Реферат по физике на тему дифракция света

Обновлено: 04.07.2024

Иследовательская работа. Дифракция. Изложены результаты исследования преломения света.

Содержимое разработки

XII открытая региональная научно-практическая конференция

Автор: Бекреева Алёна

МКОУ Ордынская средняя

общеобразовательная школа №2, 10 класс

Шевякова Тамара Григорьевна,

учитель физики 1-ой квалификационной категории

Глава I. Теоретическое обоснование темы

1.2 История исследований………………………………………………4

1.3 Частные случаи дифракции…………………………………………6

Глава II. Практическая часть исследования

2.1 Дифракция на круглом отверстии………………………………….9

2.2 Дифракция на щели……………………………………. …………10

2.4 Дифракционная решётка…………………………………………. 14

Приложение 1. Френель Огюст Жан …………………..……………..17

Приложение 2. Юнг Томас …………………………………….……. 17

Приложение 3. Фраунгофер Йозеф …….…………………….………18

Приложение 4. Гримальди Франческо Мария………….………. ….18

Приложение 5. Голография……………………………………………19

Проблема: Интерес к процессам в микромире: смогу ли я наблюдать дифракцию света?

Гипотеза: свет обладает дифракцией.

Цель работы: Получить дифракцию света на различных препятствиях и исследовать её зависимость от величины препятствия и расстояния до экрана.

1. Познакомиться с источниками, содержащими сведения о дифракции.

2. Составить собственный текст на основе отобранного материала.

3. Получить фотографии дифракции света на различных препятствиях.

4. Оформить отчет об эксперименте (фотографии, выводы).

Методы исследования:

1.Анализ и отбор теоретического материала.

2.Эксперимент по получению дифракционных изображений на различных препятствиях.

3.Анализ полученных результатов дифракции.

Глава 1. Теоретическое обоснование темы


Отклонение от прямолинейного распространения волн, огибание волнами препятствий, называется дифракцией. Дифракция присуща любому волновому процессу. Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними и накладываются. Дифракция неразрывно связана с явлением интерференции . Интерференция световых волн - это наложение волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления (до темноты) результирующих световых колебаний в различных точках. Условие усиления света: , k = 0,1,2…

Условие ослабление света: , где - разность хода волн.

Наблюдается при условии, если волны имеют одинаковую частоту и постоянный сдвиг фаз (когерентные).

Общим свойством всех эффектов дифракции является зависимость степени её проявления от соотношения между длиной волны λ, размерами препятствий и расстоянием до экрана[1].

1.2 История исследований.

Дифракция была открыта Франческо Гримальди(П4) в конце XVII в.
Объяснение явления дифракции света дано Томасом Юнгом(П2) и Огюстом Френелем(П1) первой половине XIX века , которые дали описание экспериментов по наблюдению явлений интерференции и дифракции света. Среди других учёных, которые внесли значительный вклад в изучение дифракции: Гюйгенс , Пуассон , Фраунгофер (П3) и др.

Исторически в проблеме дифракции сначала рассматривались два крайних случая, связанных с ограничением препятствием (экраном с дыркой) сферической волны и это была дифракция Френеля , либо плоской волны на щели или системе отверстий - дифракция Фраунгофера [4б].

Дифракция на отверстии.


Дифракция лазерного луча с длиной волны 650 нм, прошедшего через отверстие диаметром 0,2 мм.

Дифракция на щели.


Распределение интенсивности света при дифракции на щели.

Дифракционная картина, возникающая при прохождении света через щель в непрозрачном экране.

1.3 Частные случаи дифракции.

Дифракция рентгеновских лучей.

Дифракцию рентгеновских лучей можно наблюдать, направив их на кристалл , она используется в рентгеноструктурном анализе для определения структуры кристалла. Кроме того, дифракцию рентгеновских

лучей можно получить, направив их на обычную дифракционную решётку так, чтобы угол падения был достаточно близок к 90 градусам , этим способом можно измерить длину волны рентгеновских лучей[2].

Дифракция электронов — процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет свойства, аналогичные свойствам волны. При выполнении некоторых условий, пропуская пучок электронов через материал можно зафиксировать дифракционную картину, соответствующую структуре материала. Процесс дифракции электронов получил широкое применение в аналитических исследованиях кристаллических структур металлов, сплавов, полупроводниковых материалов[3].

1.4 Применение дифракции.

Дифракция в фотографии.

Дифракцию можно наблюдать в фотографии : чрезмерное закрытие диафрагмы (относительного отверстия) приводит к падению резкости . Поэтому для сохранения оптимально резкого изображения на фотографии не рекомендуется полностью закрывать диафрагму. Нужно отметить, что для каждой фотокамеры существует своя граница, до которой можно закрывать диафрагму, не опасаясь отрицательного эффекта дифракции[4в].

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори ,

Этот принципиально новый способ фиксирования и воспроизведения пространственного изображения предметов изобретен английским физиком Д.Табором (1900-1979) в 1947 г. (Нобелевская премия 1971 г.). Экспериментальное воплощение и дальнейшая разработка этого способа (Ю. Н. Денисюком в 1962 г. и американскими физиками Э.Лейтом и Ю. Упатниексом в 1963 г.) стали возможными после появления в 1960 г. источников света высокой степени когерентности – лазеров.

Для восстановления изображения голограмма помещается в то же самое положение, где она находилась до регистрации. Ее освещают опорным

пучком того же лазера (вторая часть лазерного пучка перекрывается диафрагмой). В результате дифракции света на интерференционной структуре голограммы восстанавливается копия предметной волны, образующая объемное мнимое изображение предмета [4а].

Микроскоп и телескоп.

Дифракция налагает также предел на разрешающую способность телескопа. Вследствие дифракции волн у края оправы объектива изображением звезды будет не точка, а система светлых и тёмных колец. Предельное угловое расстояние между светящимися точками, при котором их можно различать, определяется отношением длины волны к диаметру объектива[1].

Дифракция света — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Изначально под ней подразумевалось преломление световой волной препятствия. Однако сегодня данное толкование считается частичным. С более подробным изучением передвижения волны света под дифракцией стали подразумеваться разнообразные формы распространения света в неоднородной среде. Это может быть, как огибание препятствия, так и преломление волны из-за него. Кроме того, свет может переходить от точки к точке постепенно. Это образует криволинейный волновой пучок, что связано не с дифракцией, а с геометрической оптикой.

Таким образом, в волновой теории под дифракцией понимается любое отклонение от норм геометрической оптики. Суть процесса заключается в том, что свет при входе в геометрическую тень огибает препятствие.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Где применяется, принцип Гюйгенса – Френеля

Впервые процесс распространения света был подробно представлен в работах Гюйгенса .

Принцип Гюйгенса заключается в следующем: все, что находится по близости распространения света, является причиной появления новых сферических волн. Сформированные волны рассеиваются от встретившейся точки во всех направлениях, как от излучаемого свет центра. В результате этого происходит их наложение друг на друга.

Теория Гюйгенса была дополнена Френелем. Ученый доказал, что полученная от столкновения с препятствием волна является реальной. В комплексе они интерферируют, то есть взаимодействуют друг с другом. От этого становятся сильнее, что позволяет им распространяться не только вперед, но и назад. Во время движения назад происходит контакт с первоисточником. В результате чего начинается угасание всех световых волн.

Получается, что вторичные волны усиливаются при направлении вперед, а в местах ослабления будут заметны темные участки пространства.

В подобных случаях очевидно появление дифракции на отверстии, поскольку волна огибает его края по направлению к области геометрической тени. Это объясняется тем, что отверстие вырезает светящийся диск, соразмерный его диаметру. Дальнейшее световое поле — это процесс взаимодействия волны вторичных источников, полученных на диске отверстия. В результате этого ход лучей искривляется, поскольку искривленная волна рассеивается в разных направлениях, что не совпадает с первоначальным движением.

Качество волны света, возникшей от разных точек, зависит от фазы и угла отклонения лучей. Это приводит к чередованию максимумов и минимумов.

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны. А результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Условия для возникновения дифракции

Главным условием для возникновения дифракции является наличие препятствия и первоисточника света.

Длина препятствия не должна быть больше длины волны. В противном случае волна просто рассеется или будет заметна только вблизи. Чтобы можно было заметить постоянную картину дифракции, волны должны быть от разных источников. Этого добиться несложно: достаточно иметь один источник света и несколько препятствий. Когда волна попадает на препятствие, она становится новым световым источником. В результате данного взаимодействия световых волн от разных препятствий можно получить устойчивую дифракционную картину.

Таким образом, для возникновения дифракции длина световой волны должна быть соразмерна длине препятствия. Если размеры препятствия больше длины волны, то образуется тень, поскольку волны за нее не проникают. Если размер препятствия слишком мал, то свет с ним не взаимодействует. Чем меньше отверстие препятствия, тем быстрее световая волна расходится в стороны.

Получается, что дифракционное изображение напрямую связано с геометрическими особенностями препятствия.

Где можно наблюдать в природных условиях

Яркие примеры прохождения света через препятствие можно встретить в природе. Речь идет о случаях, когда облака прикрывают солнце или луну. Солнечный свет не может продолжить прямолинейное движение сквозь призму возникшего препятствия. В результате этого лучи преломляются и образуют дугу вокруг самого светила. Кроме того, в зависимости от структуры облака, свет может рассеиваться сквозь дождевые капли. Картина преломления при этом будет представлена разноцветным сиянием.

Радуга на небе или блики масляного пятна на воде также являются примером преломления световой волной препятствия в природных условиях.

Если смотреть на пылающее пламя сквозь запотевшее окно, то можно заметить, как огонь начинает неестественно двигаться в разных направлениях. При этом он окружается разноцветным ореолом, что тоже объясняется световым преломлением препятствия.

Что такое дифракционная решетка

Сфера отклонения света от прямолинейного направления нашла свое применение в повседневной жизни. Примером тому служит светоотражение на CD или DVD дисках. На первый взгляд отражение напоминает радугу. Но при более подробном изучении становится очевидным, что характеристика данного светоотражения имеет достаточно сложную структуру. На диск наносятся на одинаковом расстоянии друг от друга дорожки. Это создает совокупность щелей. При попадании на них света происходит дифракция. Она становится причиной появления световой радуги.

Дифракционная решетка — это совокупность многочисленных щелей и расстояний между ними.

Изображение на решетке является взаимодействием волн света, которые произошли от всех имеющихся щелей одновременно. В физике этот процесс называется многолучевой интерференцией.

Наиболее сложным образцом световой дифракции считается голограмма на кредитных картах. Это связано с наличием на ней дифракционной решетки более сложного вида. В центре голограммы имеется яркое световое кольцо. При попадании на него света можно получить отражение в виде луны или солнца. Это обусловлено игрой света и тени: при попадании света голограммы на тень от пластика образуется некая световая волна.

Связь дифракции и разрешающей способности оптических приборов

Дифракция света считается ограничителем разрешения для оптических приборов: телескопа, микроскопа. В том числе и для человеческого глаза.

Размер препятствий должен быть намного больше длины волны света. Кроме того, рассматривается преломление световой волны препятствия на круглом отверстии.

В качестве примера возьмем 2 звезды на небе. Звездный свет попадает в глаз через зрачок. Таким образом, на сетчатке глаза обе звезды сформируют 2 картины. Они представлены двумя центральными максимумами. Если свет будет падать под определенным углом, то звезды сольются в одну звезду.

Получается, что разрешение можно увеличить или уменьшить, если изменить диаметр объектива или сократить длину волны.

Принцип увеличения используют в телескопах, что позволяет уменьшению рассматриваемого объекта до удобных для рассматривания размеров. Уменьшение объектива используют в изготовлении микроскопов. Это позволяет увеличить маленький элемент до удобных для рассматривания размеров.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Дифракция света Введение Дифракцией называется огибание волнами препятствий, встречающихся на их пути. В более широком смысле дифракция - это явление отклонения законов распространения волн от законов геометрической оптики. Явление дифракции объясняется с помощью принципа Гюйгенса: Каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая вторичных волн дает положение волнового фронта.

Принцип Гюйгенса не позволяет объяснить интенсивность отклоняющихся лучей. Френель дополнил принцип Гюйгенса некоторыми идеями, позволяющими определять амплитуды распространяющихся лучей.

Принцип Гюйгенса - Френеля: Световая волна, возбуждаемая каким-либо источником, может быть представлена как результат суперпозиции когерентных вторичных волн, излучаемых фиктивными источниками.

В отличие от принципа Гюйгенса, когда мы следили за фронтом распространяющейся волны, с помощью принципа Гюйгенса-Френеля мы в выбранной точке рассматриваем сложение волн от различных источников.

Различают дифракцию Фраунгофера и дифракцию Френеля. Дифракцией Фраунгофера называют дифракцию в параллельных лучах. Остальные виды дифракции - это дифракции Френеля. 1. Метод зон Френеля Рассмотрим распространение света от точечного источника в рамках теории Гюйгенса-Френеля. Попутно выясним, почему свет распространяется прямолинейно. Заменим действие источника S действием фиктивных источников, расположенных на вспомогательной поверхности Ф. Разобьем поверхность Ф на зоны такого размера, чтобы расстояния от краев зоны до М отличались на λ/2..

Для такого разбиения проведем из точки М сферы радиусами

Это приведет к разбиению фронта волны на зоны, которые называются зонами Френеля. Соседние зоны гасят друг друга. Результирующая амплитуда в точке М

гдеи т.д. - амплитуды колебаний, возбужденных порознь 1-й, 2-й и т.д. зонами,- амплитуда результирующих колебаний. Величинаамплитуды зависит от площади m-й зоны и угламежду внешней нормалью к поверхности зоны в какой-либо ее точке и прямой, направленной из этой точки в точке М.

Оценим амплитуды различных колебаний. Для этого рассмотрим сферический сегмент высоты hm. Другие обозначения показаны на рисунке.

Дифракция света – это явление отклонения света от прямолинейного направления его распространения во время прохождения рядом с препятствиями.

Из опыта видно, что определенные условия влияют на захождение геометрической тени на область.

Когда на пути встречается препятствие в виде диска, шарика или круглого отверстия, тогда экран, расположенный на большом расстоянии, покажет дифракционную картину, то есть систему чередующихся светлых и темных колец. При отверстии линейного характера (щели или нити) экран показывает параллельные дифракционные полосы.

Принцип Гюйгенса-Френеля

Существование дифракционных явлений было задолго до времен Ньютона. Объяснение, основанное на корпускулярной теории, не давало должных результатов. Одним из первых объяснений явления дифракции, основанное на волновых представлениях, было дано Т. Юнгом. Еще в 1818 году была известна и развита количественная теория дифракционных явлений О. Френеля. Принцип Гюйгенса был заложен в основу. Он только дополнил при помощи идеи об интерференции вторичных волн.

Первоначальный вид данного принципа давал возможность нахождения положения фронтов в последующие моменты времени, иначе говоря, определял направление распространения волны. Это и есть принцип геометрической оптики. Впоследствии гипотеза Гюйгенса об огибающих вторичных волнах были заменены Френелем с помощью физически ясного положения, тогда вторичные волны в точке наблюдения интерферировали друг с другом.

Принципом Гюйгенса-Френеля считалась гипотеза, которая была со временем подтверждена. При решении задач, где необходимо использовать данный принцип, получение результата достаточно точное. На иллюстрации изображен принцип Гюйгенса-Френеля.

Рисунок 3 . 8 . 1 Принцип Гюйгенса-Френеля. ∆ S 1 и ∆ S 2 – элементы волнового фронта, n 1 → и n 2 → - заданные нормали.

Предположим, что поверхность S – положение волнового фронта в некоторый момент. Из теории волн известно, что он является поверхностью, где в заданных точках происходит колебание с одинаковым значением фазы. Волновыми фронтами плоской волны считают семейством параллельных плоскостей, которые перпендикулярно направлены относительно распространения волны. Волновые фронты сферической волны, которые испускаются при помощи точечного источника, относят к концентрическим сферам.

Для определения колебания в заданной точке P , которое вызвано волной, используя принцип Френеля, находят колебания, которые вызваны в этой точке с помощью отдельных вторичных волн, которые приходят от элементов поверхности S ( ∆ S 1 , ∆ S 2 и так далее). Далее следует произвести сложение колебаний, учитывая амплитуды и фазы. Элементы, загороженные препятствиями, не учитываются при решении.

Для примера ниже приведена дифракционная задача прохождения плоской монохроматической волны, которая исходит от удаленного источника через отверстие с радиусом R непрозрачного экрана.

Рисунок 3 . 8 . 2 Дифракция плоской волны на экране, содержащем круглое отверстие.

Р – точка наблюдения, находящаяся на оси симметрии, располагаемого на L расстоянии относительно экрана. По принципу Гюйгенса-Френеля распределить на волновой поверхности вторичные источники, совпадающие с плоскостью отверстия, где волны достигают точки Р . Интерференция волн в этой точке является причиной возникновения результирующего колебания, квадрат амплитуды которого определяется при наличии значений длин волн λ , амплитуды A 0 падающей волны и расположением элементов.

Чтобы расчеты были облегченными, волновая поверхность падающей волны разбивается на кольцевые зоны, называемыми зонами Френеля, исходя из правила: расстояния от границ соседних зон к точке Р имеют отличие на половину волны.

Иначе говоря, r 1 = L + λ 2 , r 2 = L + 2 λ 2 , r 3 = L + 3 λ 2 . . .

При рассмотрении волновой поверхности исходя из точки Р , тогда получим, что границы зон Френеля будут иметь вид концентрических окружностей. Наглядно это изображено на рисунке.

Рисунок 3 . 8 . 3 Границы зон Френеля в плоскости отверстия.

По рисунку 3 . 8 . 2 определяем радиусы ρ m зон по формуле: ρ m = ρ m 2 - L 2 = m λ L + m 2 λ 2 4 ≈ m λ L .

Зоны Френеля. Интерференционный максимум

Из определений раздела оптики имеем, что λ L , тогда при решении можно пренебречь вторым подкоренным выражением. Для определения количества зон Френеля, которые укладываются на отверстии, используется формула, включающая в себя значение радиуса R : m = R 2 λ L .

Значение m может быть любым числом. От него зависит результат интерференции вторичных волн, проходящих точку Р . Такие открытые зоны Френеля обладают одинаковым значением площади:

S m = π ρ m 2 - π ρ m - 2 1 = π λ L = S 1 .

По теории равные площади возбуждают колебания с одинаковой амплитудой в точке наблюдения. Но каждая последующая зона угла α , располагаемая между лучом, проводимым к точке наблюдения, и нормалью относительно волновой поверхности, возрастает. Предположения Френеля говорит о том, что при увеличении угла α происходит незначительное уменьшение колебаний, то есть:

A 1 > A 2 > A 3 > . . . > A 1 , где A m обозначает амплитуду колебаний, которые были вызваны при помощи m -ой зоны.

Используя приближение, видно, что амплитуда колебаний, которая вызвана определенной зоной, равняется среднему арифметическому соседних зон. Иначе это запишем как A m = A m - 1 + A m + 1 2 .

Отличие от двух соседних точек расстоянием λ 2 говорит о том, что колебания, возбуждаемые этими зонами в состоянии противофазы. Соседние волны начинают гасить друг друга, а это приводит к тому, что суммарная амплитуда в точке запишется как:

A = A 1 – A 2 + A 3 – A 4 + . . . = A 1 – ( A 2 – A 3 ) – ( A 4 – A 5 ) – . . . A 1 .

Отсюда делаем вывод, что суммарная амплитуда в точке меньше колебаний, вызванных только при помощи одной зоны Френеля. Если все имеющиеся зоны Френеля являлись открытыми, тогда к точке наблюдения двигалась волна с амплитудой A 0 , невозмущенная препятствием. Тогда запись принимает вид:

A = A 0 + A 1 2 - A 2 + A 3 2 + A 3 2 - A 4 + A 5 2 + . . . = A 1 2 .

Выражения в скобках равняются нулю, значит, амплитуда, вызванная волновым фронтом, равняется половине действий первой зоны.

Когда отверстие непрозрачного экрана дает возможность только одной зоне Френеля быть открытой, тогда наблюдается возрастание амплитуды колебаний в количестве 3 раз, а интенсивности – 4 раз. При открытии двух зон действие становится равным нулю. При наличии непрозрачного экрана с несколькими нечетными открытыми зонами, очевидно, что произойдет резкое возрастание амплитуды. При открытии 1 , 3 , 5 зон получим, что A = 6 · A 0 , I = 36 · I 0 .

Полученные пластинки обладают свойством фокусировки света, поэтому их называют зонными пластинками.

Круглый диск дает понять, что при дифракции зоны Френеля от 1 до m будут в закрытом состоянии. Отсюда получаем, что формула амплитуды колебаний примет вид:

A = A m + 1 - A m + 2 + A m + 3 - . . . = A m + 1 2 + A m + 1 2 - A m + 2 - A m + 3 2 + . . .

Иначе можно записать как A = A m + 1 2 , ибо выражения в скобках будут равняться нулю.

Когда диск может закрыть небольшие зоны, тогда A m + 1 ≈ 2 A 0 и A ≈ A 0 , можно наблюдать интерференционный максимум. Иначе его называют пятном Пуассона, которое окружается дифракционными кольцами светлого и темного цвета.

Чтобы углубиться в понятие, необходимо оценить зоны Френеля. Имеется дифракционная картина на экране с расстоянием равным L = 1 м , а значение длины волны света λ = 600 н м (красный). Отсюда получим, что радиусом первой зоны является ρ 1 = L λ ≈ 0 , 77 м м .

Так как оптический диапазон имеет короткую волну, тогда соответственно зона Френеля также мала. Отчетливее проявление дифракционных явлений заметно при небольшом количестве зон на препятствии.

Получим формулы вида:

m = R 2 L λ ≥ 1 или R 2 ≥ L λ .

Название данного соотношения - критерий наблюдения дифракции.

Когда количество зон Френеля из препятствия увеличивается, тогда дифракционные явления становятся незаметными:

m = R 2 L λ > > 1 или R 2 > > L λ .

Определение границы применимости геометрической оптики возможно при помощи заданного неравенства. При выполнении данного условия узкий пучок света может быть сформирован.

Отсюда следует вывод, что волновая оптика – это предельный случай геометрической.

Выше рассмотренный случай относится к дифракции света с удаленным источником, располагаемом на препятствиях округлой формы. При расположении точечного источника света на конечном расстоянии сферически расходящаяся волна должна падать на препятствие. Данный случай усложняет задачу. Тогда построение зон Френеля необходимо выполнять на поверхности сферической формы, показанное на рисунке 3 . 8 . 4 .

Рисунок 3 . 8 . 4 Зоны Френеля на сферическом фронте волны.

При расчете видно, что радиусы ρ m зон Френеля на волне сферического фронта запишется, как

ρ m = a b a + b λ .

Выводы по теории Френеля справедливы.

Дифракция и интерференция света применима к любым волнам, так как имеется общность закономерностей. Начало XIX века – это было время, когда ученые только начинали изучать волны, а физическая природа света еще не была раскрыта.

Читайте также: