Реферат по физике квантовая оптика

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МЕТОДИЧЕСКОЕ ПОСОБИЕ

Для самостоятельной работы студентов

По дисциплине: ФИЗИКА

Специальность: 34.02.01 Сестринское дело Курс: 1

Рассмотрено на заседании предметной цикловой

Методической комиссии по общеобразовательным дисциплинам,

общему гуманитарному и социально-экономическому, математическому и

Автор – составитель: преподаватель математики высшей категории Тюменцева О.Н.

Пояснительная записка к методическому пособию

Методическое пособие предназначено для повторения теоретических и практических знаний по теме.

Данное пособие рекомендовано для студентов первого курса специальности 34.02.01 Сестринское дело. Пособие содержит определения основных понятий и законы по теме квантовая оптика, тест для самоконтроля и ключи к тесту.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, формирование навыков решения задач, формирование и развитие творческого потенциала, повышение интереса к дисциплине.

Квантовая оптика

Фотоэффект. Квантовым законам подчиняется поведение всех микрочастиц. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света. В развитии представлений о природе света важный шаг был сделан при изучении одного замечательного явления, открытого Г. Герцем и тщательно исследованного выдающимся русским физиком Александром Григорьевичем Столетовым. Явление это получило название фотоэффекта.

Фотоэффект — это вырывание электронов из вещества под действием света.

Наблюдение фотоэффекта. Для обнаружения фотоэффекта на опыте можно использовать электрометр с присоединенной к нему цинковой пластиной (рис. 11.1). Если зарядить пластину положительно, то ее освещение, например электрической дугой, не влияет па быстроту разрядки электрометра. Но если пластину зарядить отрицательно, то световой пучок от дуги разряжает электрометр очень быстро.
Объяснить это можно так. Свет вырывает электроны с поверхности пластины. Если пластина заряжена отрицательно, электроны отталкиваются от нее, и электрометр разряжается. При положительном же заряде пластины вырванные светом электроны притягиваются к пластине и снова оседают на ней. Поэтому заряд электрометра в этом случае не изменяется.

Однако, когда на пути света поставлено обыкновенное стекло, отрицательно заряженная пластина уже не теряет электроны, какова бы ни была интенсивность излучения. Так как известно, что стекло поглощает ультрафиолетовые лучи, то из этого опыта можно заключить: именно ультрафиолетовый участок спектра вызывает фотоэффект. Этот простой факт нельзя объяснить на основе волновой теории света. Ведь непонятно, почему световые волны малой частоты не могут вырывать электроны, если даже амплитуда волны велика и, следовательно, велика сила, действующая на электроны.

Законы фотоэффекта. Для того чтобы получить о фотоэффекте более полное представление, нужно было выяснить, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. С этой целью были продолжены экспериментальные исследования. В стеклянный баллон, из которого выкачан воздух, помещаются два электрода (рис. 11.2).

Внутрь баллона на один из электродов поступает свет через кварцевое окошко, прозрачное не только для видимого света, но и для ультрафиолетового излучения. На электроды подается напряжение, которое можно менять с помощью потенциометра и измерять вольтметром. К освещаемому электроду присоединяется отрицательный полюс батареи. Под действием света этот электрод испускает электроны, которые при движении в электрическом поле образуют электрический ток. При малых напряжениях не все вырванные светом электроны достигают другого электрода. Если, не меняя интенсивности излучения, увеличивать разность потенциалов между электродами, то сила тока возрастает. При некотором напряжении она достигает максимального значения, после чего перестает увеличиваться (рис. 11.3). Максимальное значение силы тока Iн называется током насыщения. Сила тока насыщения определяется числом электронов, испускаемых за 1 с освещаемым электродом.

Изменяя в этом опыте интенсивность излучения, удалось установить, что число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны.

На основании результатов этого опыта можно сформулировать первый закон фотоэффекта : фототок насыщения прямо пропорционален падающему световому потоку.

Теперь остановимся на измерении кинетической энергии (или скорости) электронов. Из графика, приведенного на рисунке 11.3, видно, что сила фототока отлична от нуля и при нулевом напряжении. Это означает, что часть вырванных светом электронов достигает правого (см. рис. 11.2) электрода и при отсутствии напряжения. Если изменить полярность батареи, то сила тока уменьшится, и при некотором напряжении обратной полярности она станет равной нулю. Это значит, что электрическое поле тормозит вырванные электроны до полной остановки, а затем возвращает их на электрод. З адерживающее напряжение U 3 зависит от максимальной кинетической энергии, которую имеют вырванные светом электроны. Измеряя задерживающее напряжение и применяя теорему о кинетической энергии (см. учебник физики для 10 класса), можно найти максимальное значение кинетической энергии электронов:
При изменении интенсивности света (плотности потока излучения) задерживающее напряжение, как показали опыты, не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь, чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. На опытах было обнаружено, что кинетическая энергия вырываемых светом электронов зависит только от частоты света.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.

Если частота света меньше определенной для данного вещества минимальной частоты V min то фотоэффекта не происходит.

Законы фотоэффекта просты по форме. Но зависимость кинетической энергии вырванных светом электронов от частоты света требует объяснения.

Теория фотоэффекта . Все попытки объяснить явление фотоэффекта на основе законов электродинамики Максвелла, согласно которым свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались безрезультатными. Нельзя было понять, почему энергия фотоэлектронов определяется только частотой света и почему лишь при достаточно малой длине волны свет вырывает электроны.

Объяснение фотоэффекта было дано в 1905 г. Эйнштейном, развившим идеи Планка о прерывистом испускании света. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями.

Энергия Е каждой порции излучения в полном соответствии с гипотезой Планка пропорциональна частоте: E = hv, (11.1), где h — постоянная Планка.

Из того, что свет излучается порциями, еще не вытекает вывода о прерывистости структуры самого света. Ведь и минеральную воду продают в бутылках, но отсюда не следует, что вода состоит из неделимых частей.

Лишь явление фотоэффекта показало, что свет имеет прерывистую структуру: излученная порция световой энергии Е = hv сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

Работа выхода А зависит от рода вещества. Поэтому и предельная частота Vmin фотоэффекта (красная граница) для разных веществ различна.

Третий закон фотоэффекта: для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.

Для цинка красной границе соответствует длина волны mах = 3,7 • 10 -7 м (ультрафиолетовое излучение).

Именно этим объясняется опыт по прекращению фотоэффекта с помощью стеклянной пластинки, задерживающей ультрафиолетовые лучи. Работа выхода у алюминия или железа больше, чем у цинка. У щелочных металлов работа выхода, напротив, меньше, а длина волны max , соответствующая красной границе, больше. Так, для натрия max = 6,8 • 10 -34 м.

Пользуясь уравнением Эйнштейна (11.2), можно найти постоянную Планка h. Для этого нужно экспериментально определить частоту света V, работу выхода А и измерить кинетическую энергию фотоэлектронов. Подобные измерения и расчеты дают h = 6,63 • 10 -34 Дж • с. Точно такое же значение было найдено и самим Планком при теоретическом изучении совершенно другого явления — теплового излучения. Совпадение значений постоянной Планка, полученных различными методами, дополнительно подтверждает правильность предположения о прерывистом характере излучения и поглощения света веществом.

Уравнение Эйнштейна (11.2), несмотря на его кажущуюся простоту, объясняет основные закономерности фотоэффекта. Эйнштейн был удостоен Нобелевской премии за работы по теории фотоэффекта.

Фотоны. В современной физике фотон рассматривается как одна из элементарных частиц.

Энергия и импульс фотона. При испускании и поглощении свет ведет себя подобно потоку частиц с энергией Е = hv, зависящей от частоты. Порция света оказалась неожиданно очень похожей на то, что принято называть частицей. Свойства света, обнаруживаемые при его излучении и поглощении, назвали корпускулярными. Сама же световая частица была названа фотоном, или квантом электромагнитного излучения.

Фотон, подобно частице, обладает определенной порцией энергии hv. Энергию фотона часто выражают не через частоту v, а через циклическую частоту = 2 v. При этом в формуле для энергии фотона в качестве коэффициента пропорциональности вместо величины h используют величину (читается: аш с чертой), равную, по современным данным, h = 1,0545726 • 10 -34 Дж • с (последние два знака определены с точностью до ±40). Тогда энергия фотона выражается так:

Согласно теории относительности энергия всегда связана с массой соотношением Е = mс 2 . Так как энергия фотона равна hv, то, следовательно, его масса m получается равной
У фотона нет собственной массы, он не существует в со стоянии покоя и при рождении сразу имеет скорость с. Масса, определяемая формулой (11.5), — это масса движущегося фотона. По известной массе и скорости фотона можно найти его импульс:
Направление импульса фотона совпадает с направлением светового луча.

Чем больше частота v, тем больше энергия Е н им пульс р фотона и тем отчетливее проявляются корпускулярные свойства света. Из-за того что постоянная Планка мала, энергия фотонов видимого излучения крайне незначительна. Фотоны, соответствующие зеленому свету , имеют энергию 4 • 10 -19 Дж.

Корпускулярно-волновой дуализм. Законы теплового излучения и фотоэффекта можно объяснить только на основе представления, согласно которому свет это поток частиц-фотонов.

Однако явления интерференции и дифракции света свидетельствуют и о волновых свойствах света. Свет обладает, таким образом, своеобразным дуализмом (двойственностью) свойств. При распространении света проявляются его волновые свойства, а при взаимодействии с веществом (излучении и поглощении) — корпускулярные. Это, конечно, странно и непривычно, так как частица и волна, абсолютно разные физические объекты. Мы не имеем возможности представлять себе наглядно в полной мере процессы в микромире, так как они совершенно отличны от тех макроскопических явлений, которые люди наблюдали на протяжении миллионов лет и основные законы которых были сформулированы к концу XIX в.

hello_html_63a420bd.jpg

Не допускаем ли мы здесь ошибки, обратной той, которая была сделана со светом? Может быть, электрон и другие частицы обладают также и волновыми свойствами. Такую необычную мысль высказал в 1923 г. французский ученый Луи де Бройль. Предположив, что с движением частиц связано распространение некоторых волн, де Бройль сумел найти длину волны этих волн. Связь длины волны с импульсом частицы оказалась точно такой же, как и у фотонов (см. формулу (11.6)). Если длину волны обозначить через , а импульс — через р, то
Эта знаменитая формула де Бройля — одна из основных в физике микромира.

Предсказанные де Бройлем волновые свойства частиц впоследствии были обнаружены экспериментально. Наблюдалась, в частности, дифракция электронов и других частиц на кристаллах. В этих случаях получалась картина, подобная той, которая характерна для рентгеновских лучей, причем справедливость формулы де Бройля (11.7) была доказана экспериментально.

Эти необычные свойства микрообъектов описываются с помощью квантовой механики — современной теории движения микрочастиц. Механика Ньютона здесь в большинстве случаев неприменима.

Фотон — элементарная частица, не имеющая массы покоя и электрического заряда, но обладающая энергией и импульсом. Это квант электромагнитного поля, которое осуществляет взаимодействие между заряженными частицами. Поглощение и излучение электромагнитной энергии отдельными порциями — проявление корпускулярных свойств электромагнитного поля.

Давление света . Максвелл на основе электромагнитной теории света предсказал, что свет должен оказывать давление на препятствия.

Под действием электрического поля волны, падающей на поверхность тела, например металла, свободный электрон движется в сторону, противоположную вектору (рис. 11.7). На движущийся электрон действует сила Лоренца , направленная в сторону распространения волны. Суммарная сила, действующая на электроны поверхности металла, и определяет силу светового давления.
Д ля доказательства справедливости теории Максвелла было важно измерить давление света. Многие ученые пытались это сделать, но безуспешно, так как световое давление очень мало. В яркий солнечный день на поверхности площадью 1м 2 действует сила, равная всего лишь 4 • 10 -6 Н. Впервые давление света измерил русский физик Петр Николаевич Лебедев в 1900 г.
Прибор Лебедева состоял из очень легкого стерженька на тонкой стеклянной нити, но краям которого были приклеены легкие крылышки (рис. 11.8). Весь прибор помещался в сосуд, откуда был выкачан воздух. Свет падал на крылышки, расположенные по одну сторону от стерженька. О значении давления можно было судить по углу закручивания нити. Трудности точного измерения давления света были связаны с невозможностью выкачать из сосуда весь воздух (движение молекул воздуха, вызванное неодинаковым нагревом крылышек и стенок сосуда, приводит к возникновению дополнительных вращающих моментов). Кроме того, на закручивание нити влияет неодинаковый нагрев сторон крылышек (сторона, обращенная к источнику света, нагревается сильнее, чем противоположная сторона). Молекулы, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны.
Л ебедев сумел преодолеть все эти трудности, несмотря на низкий уровень тогдашней экспериментальной техники, взяв очень большой сосуд и очень тонкие крылышки. В конце концов, существование светового давления на твердые тела было доказано, и оно было измерено. Полученное значение совпало с предсказанным Максвеллом. Впоследствии после трех лет работы Лебедеву удалось осуществить еще более тонкий эксперимент: измерить давление света на газы.

Появление квантовой теории света позволило более просто объяснить причину светового давления. Фотоны, подобно частицам вещества, имеющим массу покоя, обладают импульсом. При поглощении их телом они передают ему свой импульс. Согласно закону сохранения импульса импульс тела становится равным импульсу поглощенных фотонов. Поэтому покоящееся тело приходит в движение. Изменение импульса тела означает согласно второму закону Ньютона, что на тело действует сила.

Опыты Лебедева можно рассматривать как экспериментальное доказательство того, что фотоны обладают импульсом. Хотя световое давление очень мало в обычных условиях, его действие тем не менее может оказаться существенным. Внутри звезд при температуре в несколько десятков миллионов Кельвинов давление электромагнитного излучения должно достигать громадных значений. Силы светового давления наряду с гравитационными силами играют значительную роль во внутризвёздных процессах.

Давление света согласно электродинамике Максвелла возникает из-за действия силы Лоренца на электроны среды, колеблющиеся под действием электрического поля электромагнитной волны. С точки зрения квантовой теории давление появляется в результате передачи телу импульсов фотонов при их поглощении.

Химическое действие света. Фотография . Отдельные молекулы поглощают световую энергию порциями — квантами hv. В случае видимого и ультрафиолетового излучений эта энергия достаточна для расщепления многих молекул. В этом проявляется химическое действие света.

Л юбое превращение молекул есть химический процесс. Часто после расщепления молекул светом начинается целая цепочка химических превращений. Выцветание тканей на солнце и образование загара это примеры химического действия света.

Важнейшие химические реакции под действием света происходят в зеленых листьях деревьев и траве, в иглах хвои, во многих микроорганизмах. В зеленом листе под действием Солнца осуществляются процессы, необходимые для жизни на Земле. Они дают нам не только пищу, но и кислород для дыхания.

Листья поглощают из воздуха углекислый газ и расщепляют его молекулы на составные части: углерод и кислород. Происходит это, как установил русский биолог Климент Аркадьевич Тимирязев, в молекулах хлорофилла под действием красных лучей солнечного спектра. Пристраивая к углеродной цепочке атомы других элементов, извлекаемых корнями из земли, растения строят молекулы белков, жиров и углеводов.

Все это происходит за счет энергии солнечных лучей. Причем здесь особенно важна не только сама энергия, но и та форма, в которой она поступает. Фотосинтез (так называют этот процесс) может протекать только под действием света определенного спектрального состава.

Механизм фотосинтеза еще не выяснен до конца. Когда это произойдет, для человечества, возможно, наступит новая эра. Белки и другие сложные органические вещества можно будет получать на фабриках под голубым небосводом.

Химическое действие света лежит в основе фотографии.

Под действием света происходят химические реакции, определяющие жизнь на Земле.

КВАНТОВАЯ ОПТИКА – раздел оптики, изучающий квантовые свойства света. Можно сказать, что квантовая оптика – это квантовая физика света. Интерес к квантовой оптике появился еще в первой половине 20 в., но особенно интенсивное развитие эта область науки получила в конце 20 в., когда физики научились готовить особые состояния света – так называемый неклассический свет. Сейчас неклассический свет успешно применяется в метрологии, спектроскопии, используется для точных измерений, а также для секретной передачи информации. Кроме того, подходы и методы квантовой оптики позволяют существенно дополнить ту информацию, которую дают различные измерения, связанные с излучением и поглощением света.

Кванты.

Кроме спектров излучения, в физике оставалось еще одно неясное место, а именно, явление фотоэффекта (см. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ). Было неясно, почему кинетическая энергия электронов, выбиваемых светом из металла, зависит от частоты света. Более того, свет с достаточно малой частотой вообще не способен вызвать фотоэффект. Поскольку малая частота света соответствует красной части спектра, то это явление называют красной границей фотоэффекта. В 1905 Альберт Эйнштейн использовал для объяснения фотоэффекта гипотезу квантов. Идея Эйнштейна заключалась в том, что каждому электрону достается одна-единственная порция энергии – один квант. И если энергия этого кванта мала, ее просто нехватает для выхода электрона из металла. На основе этой идеи Эйнштейн развил теорию фотоэффекта, которая прекрасно подтвердилась экспериментальными данными.

Частицы или волны?

Эксперимент Брауна – Твисса.

Одиночные и коррелированные фотоны. Может ли быть неквантовая физика света? Конечно, да, и в большинстве случаев оптические явления можно объяснить без помощи квантовой теории. Но есть много случаев, когда это не так и когда важнао учитывать квантовую природу света.

Неклассический свет.

У двухфотонного света есть еще одно замечательное свойство. Оказалось, что такой свет можно использовать для экспериментальной проверки основной идеи квантовой механики – идеи о вероятностном поведении отдельных квантовых частиц (см. НЕРАВЕНСТВА БЕЛЛА).

Однофотонный свет можно приготовить и без примеси вакуумного состояния – при этом будут точно известны моменты, когда нужно включать фотоприемник, и он будет щелкать с вероятностью 100%. А трехфотонный и тем более четырехфотонный свет экспериментаторы не умеют готовить даже с примесью вакуума!

Применения неклассического света.

Неклассический свет привлекает внимание физиков не только как интересный объект исследования. Он оказывается очень полезным с точки зрения различных применений. Так, двухфотонный свет используется для точной калибровки фотоприемников. Каждый фотоприемник неидеален, т.е. срабатывает с вероятностью, меньшей 100%. Эта вероятность называется квантовой эффективностью фотоприемника. Калибровкой фотоприемника называют измерение его квантовой эффективности; прежде для этого использовались эталонные источники или приемники света, и это делало измерение не очень точным. Однако двухфотонный свет позволяет обойтись без таких эталонов. Действительно, если два фотоприемника регистрируют двухфотонный свет, то в идеале они всегда должны щелкать одновременно. В действительности же количество одновременных щелчков будет меньше количества щелчков любого из фотоприемников. Поделив число одновременных щелчков на число щелчков одного из фотоприемников, можно получить квантовую эффективность второго фотоприемника. При этом никаких эталонов не требуется, и точность измерения может быть значительно повышена по сравнению с традиционными методами.

Читайте также: