тесла и демонстрация невероятных свойств

электромагнитного поля катушки Тесла

Никола Тесла и его изобретения…………………..……. 6стр.

Схема установки катушки Тесла…………………………..…. 9стр.

Сборка катушки Тесла……………….…..………. 11стр.

Расчет основных характеристик изготовленной катушки Тесла………………………………………………….. 11стр.

Экспериментальные опыты применения катушки Тесла….………………………………………….….…12стр.

Современное применение идей Тесла…………..…..13стр.

Я мог бы расколоть земной шар, но никогда

не сделаю этого.

Моей главной целью было указать на новые явления

и распространить идеи, которые и станут

отправными точками для новых исследований.

Никола Тесла

Объект исследования: трансформатор Тесла.

Предмет исследования: электромагнитное поле трансформатора Тесла, относительно высокочастотные разряды.

Цель исследования: изготовить трансформатор Тесла и на основе полученной установки провести эксперименты .

Объект, предмет и цель исследования обусловили постановку следующей гипотезы: вокруг катушки Тесла образуется электромагнитное поле огромной напряженности, способное передавать электрический ток беспроводным способом.

Задачи:

Изучить литературу по проблеме исследования.

Познакомиться с историей изобретения и принципом работы катушки Тесла.

Поиск деталей и изготовление катушки Тесла.

Провести расчеты характеристик катушки Тесла и опыты, демонстрирующие ее работу.

Подготовить фото и видеоотчет о проделанной работе для ознакомления учащихся 9-11 классов.

Методы исследования:

Эмпирические: наблюдение высокочастотных электрических разрядов в газовой среде, исследование, эксперимент.

Теоретические: конструирование катушки Тесла, анализ литературы, статистическая обработка результатов.

Этапы исследования:

Теоретическая часть. Изучение литературы по проблеме исследования.

Практическая часть. Изготовление трансформатора Тесла и демонстрация невероятных свойств электромагнитного поля катушки Тесла

Новизна: заключается в том, что я построил единственную в республике Адыгея катушку значительных масштабов, изучив патенты, собрал трансформатор, и в рамках проведения конференции провел серию опытов и тем самым, показал значимость трудов Тесла.

Практическая значимость: результат работы носит просвятительный характер, это позволит, повысит заинтересованность учеников к углубленному изучению таких предметов, как физика, юных исследователей - к исследовательской деятельности, и возможно для кого-то определит область дальнейшей деятельности.

Теоретическая часть

I .1.Никола Тесла и его изобретения

Что мы знаем о Николе Тесла и его работах? Простому обывателю деятельность Тесла безразлична и неинтересна. В школах и институтах о Тесла упоминается только когда говорят об одноименной единице индукции магнитного поля. Вся его деятельность окутана завесой таинственности, а многие просто считают его шарлатаном от науки. Попытаемся рассмотреть значимость изобретений Тесла.

НИКОЛА ТЕСЛА - изобретатель в области электротехники и радиотехники, инженер, физик. Родился и вырос в Австро-Венгрии, в последующие годы в основном работал во Франции и США.

Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, целью которых было показать наличие эфира как особой формы материи, поддающейся использованию в технике. Именем Н. Тесла названа единица измерения индукции магнитного потока. Работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение.

До 1882 года Тесла работал инженером-электриком в правительственной телеграфной компании в Будапеште. В феврале 1882 года Тесла придумал, как можно было бы использовать в электродвигателе явление, позже получившее название вращающегося магнитного поля. В свободное время Тесла работал над изготовлением модели асинхронного электродвигателя, а в 1883 году демонстрировал работу двигателя в мэрии Страсбурга.

6 июля 1884 года Тесла прибыл в Нью-Йорк, устроился на работу в компанию Томаса Эдисона в качестве инженера по ремонту электродвигателей и генераторов постоянного тока. Эдисон довольно холодно воспринимал новые идеи Тесла и всё более открыто высказывал неодобрение направлению личных изысканий изобретателя. Весной 1885 года Эдисон пообещал Тесле 50 тыс. долларов, если у него получится конструктивно улучшить электрические машины постоянного тока, придуманные Эдисоном. Никола активно взялся за работу и вскоре представил 24 разновидности машины Эдисона, новый коммутатор и регулятор, значительно улучшающие эксплуатационные характеристики. Одобрив все усовершенствования, в ответ на вопрос о вознаграждении Эдисон отказал. Тесла немедленно уволился.

В 1888—1895 годах Тесла занимался исследованиями магнитных полей и высоких частот в своей лаборатории. Эти годы были наиболее плодотворными, именно тогда он запатентовал большинство своих изобретений.

В конце 1896 года Тесла добился передачи радиосигнала на расстояние 48 км.

В Колорадо Спрингс Тесла организовал небольшую лабораторию. Для изучения гроз Тесла сконструировал специальное устройство, представляющее собой трансформатор, один конец первичной обмотки которого был заземлён, а второй соединялся с металлическим шаром на выдвигающемся вверх стержне. К вторичной обмотке подключалось чувствительное самонастраивающееся устройство, соединённое с записывающим прибором. Это устройство позволило Николе Тесле изучать изменения потенциала Земли, в том числе и эффект стоячих электромагнитных волн, вызванный грозовыми разрядами в земной атмосфере. Наблюдения навели изобретателя на мысль о возможности передачи электроэнергии без проводов на большие расстояния.

Следующий эксперимент Тесла направил на исследование возможности самостоятельного создания стоячей электромагнитной волны. На огромное основание трансформатора были намотаны витки первичной обмотки. Вторичная обмотка соединялась с 60-метровой мачтой и заканчивалась медным шаром. При пропускании через первичную катушку переменного напряжения в несколько тысяч вольт во вторичной катушке возникал ток с напряжением в несколько миллионов вольт и частотой до 150 тысяч герц.

При проведении эксперимента были зафиксированы грозоподобные разряды, исходящие от металлического шара. Длина некоторых разрядов достигала почти 4,5 км, а гром был слышен на расстоянии до 24 км.

На основании эксперимента Тесла сделал вывод о том, что устройство позволило ему генерировать стоячие волны, которые сферически распространялись от передатчика, а затем с возрастающей интенсивностью сходились в диаметрально противоположной точке земного шара, где-то около островов Амстердам и Сен-Поль в Индийском океане.

В 1917 году Тесла предложил принцип действия устройства для радиообнаружения подводных лодок.

Одним из его самых знаменитых изобретений является Трансформатор Тесла.

Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника, конденсаторов, тороида и терминала.

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён разрядник.

Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов.

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Тесла основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.

I .2. Схема установки катушки Тесла

Трансформатор состоит из двух катушек, у которых нет общего железного сердечника. На первичной обмотке должно быть столько витков, сколько требует того расчёт. На вторичную наматывают уже как минимум 500 витков. Катушка Тесла обладает таким коэффициентом трансформации, который в 10-50 раз больше, чем отношение количества витков на второй обмотке к первичной. На выходе напряжение такого трансформатора может превышать несколько миллионов вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров. Очень важно: и конденсатор, и первичная обмотка обязательно должны, в конечном счете, образовывать специфический колебательный контур, входящий в состояние резонанса с вторичной обмоткой. Схема установки катушки предполагает силу тока 70-900А.

В Интернете можно найти разные варианты изготовления источников высокой частоты и напряжения. Мы выбрали схему запатентованную Николой Теслой, доработав её.

Пеньковская Татьяна Викторовна

Физика – это удивительная наука! Это наука из наук! Еще из незапамятных времен она держалась и всегда будет держаться на трех китах: гипотеза, закон, эксперимент. Экспериментальная физика имеет огромное значение в развитии науки. Эксперименты с электричеством… кажется, что тут еще можно открывать и экспериментировать, ведь сейчас мы воспринимаем электричество как самое обыденное явление: холодильник, телевизор, компьютер, микроволновка. Однако, сам ток доходит к нам, увы, лишь по проводам. Это всё очень далеко от того, что Никола Тесла мог делать более 100 лет назад, и чего современная физика не может объяснить до сих пор. Ещё в 1900–х годах Тесла мог передавать на огромные расстояния ток без проводов, получить ток 100 млн. ампер и напряжение 10 тыс. вольт. И поддерживать такие характеристики любое необходимое время. Современная физика достичь таких показателей просто не в состоянии. Современные учёные достигли лишь планки в 30 миллионов ампер (при взрыве электромагнитной бомбы), и 300 миллионов при термоядерной реакции - да и то, на доли секунды. Однако, в наше время, энтузиасты и учёные мира пытаются повторить опыты гениального учёного и найти им применение. Я считаю себя одним из таких энтузиастов.

ВложениеРазмер
Исследовательская работа. Катушка Тесла. 408 КБ
Презентация. Катушка Тесла. 1.95 МБ

Предварительный просмотр:

Муниципальное образовательное учреждение

Жирновского муниципального района, Волгоградской области

Приборы и методы экспериментальной физики.

Автор : Якутин Александр, 10 класс, 15 лет

Руководитель : Пеньковская Татьяна Викторовна,

  1. Актуальность и цели исследовательской работы.
  2. Тесла и его изобретения.
  3. Катушка Теслы.
  4. Схема установки.
  5. Результаты исследования.
  6. Современное применение идей Теслы.

1. Актуальность темы :

Физика – это удивительная наука! Это наука из наук! Еще из незапамятных времен она держалась и всегда будет держаться на трех китах: гипотеза, закон, эксперимент . Экспериментальная физика имеет огромное значение в развитии науки. Эксперименты с электричеством… кажется, что тут еще можно открывать и экспериментировать, ведь сейчас мы воспринимаем электричество как самое обыденное явление: холодильник, телевизор, компьютер, микроволновка. Однако, сам ток доходит к нам, увы, лишь по проводам . Это всё очень далеко от того, что Никола Тесла мог делать более 100 лет назад, и чего современная физика не может объяснить до сих пор. Ещё в 1900–х годах Тесла мог передавать на огромные расстояния ток без проводов, получить ток 100 млн. ампер и напряжение 10 тыс. вольт. И поддерживать такие характеристики любое необходимое время. Современная физика достичь таких показателей просто не в состоянии. Современные учёные достигли лишь планки в 30 миллионов ампер (при взрыве электромагнитной бомбы), и 300 миллионов при термоядерной реакции - да и то, на доли секунды. Однако, в наше время, энтузиасты и учёные мира пытаются повторить опыты гениального учёного и найти им применение. Я считаю себя одним из таких энтузиастов.

Цель исследовательской работы:

  1. Собрать действующую катушку Тесла, изучить ее работу, пронаблюдать образование искрового разряда.
  2. Демонстрация невероятных свойств электромагнитного поля катушки Тесла и необыкновенно интересных опытов по применению катушки.

Предмет исследования : Катушка Тесла.

Гипотеза исследования : 1. Вокруг катушки Тесла образуется электромагнитное поле огромной напряженности 2. Электромагнитное поле катушки Тесла способно передавать электрический ток без проводным способом.

Ни́кола Те́сла ( 10 июля 1856 г (Хорватия) – 7 января 1943 г (Нью-Йорк, США)) — физик, инженер, изобретатель в области электротехники и радиотехники.

3. Катушка Тесла.
С помощью катyшки pазмеpом в 61 метр, полюс котоpой возглавляла большая медная сфеpа, возвышающейся над его лабоpатоpией, Тесла генеpиpовал потенциалы, котоpые pазpяжались стpелами молний длиной до 40 метров. Гpом от высвобождаемой энеpгии мог быть yслyшан за 24 километра. Вокpyг экспеpиментальной башни пылал шаp света диаметpом в 30 метров.

Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способствует созданию внушительных электрических разрядов в воздухе. Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (телеуправление).

Вы не найдете трансформатор Теслы в кабинете физики в школе. Ими перестали комплектовать кабинеты.

Аттракцион Dr Megavolt в Окленде (США)

Оригинальное противоугонное средство, работающее по принципу все тех же катушек.

Катушки Теслы называют трансформаторами Теслы

Некоторые катушки Тесла создавались с большим прицелом на будущее, другие - исключительно в развлекательных целях. Первый такой прибор, являющийся по сути классическим резонансным трансформатором, был создан и запатентован Николой Теслой еще в 1896 году.

К сожалению, катушки Теслы мы используем чаще, как красивые игрушки. И выглядим наверно, как человек, забивающий микроскопом гвозди.

Моя установка состоит из трех блоков.

Первый блок (Блок 1) это так называемый блок питания всей установки он состоит из понижающего трансформатора Т (мощностью 9 ватт) с тремя обмотками. Первичная обмотка рассчитана на напряжение 220 вольт с частотой 50 герц. И две вторичных: первая на 40 вольт и вторая на 12 вольт.

Второй блок (Блок 2) состоит из генератора высокой частоты на основе блокинг- генератора и выпрямителей напряжения от питающего трансформатора выполненный на 2-х полупроводниковых выпрямительных диодах(VD1-VD2) и фильтрующих электролитических конденсаторах(C2-C3), которые дают выпрямленное напряжение величиной 60В. Непосредственно сам генератор выполнен на одном транзисторе VT и пассивных деталей. Фильтр частот это конденсатор (С1) емкостью 0,1 мкФ.

Третий блок (Блок 3) это и есть сам трансформатор Тесла (Т). Трансформатор представляет собой катушку с двумя обмотками. В отличие от других трансформаторов, здесь нет никакого ферромагнитного сердечника и таким образом взаимоиндукция между двумя катушками маленькая. Первичная (высоковольтная) обмотка намотана на пластиковый каркас диаметром 2,5 см, длиной 10см и имеет около1500 витков, намотанных в один слой лакированным проводом диаметром 0,05мм. Вторичная обмотка диаметром 6 см длиной около 5см и имеет 3,5 витка, намотанных проводом диаметром 1мм. Первичная обмотка вложена во вторичную. Работает установка очень просто, первый блок (Блок 1) дает напряжение для питания (Блок 2).

Демонстрирую работу катушки.

Можно подвести некоторые итоги. Мои гипотезы подтвердились: 1) лампочки, наполненные инертным газом светятся вблизи катушки, следовательно, вокруг установки действительно существует электромагнитное поле высокой напряженности; 2) лампочки загорались сами по себе у меня в руках на определенном расстоянии, значит, электрический ток может передаваться без проводов.

Необходимо отметить и еще одну важную вещь: действие этой установки на человека :

Как Вы заметили при работе меня не било током: токи высокой частоты, которые проходят по поверхности человеческого организма не причиняют ему вреда, наоборот, оказывают тонизирующее и оздоровительное действие, это используется даже в современной медицине. Однако надо заметить, что электрические разряды, которые Вы видели, имеют высокую температуру, поэтому долго ловить молнию руками не советую!

Нажмите, чтобы узнать подробности

У каждого человека есть свои хобби, увлечения. Кто-то любит играть футбол, кто-то работать с компьютером, а я люблю мастерить что-нибудь своими руками. Будущий учеником начальных классов я научился собирать простые электрические цепи из батарейки, лампочек и выключателя. Я лампочку включал и выключал, и это мне приносило какое-то приятное удовольствие. Но в то же время я испытывал недовольство и неудовлетворённость достигнутым. Очень хотелось мастерить изделия своими руками, творить, создавать и узнавать больше.

Актуальность работы. Работа посвящена созданию катушки Тесла, с помощью которой можно показать возможность передачи электричества на расстояние без проводов. Передача тока без проводов и на сегодняшний день является наиболее актуальной. Я считаю, что просто заинтересовать других ребят удивительной наукой физикой через интересные опыты с катушкой Тесла тоже не менее актуально.

Цель работы:

- сделать прибор для передачи тока на расстоянии без проводов.

- объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.

Задачи:

3.Провести испытание модели в действии.

2. Обзор литературы

Электроэнергия играет важную роль в быту современного человека,
сопровождая его повсюду. Каждый из нас пользуется бытовыми электроприборами, лифтами, банкоматами, компьютерами, мобильными телефонами и т. д. Все эти и многие другие, привычные каждому человеку электроприборы, служат одной цели - создание для человека более удобные и комфортные условия жизни. Но есть одно но: они не могут функционировать без постоянного электроснабжения. При этом количество

электроприборов, окружающих нас, не становится меньше, оно постоянно увеличивается из года в год. Увеличивается и потребность в эффективной передаче электроэнергии. Все мы знаем, что при передаче электричества через провода часть его теряется из-за сопротивления самих проводов. Ученые заинтересованы решением вопроса передачи электричества без потерь. Но чтобы не было потерь, значит надо обойтись без проводов. Вот тогда и появилась идея о передачи электричества на расстоянии без проводов.

3. Устройство и принцип работы катушки Тесла

Простейший трансформатор или катушка Тесла состоит из двух катушек без общего сердечника, а также разрядника, конденсатора и тороида.

Принцип работы таков: конденсатор заряжается от высоковольтного источника питания, затем разряжается через искровой промежуток на первичную катушку. Таким образом, на вторичную катушку передается часть энергии, и возникают резонансные колебания, что приводит к возникновению на выходе высокого напряжения. Разряды с тороида могут достигать длины в несколько метров, но расстояние пробоя зависит от мощности и напряжения первичного контура. Трансформатор Тесла основан на использовании резонансных стоячих электромагнитных волн в катушках. Его первичная обмотка содержит небольшое число витков и является частью искрового колебательного контура, включающего в себя также конденсатор и искровой промежуток. Вторичной обмоткой служит прямая катушка провода. При совпадении частоты колебаний колебательного контура первичной обмотки с частотой одного из собственных колебаний (стоячих волн) вторичной обмотки вследствие явления резонанса во вторичной обмотке возникнет стоячая электромагнитная волна и между концами катушки появится высокое переменное напряжение.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения. Во всех типах трансформаторов Тесла основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию. Если к нему поднести катушку с медной проволокой, то на его концах появится напряжение. А если поднести люминесцентные лампы, то они загораются сами по себе. Это происходит из-за того что вокруг катушки образуется мощное магнитное поле.

4. Самодельная катушка Тесла


Для изготовления самодельной Катушки Тесла я взял обычную трубку от использованной пищевой фольги диаметром 35мм и длиной 200мм и намотал туда медную проволоку диаметром 0,18мм по всей длине виток к витку так, чтобы получилось около 1000 витков. Это будет вторичной катушкой. Теперь надо намотать первичную катушку. Для неё используется толстый провод сечением от 1 до 5мм. Я взял проволоку диаметром 2,5мм и сделал два витка вокруг вторичной катушки на всю длину, но так чтобы обмотки не соприкасались. Промежуток между катушками должен быть около 10мм. Кстати нужные проволоки можно найти в старых трансформаторах. Теперь надо собрать высокочастотный генератор, без которого работать катушка Тесла просто не будет. Для изготовления генератора нам понадобится обычный транзистор кт-805 типа nPn, а также радиатор для него, два резистора на 2,2 кОм и на 150 Ом, а также бесполярный конденсатор на 100nF и пару проводов и выключатель. Все эти компоненты можно выпаять из старого электронного хлама как я и сделал, например, от старого магнитофона. Паял я эти детали по этой схеме. Рис.2

Собрал я схему навесным монтажом с помощью паяльника т.к. схема небольшая и я решил обойтись без печатной платы и все это аккуратно приклеил к радиатору транзистора. Также я еще припаял, чтобы было удобно монтировать катушки к генератору пару проводов, а именно к базе транзистора, к коллектору и резистору R1. Потом к этим проводам прикрутил катушки как показано на схеме. К первичной катушке провода базы и резистора, а на вторичную катушку вывод коллектора. Также я спаял к концам блока питания катушки маленький выключатель. После этого всё аккуратно прикрепил на плотный картон (рис.3).

. Рис.3 Рис.4

Также чтобы передать электричество на расстоянии я сделал еще одну маленькую катушку. Для этой катушки я взял корпус от маркера и намотал туда проволоку диаметром 0.18мм так, чтобы виток был к витку. Получилось около 350 витков. Потом к концам этой проволоки я прикрепил обычный светодиод (рис.4). Полярность здесь не соблюдается т.к. напряжение переменное.

5. Эксперименты с катушкой Тесла

Эксперимент 1.

Линейчатый разряд, образованный одним электродом в разомкнутой цепи.

Эксперимент 2.

Можно коснуться электрода рукой. Это электричество не приносит никакого вреда организму. На его концах выходит напряжение около 1000 Вольт. Но у этого тока маленькая сила тока и очень большая частота около 20МГц.

Эксперимент 3.

Ионизация газа в энергосберегающих люминесцентных лампах.

Эксперимент 4.

Ионизация газа в обычной лампе накаливания.

Эксперимент 5.

Передача электричества без проводов на резонансной частоте. При поднесении светодиода к катушке он загорается.

Эксперимент 6.

Металлическая линейка, внесённая в область разряда, остаётся холодной.

6.Заключение.

Самодельная Катушка Тесла получилась на славу. С её помощью можно зажигать люминесцентные лампы на расстоянии без проводов, лишь подводя их к катушке. Также можно передавать электроэнергию на расстояние без проводов. На его концах выходит напряжение около 1000вольт. Но у этого тока маленькая сила тока и очень большая частота около 20МГц. Поэтому это электричество не приносит никакого вреда. Зато если пустить его через диодный мост и стабилитрон, то можно будет спокойно заряжать телефон без проводов. Но вы скажете, зачем мы не используем эту катушку Тесла. Мы её не используем, так как у неё очень маленький КПД. Около 10%.

1.Выполняя данный проект, я приобрел навыки работы с инструментами, научился оценивать результаты своей работы, учился связывать теорию с практикой, пользоваться инструментальными методами исследования. Кроме того, изготовление самодельных приборов побудило меня к самостоятельному получению знаний за счет более глубокого изучения дополнительной литературы.

2. Данный прибор можно применять на уроках физики как дополнительный материал для объяснения принципа работы трансформатора и электромагнитной индукции. А так же на занятиях кружка по физике и во время проведения внеурочных мероприятий для показа удивительных экспериментов с катушкой Тесла. Я надеюсь, что увидев зажигательные опыты с помощью катушки Тесла, у учащихся нашей школы возрастёт интерес к изучению физики. Еще его можно использовать в больницах или в других помещениях, где должен быть ионизированный воздух.

7. Литература.

1. Элементарный учебник физики: Учебное пособие. В 3-х т./Под ред. Г. С. Ландсберга. Т.2. Электричество и магнетизм. – 10 изд. перераб. – М.: Наука. Главная редакция физико-математической литературы.

Нажмите, чтобы узнать подробности

Цель исследования: - Изучиние фактов биографии Николы Тесла, принципов работы катушки Тесла, создание в домашних условиях.

а) Никола Тесла – физик, инженер 4

б) Трансформатор (катушка) Тесла 5

в) Создание катушки Тесла в домашних условиях 6

Библиографический список 8

Цель исследования: - изучение фактов биографии Николы Тесла, принципов работы катушки Тесла, создать катушку Тесла в домашних условиях.

собрать материалы о Никола Тесла;

изучить принцип работы катушки Тесла;

создать катушку Тесла в домашних условиях.

Методы исследования: анализ научных данных, схем, создание макета.

Основная мысль – знать и уметь создавать модели физических приборов.

Никола Тесла известен как ученый, изобретатель, коллега Томаса Эдисона, экспериментатор. Его исследования во многом опередили свое время.

Похожая на этот трансформатор схема используется в системах зажигания двигателей внутреннего сгорания, но там она низкочастотная.

В наши дни трансформатор Тесла не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.

Никола Тесла – физик, инженер

Никола Тесла родился 10 июля 1856 года в селе Смиляны (Хорватия). Ребенок посещал гимназию в Карлштате, хорошо учился, но рос слабым и нерешительным. Уже тогда у него стали проявляться некоторые странности в восприятии окружающей действительности. При взгляде на жемчуг у Теслы случалось некое подобие приступа, персики приводили его к лихорадке.

Отец Николы — Милутин Тесла, сербский православный священник, мечтал о духовной карьере для своего сына. Последний, напротив, испытывал необъяснимую тягу к естественным наукам. Понимая это, отец строго-настрого запретил мальчику поступать в политехнический институт в Граце. В 1873 году Никола Тесла вернулся домой из училища, несмотря на то, что в родном городе ученого бушевала эпидемия холеры и заразился. Доктора были уверены, что молодой человек не перенесет болезнь, однако ему удалось впервые в жизни удивить всех окружающих. Взяв с отца обещание не препятствовать его стремлению стать инженером, Никола буквально за несколько дней выздоровел.

Позднее Тесла признавался, что после болезни он может “сконструировать” любой прибор у себя в голове и там же проверить его работоспособность, не прибегая к каким-либо реальным экспериментам [3].

В 1878 году Тесла окончил институт в Граце, а в 1880 году — Пражский университет. В это же время он устраивается на работу в телеграфное учреждение в Будапеште. Здесь он впервые замечает явление, позже получившее название вращающегося магнитного поля. В 1882 году ученый переезжает в Париж и устраивается на работу в крупную компанию, в 1883 году собирает свой первый электромотор, а еще через год знакомится с величайшим на тот момент изобретателем в области электрической энергии Томасом Эдисоном.


Познакомившись с Эдисоном, молодой серб переехал на работу в США, где и прожил всю оставшуюся жизнь. Примечательно, что когда Тесла сошел с корабля в Нью-Йорке, у него в кармане было только 4 цента, рекомендательное письмо и рисунки летающей машины.

Выйдя из команды Эдисона в 1887 году, Никола основал компанию “Тесла Электрик Лайт Компани”. В период с 1888 по 1895 год Тесла экспериментирует в области магнитных полей и высоких частот. В 1899-1900 годах ученый проводит ряд экспериментов в городке Колорадо Спрингс, во время которых доказывает возможность передачи электрического тока через землю [3].

Трансформатор (катушка) Тесла

В 1891 г. Никола Тесла разработал трансформатор (катушку) при помощи которого он ставил эксперименты с электрическими разрядами высоких напряжений. Разработанное Теслой устройство состояло из блока питания, конденсатора, первичной и вторичной катушек, установленных так, что пики напряжения чередуются между ними, и двух электродов, разведенных друг от друга на расстояние. Устройство получило имя своего изобретателя. Принципы, открытые Тесла при помощи этого устройства, используется сейчас в различных областях, начиная от ускорителей частиц, заканчивая телевизорами и игрушками.

Самый простейший трансформатор Тесла состоит из двух индуктивно не связанных (без общего сердечника) катушек. Первичная обмотка изготовлена из нескольких витков толстого провода. Вторичная, высоковольтная, обмотка содержит гораздо большее число витков.

Конденсатор заряжается до напряжения в несколько десятков киловольт и как только напряжение на нём достигает напряжения пробоя искрового промежутка, возникает разряд и через первичную обмотку течёт мощный импульсный ток, создавая СВЧ электроволну. Настроенная (с помощью ферритового сердечника) в резонанс с первичной, вторичная обмотка позволяет получить выходное напряжение до нескольких миллионов вольт, приводящее к коронному разряду в воздухе (генератор молний). У трансформаторов Теслы коэффициент трансформации всегда в 10-50 раз выше отношения числа витков вторичной обмотки к числу витков первичной и пропорционален добротности вторичного контура [2].

Принцип работы данного устройства сравним с действием обычных качелей. При режиме принудительного раскачивания, максимальная амплитуда находится в пропорции к прилагаемым усилиям. Если же раскачивание производится в свободном режиме, происходит еще больший рост максимальной амплитуды. В катушке качелями является вторичный контур колебаний, а прилагаемое усилие осуществляет генератор.

Читайте также: