Реферат очистка воды от железа

Обновлено: 05.07.2024

ОБЕЗЖЕЛЕЗИВАНИЕ ВОДЫ. ТЕОРИЯ И ПРАКТИКА.
(автор: Ген.директор компании "МИРОВЫЕ ВОДНЫЕ ТЕХНОЛОГИИ" - С.В.Черкасов)

1. ВВЕДЕНИЕ

2. ПРИРОДНЫЕ ФОРМЫ ЖЕЛЕЗА В ВОДЕ.

2.1. Формы железа в поверхностных водах.

2.2. Формы железа в скважных водах.

Скважинные инфильтрационные воды забираются с небольшой глубины (поверхностные скважины или песчаные) и по своему составу близки к составу поверхностных вод с невысоким, но вполне вероятно, превышающим ПДК содержанием железа. Они, как правило, обогащены кислородом и поэтому в инфильтрационных водах железо присутствует в трехвалентной форме. Однако в последнее время при очистке от железа воды, добытой из песчаной скважины, специалистам приходится сталкиваться с тем, что эта вода имеет все тенденции и состав, чтобы быть отнесенной к поверхностным водам. А самое главное иногда, эти воды содержат железо, концентрация которого в десятки раз превышает ПДК. При этом чаще всего это гуматы железа.
Артезианские воды, забираемые с большой глубины (так, что между ними и инфильтрационными водами находится хотя бы один водонепроницаемый слой, наиболее пригодны для использования в качестве питьевой воды. Они лучше других вод очищены природными фильтрами от антропогенных загрязнений и защищены от проникновения болезнетворных микроорганизмов. В то же время именно в таких глубинных скважинных водах концентрация железа порой бывает наиболее высокой. В подземных водах с малыми значениями pH и с низким содержанием растворенного кислорода может наблюдаться концентрация железа до нескольких десятков миллиграммов в 1 л. В районах же залегания сульфатных руд и зонах молодого вулканизма концентрации железа могут достигать сотен миллиграммов на литр.
В артезианских скважинных водах железо преимущественно присутствует в двухвалентном состоянии, обычно в виде растворенного бикарбоната – Fe(HCO3)2. Встречаются также карбонатная (FeCO3), сульфатная (FeSO4) и сульфидная (FeS) формы растворенных соединений двухвалентного железа. В трехвалентном состоянии растворенное железо встречается крайне редко в виде сульфатов (Fe2(SO4)3) или растворимых органических комплексов.

3. МЕТОДЫ ОБЕЗЖЕЛЕЗИВАНИЯ ВОДЫ.

Необходимая степень обезжелезивания воды определяется конечными целями, для которых эта вода будет использоваться. И хотя на сегодняшний день не существует единого универсального метода комплексного удаления всех существующих форм железа из воды, но используя ту или иную схему очистки, все равно можно добиться желаемого результата в каждом конкретном случае.
Окисление двухвалентного железа (Fe 2+ ) кислородом, содержащимся в воде, происходит медленно. Его скорость зависит от величины рН среды и достигает приемлемой для практических целей при значении рН > 8.
Для примера, в замкнутой системе (без доступа воздуха) двухвалентное железо (Fe 2+ ) полностью окисляется около 24 часов, а в открытой системе в течение 4 – 6 часов.
Поэтому для интенсификации процесса окисления железа прибегают к подщелачиванию воды, ее перемешиванию, аэрации, обработке хлором или каким-либо другим окислителем. Данную стадию можно назвать – стадией предварительной подготовки воды для обезжелезивания.
Таким образом, в целом, традиционные методы предварительной подготовки воды для обезжелезивания основываются:

  • на окислении двухвалентного железа кислородом воздуха (аэрация);
  • на химическом воздействии на двухвалентное железо или его соединений сильных окислителей (активный хлор, перманганат калия, перекись водорода, озон и т.д.).
  • предварительная подготовка;
  • фильтр каталитического обезжелезивания;
  • патронный фильтр с глубинными картриджами.

Давайте кратко разберем весь процесс обезжелезивания постадийно.

4. ПРЕДВАРИТЕЛЬНАЯ ПОДГОТОВКА.

4.1. Аэрация.

  • фонтанированием (так называемые брызгальные установки);
  • душированием (разбрызгиванием внутри некой емкости исходной воды);
  • барботажем слоя воды воздухом;
  • инжектированием, эжектированием (введением потока воздуха в поток воды за счет перепада давления);
  • введением потока воздуха в поток воды с помощью компрессора под напором (что чаще всего используется).

Во многих случаях вода, прошедшая обезжелезивание аэрацией с последующим отстаиванием и фильтрацией, уже оказывается пригодной к употреблению в качестве питьевой. По такой упрощенной схеме обезжелезивание эффективно, когда исходная концентрация железа не превышает 10 мг/л (при содержании двухвалентного железа не менее 70% от общего), концентрация H2S не более 2,5 мг/л. Окислительно-восстановительный потенциал воды (редокс – потенциал (Red-Ox или Eh)) после аэрации не должен быть ниже 100 мВ, а индекс стабильности (индекс Ланжелье) не менее 0,05.
Выбор способа упрощенной аэрации зависит от параметров исходной воды. Например, для полного окисления двухвалентного железа Fe 2+ в пределах до 5 мг/л требуется проводить аэрацию в течение 14 мин. В ходе аэрации происходит временное снижение рН воды. После завершения гидролиза величина рН воды повышается. Но, если концентрация сероводорода выше 0,5 мг/л, а свободной углекислоты – более 40 мг/л, то введения воздуха в трубопровод под напором не требуется – достаточно предусмотреть открытую емкость со свободным изливом в нее воды. Аналогичного эффекта можно достичь с помощью фонтанирования или душирования. Если же содержание железа в исходной воде выше 10 мг/л, то необходимо применять двухступенчатую схему обезжелезивания с предварительным дозированием какого-либо сильного окислителя и предварительной очистке воды на насыпных механических фильтрах. Об этом мы поговорим позже.
Не входящее в состав органических комплексов двухвалентное железо в присутствии кислорода воздуха или же кислорода, растворенного в воде, окисляется до трехвалентной формы. Этот процесс описывается следующим образом:

Скорость данной реакции в обычных условиях невелика. Достаточно привести простой пример - время окисления кислородом воздуха двухвалентного железа в трехвалентное состояние будет порядка сорока минут.
Правда в щелочной среде химическое равновесие в указанной выше реакции еще более смещается вправо, возрастает и скорость реакции окисления за счет удаления из реагентной среды ионов водорода при образовании с гидроксильными ионами молекул воды. Поэтому при высоких значениях pH (> 8,0) основной формой существования железа в воде является нерастворимый гидроксид железа (III) – Fe(OH)3, находящийся во взвешенной коллоидной форме. Растворимым же Fe(OH)3 становится лишь при очень низких значениях pH ( 2+ + Cl2 + 2H2O = 2Fe(OH)3↓ + 2HCl

Хлор также окисляет двухвалентный марганец, разрушает органические вещества и сероводород.
Как альтернативу хлорированию в последние годы все шире используют обработку воды раствором гипохлоритом натрия , причем этот метод находит применение, как на больших станциях водоподготовки, так и на небольших объектах, в том числе и в частных домах. Подача раствора гипохлорита натрия в обрабатываемую воду осуществляется с помощью насосов-дозаторов путем пропорционального дозирования.
Гипохлорит натрия обладает рядом свойств, ценных в техническом отношении. Его водные растворы не имеют взвесей и поэтому не нуждаются в отстаивании, например, в противоположность хлорной извести. Во-вторых, применение гипохлорита натрия для обработки воды не вызывает увеличения ее жесткости, так как он не содержит солей кальция и магния как хлорная известь или гипохлорит кальция. И наконец, гипохлорит натрия можно получить на месте методом электролиза обычной поваренной соли.
Бактерицидный же эффект раствора NaClO, полученного электролизом непосредственно на месте, выше, чем у других дезинфектантов, действующим началом которых является активный хлор. Кроме того, он обладает еще большим окислительным действием, чем растворы, приготовленные химическим методом из-за более высокого содержания хлорноватистой кислоты (HClO) и наличия активных радикалов.
Окисление двухвалентного железа происходит в соответствии со следующим уравнением:

Расчет установки для обработки воды гипохлоритом натрия в первую очередь требует определить расход активного хлора на процессы окисления, обеззараживания и разрушение сероводорода.

4.2.2. Озонирование.

4.2.3. Коагуляция.

В обычных условиях процесс осаждения коллоидных частиц гидрооксида трёхвалентного железа (размер частиц 1-3 мкм) при отстаивании происходит медленно. Укрупнение этих частиц а, следовательно, ускорение осаждения достигают добавлением коагулянтов. Этого же требует применение на водоочистных сооружениях традиционных песчаных или антрацитовых фильтров, которые неспособны задерживать мелкие частицы. Так же плохо эти фильтры задерживают органическое железо.
Внесение в обрабатываемую воду коагулянтов производят с помощью насосов-дозаторов методом пропорционального дозирования.
Медленное осаждение коллоидных частиц гидроксида железа (III) вкупе с малой эффективностью применения окислителей и аэрации по отношению к органическому железу, а также ограничение по верхней концентрации железа в исходной воде затрудняет применение традиционной промышленной схемы обезжелезивания в сравнительно небольших автономных системах, работающих с высокой производительностью. В таких схемах применяются иные установки, обезжелезивание в которых проводится по принципам каталитического окисления с последующей фильтрацией или ионного обмена.

5. КАТАЛИТИЧЕСКОЕ ОБЕЗЖЕЛЕЗИВАНИЕ.

Это наиболее широко применяемый сегодня метод для промышленного водоснабжения отдельных, не самых крупных предприятий, отдельных коттеджей или коттеджных поселков.
Установки для каталитического окисления железа и фильтрации компактны и отличаются достаточно высокой производительностью 0,5 – 30,0 м 3 /ч и более в зависимости от используемого катализатора, исходных качеств воды, геометрических и эксплуатационных характеристик резервуара (баллон либо из стекловолокна, либо нержавеющей стали).
Реакция окисления железа происходит внутри напорного резервуара на скорых насыпных фильтрах, так называемых фильтрах обезжелезивания, которых насыпным слоем служит специальная фильтрующая среда с каталитическими свойствами, т.е. катализатором обезжелезивания.

В качестве фильтрующих загрузок насыпных фильтров обезжелезивания используют природные, содержащие диоксид марганца, или искусственно модифицированные материалы, обогащенные диоксидом марганца в процессе их производства.

Все гранулированные каталитические фильтрующие материалы, используемые для обезжелезивания и деманганации воды, схожи в том, что их каталитическая активность базируется на свойствах диоксида марганца, который определенным образом распределяется на развитой поверхности зерна катализатора. Основа материала матрицы катализатора может меняться, но функция диоксида марганца всегда остается неизменной: его способность сравнительно легко изменять свое валентное состояние.

В во­де и в ще­ло­чах прак­ти­че­ски не­рас­тво­рим. Обладает амфотерными свойствами, т.е. образует как кислоты, так и щелочи. Может проявлять себя как восстановитель, но чаще как сильный окислитель. Диоксид марганца реагирует с сильными неорганическими и органическими кислотами, такими как серная, соляная, азотная, щавелевая с образованием солей: сульфатов, хлоридов, нитратов, оксалатов. В реакции с соляной кислотой выделяется хлор (MnO2 + 4·HCl → Cl2 +MnCl2 +2·H2O); с азотной и серной кислотами – кислород. Взаимодействует с сильными окислителями. По от­но­ше­нию к бо­лее силь­ным окис­ли­те­лям в ще­лоч­ной сре­де яв­ля­ет­ся вос­стано­ви­те­лем (об­ра­зу­ет­ся MnO4–); при окис­ли­тель­ном сплав­ле­нии MnO2 со ще­ло­ча­ми об­ра­зу­ют­ся ман­га­на­ты.

Ди­ок­сид марганца – не­сте­хио­мет­ри­че­ское со­еди­не­ние – в его кри­стал­лической ре­шёт­ке все­гда на­блю­да­ет­ся не­дос­та­ток ки­сло­ро­да. Этой особенностью и определяются его окислительные свойства:

  • Двуокись марганца (МnO2) часто вводят в состав олифы, на которой готовятся масляные краски (двуокись марганца, примешанная к льняному маслу, каталитически ускоряет его окисление на воздухе и обусловливает высыхание масла).
  • На каталитическом действии МnO2 основано ее применение в специальных противогазах для защиты от окиси углерода (окисление окиси углерода (СО) до углекислого газа (СО2)).
  • Как сильный окислитель в кислой среде МnO2 применяется в электротехнической промышленности при изготовлении некоторых типов гальванических элементов, причем двуокиси марганца отводится роль окислителя водорода, образующегося при работе элемента.
  • Диоксид марганца (MnO2) является катализатором для разложения пероксида водорода:

Окислительные свойства пиролюзита были замечены и исследователями, специализирующими в области очистки воды. Ими было обнаружено, что двухвалентное железо (Fe 2+ ) и марганец (Mn 2+ ), содержащие в растворимых и хорошо диссоциирующих в воде солях, при контакте с двуокисью марганца окисляются до трехвалентного состояния, а затем образуют нерастворимые в воде соединения. По их мнению, этот процесс можно описать следующими уравнениями химических реакций:

где, R – матрица пиролюзита.

Как видно из этих уравнений реакций, процесс каталитического окисления железа диоксидом марганца может протекать в нейтральной среде. А вот для каталитического окисления двухвалентного марганца требуется слабощелочная среда, что и наблюдается в реальности: оптимальное значение водородного показателя воды для каталитического окисления марганца обычно составляет > 8,5.

Далее катион трехвалентного железа вступает в реакцию с анионами гидроксила и образует на поверхности нерастворимый осадок гидроксила железа:

Fe 3+ + 3·OH → Fe(OH)3

Для снижения насыпного веса каталитической загрузки, увеличения поверхности массопередачи процессов каталитического обезжелезивания и деманганации, а также для расширения возможностей более широкого применения катализаторов учеными были предприняты попытки создания синтетических каталитических материалов с использованием неорганических ионитов, обладающих развитой удельной поверхностью и катионообменными свойствами. В результате чего был создан целый ряд катализаторов, которые по своим окислительным свойствам не уступают, а порой и превосходят природный пиролюзит. В качестве основы для таких катализаторов послужили пористые материалы: различного рода алюмосиликаты, цеолиты, силикаты, глаукониты и пр. При выборе материала для основы будущего катализатора исходили из следующих требований (кроме перечисленных выше): материал должен обладать развитой пористой структурой с преобладанием в ней макропор; минерал должен обладать невысокой объемной плотностью с хорошей устойчивостью к измельчению и истиранию, а также низкой слеживаемостью. Выбранный материал-носитель дробят до нужных размеров, промывают, проводят ситовую очистку и калибровку. После чего на внутренней и внешней поверхностях носителя за счет химической и/или термической обработки наносится каталитический слой в виде диоксида марганца, массовое содержание которого варьируется от долей процента до 5% в зависимости от способа импрегнирования диоксида марганца.

5.1. Ионообменный метод удаления железа.

5.2. Обезжелезивание мембранными методами.

Микрофильтрационные мембраны пригодны для удаления коллоидных частиц гидроксида железа (III); ультрафильтрационные и нанофильтрационные мембраны способны удалять кроме этого коллоидное и бактериальное органическое железо, а метод обратного осмоса позволяет удалять до 98% растворённого в воде двухвалентного железа. Однако мембранные методы дорогостоящи и не предназначаются конкретно для обезжелезивания. Это происходит в процессе обеззараживания воды (микрофильтрационные мембраны), при глубокой её очистке (ультрафильтрационные и нанофильтрационные) или обессоливании (обратный осмос). Кроме того, мембраны легко подвергаются зарастанию органической плёнкой и забиванию поверхности нерастворимыми частицами, в том числе ржавчиной, а также поглощают растворённое двухвалентное железо и теряют способность эффективно задерживать другие вещества. Фирмы-производители обратноосмотических мембран гарантируют сохранение их технологических свойств в период эксплуатации при содержании общего железа в воде не более 0,1-0,3 мг/л, взвешенных примесей – не более 5 мгO2/л и коллоидном индексе не более 2-4 единиц (параметры, учитывающие содержание органического железа).
Однако применение мембранных методов оправдано тем, где просто необходима высокая степень очистки воды, в том числе от железа, например, в медицинской и пищевой промышленности.

5.3. Биологическое обезжелезивание.

Этот метод подразумевает использование железобактерий, окисляющих двухвалентное растворённое железо до трёхвалентного, в целях очистки воды, с последующим удалением коллоидов и бактериальных плёнок в отстойниках и на фильтрах. В некоторых случаях это оказывается единственным приемлемым способом снизить содержание железа в воде. Прежде всего – когда концентрации железа в воде особенно велики, свыше 40 мг/л. Также применяют биологическое обезжелезивание, если в воде высоко содержание сероводорода и углекислоты. Такая вода с очень низким показателем pH не может быть очищена от избыточного железа методом упрощённой аэрации. Её подвергают фильтрации через колонии бактерий на медленных фильтрах с песчано-гравийной загрузкой. Затем подвергают сорбционной очистке для задержания продуктов жизнедеятельности бактерий и ультрафиолетовому обеззараживанию.


В статье рассмотрены шесть методов обезжелезивания воды. Автором статьи разработана таблица, в которой приведен сравнительный анализ методов обезжелезивания воды. С помощью разработанной таблицы можно наиболее быстро сравнить методы обезжелезивания воды между собой с целью дальнейшего рационального их выбора для конкретных целей.

Ключевые слова: вода, двухвалентное железо, трехвалентное железо, коллоидное железо, бактериальное железо, методы обезжелезивания воды

Качество воды источников водоснабжения во многом обуславливается степенью содержания в ней соединений железа. Важной задачей является использование воды для питьевых, бытовых и промышленных нужд с соответствующими нормативными показателями железа [1–2]. Но вода с изначальной нормативной степенью соединений железа присутствует далеко не во всех источниках водоснабжения, в которых соединения железа могут находится в четырех различных формах.

Типы соединений железа:

‒ двухвалентное железо — содержится в воде в растворенном состоянии и невидимо невооруженным глазом, при длительном контакте воды с атмосферным воздухом двухвалентное железо превращается в трехвалентное, и вода приобретает рыжеватый цвет;

‒ трехвалентное железо — содержится в воде в нерастворенном состоянии в виде маленьких частиц рыжего цвета, при длительном отстаивании нерастворенные частицы выпадают в осадок;

‒ коллоидное железо — содержится в воде в нерастворенном взвешенном состоянии, окрашивает воду в рыжий цвет, нерастворенные частицы не выпадают в осадок;

‒ бактериальное железо — состоит из живых и мертвых бактерий, образующих мягкое и вязкое слизистое отложения внутри трубопроводов и на санитарно-технических приборах.

Использование воды с повышенным содержанием соединений железа приводит к различным негативным последствиям:

‒ нарушение работы органов пищеварительной, мочеиспускательной и сердечно-сосудистой систем человека;

‒ появление раздражений кожи и ее аллергических реакций;

‒ образование рыжих пятен на санитарно-технических приборах;

‒ образование рыжих пятен на белье после стирки;

‒ появление коррозии трубопроводов;

‒ снижение срока службы бытовой техники.

Ряд перечисленных выше проблем решается при использовании различных методов обезжелезивания воды [3–5].

Методы обезжелезивания воды

Метод основан на способности воды, содержащей двухвалентное железо и растворенный кислород, при фильтрации через слой загрузки выделять образованное в процессе окисления кислородом трехвалентное железо на поверхности зерен загрузки.

В процессе аэрации кислород воздуха окисляет двухвалентное железо, при этом из воды удаляется углекислота, что ускоряет процесс окисления и последующий гидролиз с образованием гидроксида железа.

Коагуляция и осветление

Метод основан на образовании с помощью коагулянтов хлопьев, которые образуются из нерастворенных соединений железа. В процессе отстаивания хлопья выпадают в осадок.

Для ускорения протекания процесса коагуляции в воду вводят флокулянты, способствующие укруплению хлопьев.

Для удаления железа данным методом применяются катиониты — синтетические ионообменные смолы.

Синтетические ионообменные смолы способны удалять из воды не только растворённое двухвалентное железо, но также и другие двухвалентные металлы, в частности кальций и магний. Теоретически методом ионного обмена можно удалять из воды очень высокие концентрации железа, при этом не потребуется стадии окисления двухвалентного железа с целью получения нерастворимого гидроксида.

Метод основан на продавливании воды через полупроницаемую мембрану, которая не пропускает мельчайшие примеси. В результате чего вода после прохождения через полупроницаемую мембрану становится дистиллированной.

Применяемыми для обезжелезивания реагентами-окислителями являются хлор, перманганат калия и озон.

Методы окисления хлором, перманганатом калия и озоном основаны на разрушение органических соединений железа и переход их в форму неорганических солей нерастворенного трехвалентного железа. Образованное трехвалентное железо затем выпадает в осадок.

Фильтрование через каталитические загрузки

Обезжелезивание с применением каталитических загрузок — наиболее распространенный метод удаления железа, применяемый в системах высокой производительности. Каталитические наполнители — природные материалы, содержащие диоксид марганца или загрузки, в которые диоксид марганца введен при соответствующей обработке.

Среди каталитических загрузок существуют: дробленый пиролюзит, сульфоуголь, МЖФ, Manganese Green Sand (MGS), Birm, и МТМ.

Механизм действия основан на способности соединений марганца изменять валентное состояние. Двухвалентное железо в исходной воде окисляется высшими оксидами марганца. Высшие оксиды марганца восстанавливаются до низших ступеней окисления, а далее вновь окисляются до высших оксидов растворенным кислородом и перманганатом калия. Впоследствии большая часть окисленного и задержанного на фильтрующем материале железа вымывается в дренаж при обратной промывке. Поэтому каталитический слой является еще и задерживающим образованные соединения нерастворенного трехвалентного железа слоем.

Сравнительный анализ методов обезжелезивания воды

В результате рассмотрения методов обезжелезивания воды автором статьи составлена таблица 1, в которой отражены преимущества и недостатки для каждого метода обезжелезивания.

Сравнительный анализ методов обезжелезивания воды

Метод

Преимущества

Недостатки

— Низкая стоимость обезжелезивания по сравнению с другими методами;

— улучшение вкусовых качеств воды вследствие обогащения воды кислородом;

— экологическая безопасность при отсутствии предварительной обработки воды реагентами-окислителями

— Неэффективно при высоких концентрациях железа в воде;

— при высоких концентрациях железа в воде требуется предварительная обработка воды реагентами-окислителями;

Коагуляция и осветление

— Ускорение естественного процесса осаждения трехвалентного железа;

— связывание в хлопья коллоидных частиц трехвалентного железа с последующим осаждением

— Необходимость соблюдения четкого количества дозирования коагулянта;

— необходимость помещения для хранения коагулянтов

— Глубокая степень обезжелезивания;

— возможность регенерации загрузочного материала;

— отсутствие осадка после обработки воды

— Необходимость периодической замены загрузочного материала в фильтрах без предусмотренной функции регенерации, в связи с этим необходимы дополнительные затраты денежных средств;

— высокая стоимость фильтров с предусмотренной функцией регенерации;

— при присутствии в воде трехвалентного железа происходит неизбежное засорение смолы и проблематичное удаление его из загрузочного материала;

— во избежание увеличения концентрации трехвалентного железа в очищаемой воде необходимо следить за концентрациями кислорода и реагентов-окислителей в ней;

— наличие в очищаемой воде органического железа приводит к быстрому зарастанию ионообменной смолы

— Глубокая степень обезжелезивания;

— очистка воды практически от всех видов загрязнений

— существенные расходы на периодическую замену мембраны;

— необходимость предварительной очистки воды с целью сохранности мембраны;

— при больших концентрациях в очищаемой воде трехвалентного железа происходит неизбежное засорение пор полупроницаемой мембраны

— Метод поддается полной автоматизации;

— обеззараживание очищаемой воды

- Высокая степень токсичности хлора и озона;

— проблемы с транспортировкой хлора;

— возможность загрязнения воды хлором и перманганатом калия

Фильтрование через каталитические загрузки

— Возможность регенерации загрузочного материала;

— высокая производительность установок для каталитического окисления железа;

— компактность установок для каталитического окисления железа;

— загрузочный материал является и окислителем, и фильтрующей средой

— Неэффективно для органического железа;

— неэффективно при высоких концентрациях железа в воде;

— при содержании в воде марганца эффективность обезжелезивание существенно ухудшается;

— высокая стоимость большинства видов загрузочного материала;

— небольшой срок эксплуатации загрузочного материала

Выводы

Для рассмотрения способов борьбы с различными проблемами, возникающими в связи с использованием воды с повышенным содержанием железа, рассмотрены шесть методов обезжелезивания воды, которые используются в различных сферах человеческой деятельности. Также автором статьи разработана таблица, в которой приведен сравнительный анализ рассмотренных методов обезжелезивания воды (см. табл. 1).

С помощью таблицы 1 можно узнать преимущества и недостатки методов обезжелезивания воды, что облегчает дальнейший выбор методов для конкретных целей.

В каждом отдельном случаем выбор метода обезжелезивания воды индивидуален. Необходимо учитывать экономические составляющие, а также преимущества и недостатки. Более того, различные методы можно использовать совместно для обеспечения необходимой степени содержания в воде железа.

Основные термины (генерируются автоматически): трехвалентное железо, двухвалентное железо, загрузочный материал, вод, метод обезжелезивания воды, высокая концентрация железа, очищаемая вода, перманганат калия, полупроницаемая мембрана, сравнительный анализ методов обезжелезивания воды.

Ключевые слова

вода, двухвалентное железо, трехвалентное железо, коллоидное железо, бактериальное железо, методы обезжелезивания воды

вода, двухвалентное железо, трехвалентное железо, коллоидное железо, бактериальное железо, методы обезжелезивания воды

Похожие статьи

Повышение качества многоступенчатого процесса очистки воды

Обезжелезивание воды. На данный момент не существует универсального экономически оправданного метода обезжелезивания, применимого

– Химические методы очистки воды — химическое окисление с использованием в качестве окислителя перманганат калия KMnО4

Использование новой технологии электрохимической активации.

В очищенных этим методом сточных водах присутствуют значительные остаточные концентрации ионов тяжелых металлов, находящихся в виде комплексных соединений. Разрушить эти соединения можно методами химической деструкции.

Комплексная переработка сточных вод с высоким содержанием.

Предложена технология комплексной переработки кислых рудничных вод медноколчеданных месторождений, которая предполагает селективное извлечение ценных металлов в виде кондиционного сырья: меди — методом цементации.

Технология получения ферратов, предусматривающая.

Другой метод анализа использовал Розе [8]. Он включал восстановление в растворе феррата калия, полученного электрохимическим окислением, газообразным диоксидом серы до оксида железа(Ш), отделение выпавшего осадка (и удаление остатков газа).

Особенности химических способов извлечения марганца из.

При этом в воде обязательно необходимо присутствие двухвалентного железа, при окислении которого образуется гидроксид железа трехвалентного, адсорбирующий ионы Мn2+ и каталитически их окисляющий.

Роль водоочищения и водоподготовки в обеспечении населения.

Фильтр обезжелезивания идеманганации ERF/MSF 28/21–31/42 предназначен для удаления железа и марганца из воды.

Исследование адсорбционной очистки сточных вод.

В настоящее время в практике очистки сточных вод адсорбционный метод находит все более широкое применение, что связано с его высокой эффективностью и возможностью очистки сточных вод, содержащих растворенные примеси.

Мембранные методы производства безалкогольного пива

Поскольку вода непрерывно уходит, необходимо постоянно добавлять новую воду (3), которая должна быть обессоленной и деаэрированной.

Определенная концентрация некоторых веществ, прежде всего b-глюканов, уменьшает проницаемость мембран, что ограничивает.

Повышение качества многоступенчатого процесса очистки воды

Обезжелезивание воды. На данный момент не существует универсального экономически оправданного метода обезжелезивания, применимого

– Химические методы очистки воды — химическое окисление с использованием в качестве окислителя перманганат калия KMnО4

Использование новой технологии электрохимической активации.

В очищенных этим методом сточных водах присутствуют значительные остаточные концентрации ионов тяжелых металлов, находящихся в виде комплексных соединений. Разрушить эти соединения можно методами химической деструкции.

Комплексная переработка сточных вод с высоким содержанием.

Предложена технология комплексной переработки кислых рудничных вод медноколчеданных месторождений, которая предполагает селективное извлечение ценных металлов в виде кондиционного сырья: меди — методом цементации.

Технология получения ферратов, предусматривающая.

Другой метод анализа использовал Розе [8]. Он включал восстановление в растворе феррата калия, полученного электрохимическим окислением, газообразным диоксидом серы до оксида железа(Ш), отделение выпавшего осадка (и удаление остатков газа).

Особенности химических способов извлечения марганца из.

При этом в воде обязательно необходимо присутствие двухвалентного железа, при окислении которого образуется гидроксид железа трехвалентного, адсорбирующий ионы Мn2+ и каталитически их окисляющий.

Роль водоочищения и водоподготовки в обеспечении населения.

Фильтр обезжелезивания идеманганации ERF/MSF 28/21–31/42 предназначен для удаления железа и марганца из воды.

Исследование адсорбционной очистки сточных вод.

В настоящее время в практике очистки сточных вод адсорбционный метод находит все более широкое применение, что связано с его высокой эффективностью и возможностью очистки сточных вод, содержащих растворенные примеси.

Мембранные методы производства безалкогольного пива

Поскольку вода непрерывно уходит, необходимо постоянно добавлять новую воду (3), которая должна быть обессоленной и деаэрированной.

Определенная концентрация некоторых веществ, прежде всего b-глюканов, уменьшает проницаемость мембран, что ограничивает.

Выбор метода удаления железа из природных вод зависит от форм, количества железа и буферных свойств исходной воды. За полтора столетия существования технологии обезжелезивания воды было предложено и внедрено большое число методов удаления железа, все многообразие которых можно свести к двум основным типам: реагентные и безреагентные (физические).

Из применяемых в настоящее время методов обезжелезивания воды перспективными являются:

1) упрощенная аэрация (и фильтрование);

2) глубокая аэрация (с последующим отстаиванием и фильтрованием);

4) фильтрование на каркасных фильтрах;

6) двойная аэрация, обработка в слое взвешенного осадка и фильтрование;

7) фильтрование в подземных условиях с предварительной подачей в пласт окисленной воды;

8) аэрация и двухступенчатое фильтрование.

1) упрощенная аэрация, окисление, фильтрование;

2) напорная флотация с известкованием и последующим фильтрованием;

3) известкование, отстаивание в тонкослойном отстойнике и фильтрование;

4) аэрация, окисление, известкование, коагулирование, флокулирование с последующим отстаиванием или обработкой в слое взвешенного осадка и фильтрование;

5) фильтрование через модифицированную загрузку;

Обезжелезивание поверхностных вод можно осуществить лишь реагентными методами, а для удаления железа из подземных вод наибольшее распространение получили безреагентные методы, в частности метод глубокой аэрации, который широко применяется как в нашей стране, так и за рубежом. Из реагентных методов наиболее распространен метод коагулирования сульфатом алюминия с предварительным хлорированием, а иногда и известкованием с последующим отстаиванием.

Многообразие методов обезжелезивания воды исключает их равноценность в отношении надежности, технологичности, экономической целесообразности, простоты, области применения и т.п. Степень изученности того или иного метода различна. Наиболее глубоким и всеобъемлющим исследованиям были подвергнуты методы глубокой аэрации, упрощенной аэрации, коагуляции и известкования. Остальные методы по разным причинам имеют ограниченное применение или недостаточно изучены для широкого внедрения в практику [13].

Сущность этого метода заключается в предварительном формировании на поверхности зерен фильтрующей загрузки (кварцевый песок, керамзит и др.) каталитической пленки, состоящей в основном из оксида марганца MnO2.

При фильтровании воды оксид марганца (IV) окисляет двухвалентное железо, восстанавливаясь при этом до низших степеней окисления, а затем вновь окисляется растворенным в воде кислородом или другим окислителем при регенерации.

Процесс можно описать следующими реакциями:

Каталитическое действие оксида марганца столь велико, что процесс окисления железа (II) завершается в слое загрузки толщиной 10-15 см при фильтровании обезжелезиваемой воды со скоростью 10 м/час. Таким образом, на поверхности пленки происходит окисление железа (II), адсорбция его ионов и мельчайших агрегатов гидроксида железа (III).

По мере фильтрования все новых и новых порций воды в составе пленки уменьшается содержание оксида MnO2 и растет количество оксида Mn2O3. Окислительная способность пленки иссякает при преобладании в ее составе оксида Mn2O3 и блокировании активной поверхности в результате адсорбции соединений железа. Указанный метод обезжелезивания целесообразно использовать при низких значениях рН воды, небольшом содержании сероводорода и солей аммония [13].

Метод фильтрования через фильтрующую загрузку с каталитическим действием не получил широкого распространения в нашей стране из-за относительно высокой стоимости хлорида марганца и перманганата калия, необходимых для регенерации и приготовления фильтрующей загрузки. Однако варианты этого метода используются некоторыми фирмами по производству фильтров для очистки воды.

Загрузка Pyrolox также является сильным катализатором окисления растворенного железа, может работать при низких значениях рН. Несомненное достоинство этой загрузки это то, что ее использование не требует применения химических реагентов за исключением подачи небольшого количества воздуха в сеть перед фильтром.

Мультимедийная загрузка (кварцевый песок высокой чистоты и уголь) при наличии небольшого количества воздуха успешно борется не только с повышенным содержанием железа, но также с мутностью, цветностью и запахом.


Актуальность выбранной темы. ХХI век, век информации. Казалось бы, все изучили наши ученые для спокойного и долгого существования человека, придумали все для облегчения жизни. Но вопросы, касающиеся экологической сферы, так и остаются открытыми… Одной из главных является проблема качества воды, так необходимой для нашего существования, существования человечества. Трудно переоценить значение чистой воды для человека. Но, к сожалению, вода практически никогда не бывает чистой, то есть всегда содержит какие-то примеси и растворенные вещества. В ней растворено огромное количество химических веществ, как органических, так и неорганических. Некоторые из них сами по себе возможно не несут вред организму, или даже полезны для нас, но в сочетании с другими элементами могут оставлять последствия, далекие от понятия пользы. Другая разновидность примесей – микроорганизмы, которые вызывают массу заболеваний: бактерии, вирусы, грибы, простейшие и т.д. Поступление в организм с питьевой водой веществ, в концентрациях, превышающих норму, может вызвать необратимые изменения в работе важнейших систем жизнедеятельности человека. Существуют различные методы очистки воды для приведения ее к норме. Данная тема безусловно актуальна, актуальной будет всегда. Она затрагивает наше повседневное существование, влияет на здоровье нашего организма, поэтому несомненно заслуживает нашего внимания.

Объект исследования: Питьевая вода.

Предмет исследования: Методы очистки воды от различных примесей.

Цель исследования: Рассмотреть различные способы очистки воды и использовать их на практике.

Задачи исследования:

1. Выяснить значение и роль воды в жизни человека.

2. Изучить виды загрязнителей воды в различных литературных, интернет–источниках.

3. Изучить количественное содержание примесей в воде, допустимое государственным стандартом (ГОСТом) и СанПиНом.

4. Найти и рассмотреть различные методы очистки воды.

5. Разработать рекомендации для очистки воды в домашних условиях.

Гипотеза: Мы предположили, что вода может быть загрязнена различными примесями – это может навредить организму человека, а также, повлиять на правильную работу различных служб МТО. Существуют различные методы очистки воды от примесей.

Новизна исследования: Изучены методы очистки воды, различные стандарты содержания количественного состава примесей.

Практическая значимость: Выделены некоторые методы очистки воды, и на этой основе мы разработали мини–памятку по методам очистки воды в домашних условиях; написана научная публикация. Кроме этого в будущем планируется совместно с курсантами 2-го курса исследовать источник, находящийся недалеко от нашего института.

1 Теоретические аспекты исследования воды на содержание

различных примесей

1.1 Значение воды для жизни

Вода не имеет питательной ценности, но без сомнений является частью всего живого. Ни один из живых организмов нашей планеты не может существовать без воды. Из воды состоят все живые растительные и животные существа: рыбы – на 75 %; медузы – на 99 %; картофель – на 76%; яблоки – на 85 %; помидоры – на 90%; огурцы – на 95%; арбузы – на 96%. В целом организм человека состоит по весу на 50–86% из воды (86% у новорожденного и до 50% у пожилых людей). Содержание воды в различных частях тела составляет: кости – 20–30%; печень – до 69%; мышцы – до 70%; мозг – до 75%; почки – до 82%; кровь – до 85%. Этим фактом воспользовался писатель В. Савченко, заявив о том, что у человека “гораздо больше оснований считать себя жидкостью, чем, скажем, у 50%-ного раствора едкого натрия”. На протяжении всей своей жизни человек ежедневно имеет дело с водой. Он использует ее для питья и пищи, для умывания, летом – для отдыха, зимой – для отопления. Для человека вода является более ценным природным богатством, чем уголь, нефть, газ, железо, а все потому что она незаменима.

Без пищи человек может прожить около 50–ти дней, если во время голодовки он будет пить пресную воду, без воды он не проживет и неделю – смерть наступит через 5 дней. Суточная потребность взрослого человека в воде – 30–40 грамм на 1 кг веса тела. Приблизительно 40% ежедневной потребности организма в воде удовлетворяется с пищей, остальное мы должны принимать в виде различных напитков. Летом ежедневно нужно употреблять 2 – 2,5 литра воды. В жарких районах планеты – 3,5 – 5,0 л в сутки, а при температуре воздуха 38–40 °С и низкой влажности работающим на открытом воздухе потребуется в сутки 6,0–6,5 л воды [2]. Роль воды для человека огромна, поэтому нельзя оставлять этот вопрос без внимания.

1.2 Виды источников. Содержание и виды примесей

По данным ВОЗ более 500 млн человек ежегодно страдают от болезней, возникновение которых связано с потреблением воды неудовлетворительного качества, около 80 % всех болезней в мире обусловлены контактом с инфицированной водой или нарушением санитарно–гигиенических норм при её использовании в процессе жизнедеятельности. Качество питьевой воды во многом определяется качеством воды источника водоснабжения. При неудовлетворительном природном составе воды или большом антропогенном загрязнении источника даже современные методы водоподготовки не могут гарантировать получение воды необходимого качества [1].

Важнейшими гигиеническими характеристиками источника водоснабжения являются качество воды, подверженность влиянию природных и социальных (техногенных) факторов и степень санитарной надёжности источника, т.е. устойчивость к влиянию природных и антропогенных факторов. Кроме того, большое значение для характеристики источника имеют его водообильность, соотнесённая с предполагаемыми потребностями в воде, а также доступность источника (рисунок 1).

Рисунок 1 – Залегание подземных вод: 1 – водоупорные слои; 2 – горизонт грунтовых вод; 3 – горизонт межпластовых безнапорных вод; 4 – горизонт межпластовых напорных вод; 5 – колодец, питающийся грунтовой водой; 6 – скважина, питающаяся из межпластового безнапорного горизонта; 7 – скважина, питающаяся из межпластового напорного (артезианского) горизонта.

Санитарная надёжность источника централизованного питьевого водоснабжения – способность источника сохранять постоянство качества его воды и достаточность дебита для обеспечения проектируемой или эксплуатируемой системы централизованного питьевого водоснабжения.

Химический состав подземных вод формируется под влиянием химических (растворение, выщелачивание, сорбция, ионный обмен, образование осадка) и физико-химических (перенос веществ фильтрующих пород, растворение, поглощение и выделение газов) процессов.

В подземных водах найдено около 70 химических элементов. Наибольшее значение для питьевого водоснабжения имеют фтор, железо, марганец и соли жёсткости (сульфаты, карбонаты и гидрокарбонаты магния и кальция). Реже встречаются бром, бор, бериллий, селен, стронций. В межпластовых водах нет растворенного кислорода, но микробиологические процессы существенно влияют на их состав. Серобактерии окисляют сероводород и серу до серной кислоты, железобактерии образуют конкреции железа и марганца, которые частично растворяются в воде; некоторые виды бактерий способны восстанавливать нитраты с образованием азота и аммиака.

1.3 Государственные стандарты и СанПиНы на содержание различных элементов, растворенных в воде. Показатели качества воды

Качество воды – это сочетание химического и биологического состава и физических свойств воды, определяющее её пригодность для конкретных видов водопользования, в зависимости от назначения воды и особенностей технологического процесса.

Требования к качеству всех видов вод, кроме сточных, устанавливаются отечественными государственными стандартами.

Читайте также: