Реферат на тему взрывоопасные парогазовые смеси

Обновлено: 18.05.2024

Понятие о взрыве паров и газов. Степень взрывоопасности газовоздушной смеси

Описание: Степень взрывоопасности газовоздушной смеси. Взрывоопасную среду могут образовать смеси веществ газов паров пылей с воздухом и другими окислителями кислород озон. Газовоздушные смеси могут воспламеняться взрываться только тогда когда содержание газа в смеси находится в определенных для каждого газа пределах. Нижний предел соответствует минимальному а верхний максимальному количеству газа в смеси при котором происходят их воспламенение при зажигании и самопроизвольное без притока тепла извне распространение пламени.

Дата добавления: 2014-06-18

Размер файла: 10.17 KB

Работу скачали: 27 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

77. Понятие о взрыве паров и газов. Степень взрывоопасности газовоздушной смеси.

В технологических процессах, связанных с добычей, транспортировкой, переработкой, получением, хранением и применением горючих газов ( ГГ ) и легковоспламеняющихся жидкостей ( ЛВЖ ) , всегда имеется опасность образования взрывоопасных газо- и паровоздушных смесей.

Взрывоопасную среду могут образовать смеси веществ ( газов, паров, пылей ) с воздухом и другими окислителями ( кислород, озон. хлор, окислы азота и др. ) и вещества, склонные к взрывному превращению ( ацетилен, озон, гидразин и др. ) .

Причинами взрывов наиболее часто является нарушение правил безопасной эксплуатации оборудования, утечки газов через неплотности в соединениях, перегрев аппаратов, чрезмерной повышение давления, отсутствие надлежащего контроля за технологическим процессом, разрыв или поломка деталей оборудования и др.

Источником инициирования взрыва являются:

открытое пламя, горящие и раскаленные тела ;

- тепловые проявления химических реакций и механических воздействий ;

искры от удара и трения:

- электромагнитные и другие излучения.

Газовоздушные смеси могут воспламеняться ( взрываться ) только тогда, когда содержание газа в смеси находится в определенных ( для каждого газа ) пределах. В связи с этим различают нижний и верхний концентрационные пределы воспламеняемости. Нижний предел соответствует минимальному, а верхний — максимальному количеству газа в смеси, при котором происходят их воспламенение ( при зажигании ) и самопроизвольное ( без притока тепла извне ) распространение пламени ( самовоспламенение ) . Эти же пределы соответствуют и условиям взрываемости газовоздушных смесей.

Если содержание газа в газовоздушной смеси меньше нижнего предела воспламеняемости, такая смесь гореть и взрываться не может, поскольку выделяющейся вблизи источника зажигания теплоты для подогрева смеси до температуры воспламенения недостаточно. Если содержание газа в смеси находится между нижним и верхним пределами воспламеняемости, подожженная смесь воспламеняется и горит как вблизи источника зажигания, так и при удалении его. Такая смесь является взрывоопасной. Чем шире будет диапазон пределов воспламеняемости ( называемых также пределами взрываемости ) и ниже нижний предел, тем более взрывоопасен газ. И наконец, если содержание газа в смеси превышает верхний предел воспламеняемости, то количества воздуха в смеси недостаточно для полного сгорания газа.

Существование пределов воспламеняемости вызывается тепловыми потерями при горении. При разбавлении горючей смеси воздухом, кислородом или газом тепловые потери возрастают, скорость распространения пламени уменьшается, и горение прекращается после удаления источника зажигания.

Пределы воспламеняемости зависят не только от видов горючих газов, но и от условий проведения экспериментов ( вместимости сосуда, тепловой мощности источника зажигания, температуры смеси, распространения пламени вверх, вниз, горизонтально и др. ) .

Основной причиной образования взрывных газовоздушных смесей является утечка газа из систем газоснабжения и отдельных ее элементов ( неплотность закрытия арматуры, износ сальниковых уплотнений, разрывы швов газопроводов, негерметичность резьбовых соединений и т. д. ) , а также несовершенная вентиляция помещений, топки и газоходов котлов и печей, подвальных помещений и различных колодцев подземных коммуникаций.

Аварии со взрывом могут произойти на пожаровзрывоопасных объектах. К пожаровзрывоопасным объектам относятся объекты, на территории или в помещениях которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости и горючие пыли в таком количестве, что могут образовывать взрывоопасные горючие смеси, при горении которых избыточное давление в помещении може т превысить 5 кПа… Читать ещё >

Оценка взрыва газовоздушной смеси в помещении ( реферат , курсовая , диплом , контрольная )

Содержание

  • Введение
  • Раздел 1. Исходные данные
  • Раздел 2. Расчет избыточного давления взрыва ГВС внутри помещения по методу ВНИИПО
  • Раздел 3. Оценка избыточного давления взрыва ГВС внутри производственного помещения по методу А. В. Мишуева
  • Заключение
  • Список литературы

Актуальность темы

Аварии со взрывом могут произойти на пожаровзрывоопасных объектах. К пожаровзрывоопасным объектам относятся объекты, на территории или в помещениях которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости и горючие пыли в таком количестве, что могут образовывать взрывоопасные горючие смеси, при горении которых избыточное давление в помещении може т превысить 5 кПа.

Непосредственными причинами взрывов могут быть любые физические явления, вызывающие нарушение устойчивого состояния взрывчатого вещества: изменение температуры, химические реакции, резкие внешние воздействия (удар, трение), ударная волна другого взрыва и т. п.

Последствия взрыва на пожаровзрывоопасных предприятиях определяются в зависимости от условия размещения взрывоопасных продуктов. Если продукты размещаются вне помещений, то принимается, что авария развивается по сценарию взрыва в открытом пространстве.

Если технологический аппарат со взрывоопасными продуктами размещен в зданиях, то авария развивается по сценарию взрыва в замкнутом объеме.

Для предотвращения разрушения элементов котлов и технологического оборудования при возможных взрывах газои пылевоздушных смесей необходимо устанавливать взрывные предохранительные клапаны, которые должны срабатывать при давлениях меньше значений давлений, приводящих к разрушению конструкций. Эти клапаны обеспечивают своевременный сброс давления продуктов сгорания из мест взрыва в окружающую среду. Распространение получили взрывные предохранительные клапаны разрывного, откидного и сбросного типов.

В парогазовой среде взрывоопасными могут быть как индивидуальные нестабильные соединения, так и смеси горючих веществ с окислителями. Склонность к взрывному термическому разложению индивидуальных веществ и взаимодействию веществ в смесях определяется химическим строением вещества и количеством тепла, выделяемого при химической реакции.

Типичными нестабильными индивидуальными соединениями, способными взрываться без участия окислителей в условиях технологических процессов, можно считать некоторые непредельные углеводороды алифатического ряда, например ацетилен. При его взрывном разложении в отсутствие кислорода или других окислителей выделяется 8,7 МДж/кг энергии, которой достаточно, чтобы разогреть продукты реакции до 2800 о С.

Основными показателями разрушающей способности взрывных процессов термического разложения неустойчивых соединений в газовой фазе, так же как и в случае конденсированных взрывчатых веществ, могут быть энергетические потенциалы, тротиловый эквивалент, плотность и скорость энерговыделения, избыточное давление взрыва и другие параметры взрывной волны.

На объектах экономики наибольшую опасность представляют взрывы парогазовых смесей горючих веществ с окислителями как в замкнутых объемах (сосудах), так и вне их. Стехиометрическому соотношению компонентов горючей смеси соответствуют наиболее высокие параметры взрывоопасности. Значения температуры пламени, скорости горения и других параметров взрыва тем больше, чем ближе соотношение компонентов к стехиометрическому. Такие смеси характеризуются минимальными температурами самовоспламенения, то есть достигаются условия для перехода дефлаграционного горения в детонационный режим.

В производственных условиях технологические процессы в большинстве случаев протекают вне области концентрационных пределов воспламенения. Однако при различных неполадках и аварийных ситуациях возникают условия для образования горючих паровоздушных смесей как в замкнутых объемах, так и в неорганизованных паровых облаках больших масс.

Показатели разрушающей способности взрывов парогазовых сред с учетом их плотности взрывоопасной среды оказываются сопоставимыми с теми же параметрами конденсированных взрывчатых веществ. В таблице 10.1 приведены взрывоопасные характеристики конденсированных взрывчатых веществ и парогазовых сред.

Параметры Конденсированное ВВ Парогазовая смесь
Плотность вещества, , кг/м 3 1,5∙10 3 -2,0∙10 3 1,2 -2,2
Плотность энерговы- деления, qv? МДж/м 3 0,4∙10 4 -1,1∙10 4 1,0-1,5
Масса заряда тротила (тротиловый эквива- лент), W, кг 0,3–1,9 0,3 -2,6
Давление взрыва, Рмакс, МПа 0,5∙10 4 -4,0∙10 4 0,7-1,0

Как видно из таблицы 10.1 уровень разрушающей способности ударных волн существенно зависит от плотности взрывоопасной среды. Если плотность парогазовых смесей на три порядка меньше плотности конденсированных взрывчатых веществ, то примерно на четыре порядка оказываются меньше давление взрыва, удельная плотность энерговыделения и другие параметры, характеризующие разрушающую способность ударных волн при одинаковых значениях тротилового эквивалента.

Аварии, связанные со взрывом парогазовоздушных смесей в большинстве случаев сопровождаются выбросами из сосудов (технологических аппаратов) значительного количества взрывоопасных веществ, разрушениями оборудования или конструкций, пожарами. Авариям, как правило, предшествуют аварийные ситуации, то есть отклонения параметров оборудования и технологического режима от нормальных.

Перегретые жидкости

Нейтральная или горючая перегретая жидкость (сжиженные углеводородные газы, хлор, аммиак, фреоны, вода в паровых котлах) отличается тем, что давление ее паров превышает атмосферное.

Уровень перегрева жидкости характеризуется разностью между температурой, при которой жидкость находится в технологической системе, и температурой ее кипения при атмосферном давлении. Если происходит внезапное разрушение сосуда (системы) с перегретой жидкостью, она быстро испаряется с образованием паров в окружающей среде и формированием ударных волн. Взрывы технологических систем с высокими параметрами перегрева жидкости по разрушающему эффекту часто бывают подобны взрывам сосудов со сжатыми газами. Оценка уровня опасности таких систем может определяться тротиловым эквивалентом

Уровень опасности может характеризоваться работой, совершаемой расширяющимся газом (паром) от начального давления перегретой жидкости до атмосферного.

Энергия перегрева жидкости может быть источником чисто физических взрывов, например при интенсивном перемешивании жидкостей с различными температурами, при контакте жидкости с расплавами металла и нагретыми твердыми телами. При этом не происходит химических превращений, а энергия перегрева расходуется

на парообразование, которое может протекать с такой скоростью, что возникает ударная волна. При смешивании двух жидкостей с существенно разными температурами возможны явления физической детонации с образованием облака жидких капель одного из компонентов.

Пылевоздушные смеси

Взрыв пыли (серы, фосфора, каменного угля и других твердых горючих веществ) происходит при мгновенном соединении горючей части пыли с кислородом воздуха с выделением большого количества тепла и газообразных продуктов, которые нагреваясь, расширяются и образуют взрывную волну. Сила и интенсивность взрыва пыли зависят от многих факторов и достигают максимальных значений при соответствующем соотношении горючей массы и кислорода. Процесс окисления кислородом протекает на поверхности твердых частиц пыли. В зависимости от структуры и свойств исходного вещества и условий образования пыли ее частицы могут иметь различную форму, быть волокнистыми, гладкими, шероховатыми, иметь различные размеры, что обусловливает воспламеняемость и взрываемость пыли.

Скорость образования взрывоопасной смеси возрастает по мере увеличения поверхности контакта воздуха и твердых частиц пыли.

Поэтому опасность взрыва зависит от размера частиц пыли и содержания кислорода в системе. Мелкодисперсная пыль с сильно развитой поверхностью характеризуется большей активностью, более низкой температурой самовоспламенения и широким интервалом между нижним и верхним концентрационными пределами взрываемости.

При низких концентрациях пыли расстояние между частицами, находящимися во взвешенном состоянии, велико, переноса пламени от частицы к частице не происходит, следовательно, взрыв не распространяется на весь объем. Чрезмерно большое количество пыли также препятствует возникновению и распространеню взрывов, так как в этом случае в смеси содержится слишком мало кислорода для сгорания пыли.

В отличие от газовых смесей образование взрывоопасного облака аэрозоля в помещении может происходить в процессе самого взрыва. Взрыву в большинстве случаев предшествуют локальные хлопки в оборудовании и воспламенение в отдельных участках здания, что вызывает встряхивание пыли, осевшей на полу, стенах и других строительных конструкциях и оборудовании. Это приводит к образованию взрывоопасных концентраций пыли во всем объеме, взрыв которой вызывает сильные разрушения. Установлено, что с увеличением объема помещения (сосуда) максимальное давление взрыва возрастает, а скорость нарастания давления снижается.

Уровень опасности взрыва пыли, так же как и парогазовых смесей, характеризуется концентрационными пределами воспламенения, объемной плотностью энерговыделения, максимальным давлением, возникающим при воспламенении, скоростью распространения пламени и нарастания давления при взрыве, максимально допустимым содержанием кислорода в смеси пыли с воздухом, при котором пыль не воспламенится.

Пылевзвеси характеризуются весьма широким интервалом концентрационных пределов распространения пламени – от десятков граммов до килограммов в 1 м 3 воздуха. Верхние концентрационные пределы распространения пламени пыли обычно достаточно велики и достичь их в производственных помещениях даже при аварийных ситуациях практически невозможно. Поэтому наиболее важен нижний предел, а также более высокие концентрации, при которых достигается максимальная объемная плотность энерговыделения. Нижний концентрационный предел распространения пламени аэрозолей органических веществ с увеличением влажности твердой фазы пыли всегда повышается. и при содержании влаги ≈20-25% по массе аэрозоли становятся невзрывоопасными. Присутствие в горючих пылевзвесях других инертных компонентов также повышает нижний концентрационный предел.

При взрывах аэрозолей со стехиометрическим соотношением твердого вещества и воздуха, в отличие от взрывов парогазовых смесей, не достигается максимальное избыточное давление. Максимальные параметры ударных волн наблюдаются при значительном избытке воздуха и концентрации твердой фазы, в 3-4 раза превышающей нижний концентрационный предел распространения пламени, что обусловлено неполнотой сгорания пыли. Однако при этом объемная плотность энерговыделения во многих случаях близка к значениям показателя для парогазовых смесей стехиометрического состава.

Для данного твердого горючего вещества всегда могут создаться оптимальные условия взрыва аэрозоля в воздухе, при которых достигаются максимальные значения параметров ударной волны (давления и скорости его нарастания). При прочих равных условиях этому соответствует оптимальное соотношение твердой фазы и кислорода, при которых достигается максимальное удельное объемное тепловыделение. Отклонения от этого оптимального состава, так же как и отклонения от стехиометрического соотношения газовых смесей, приводят к снижению объемной плотности энерговыделения и соответственно к снижению параметров ударных волн.

Для оценки уровня взрывоопасности аэрозоля в помещении (сосуде) определяют энергетический потенциал взрыва по формуле:

где qv – объемная плотность энерговыделения, кДж/м 3 ;

V – объем пылевоздушного облака, м 3 .

При положительном балансе кислорода в аэрозоле значения qv рассчитывают как теплоту сгорания всего вещества в 1 м 3 смеси. При отрицательном балансе, когда часть твердой горючей массы в смеси при взрыве останется несгоревшей, объемную плотность энерговыделения рассчитывают по наличию имеющегося кислорода с учетом его минимального взрывоопасного содержания.

В общем случае для технологического блока со взрывоопасными аэрозолями по аналогии с парогазовыми смесями можно определить тротиловый эквивалент W, используя для этого энергетический баланс ударной волны:

где V – объем аэрозоля, м 3 ;

с – концентрация дисперсной горючей среды в смеси, кг/м 3 ;

q – теплотворная способность твердой фазы, кДж/кг;

qт – удельная энергия сгорания тротила, кДж/кг;

z – доля участия взвешенного дисперсного продукта во взрыве;

z′ - доля энергии взрыва пыли, расходуемой на образование ударной волны (принимается по аналогии с парогазовыми смесями);

Для определения радиусов Ri зон интенсивности воздействия ударной волны при взрыве пылевоздушной смеси пользуются формулой:

где W – тротиловый эквивалент, кг;

Кi – коэффициент пропорциональности, соответствующий определенной зоне интенсивности ударной волны (см. таблицу 8.3).

Избыточное давление взрыва ∆Р (кПа) пылевоздушной смеси в объеме помещения рассчитывают по формуле:

где G – масса взвешенной пыли, кг;

g – ускорение свободного падения, g = 9,81 м/с 2 ;

Ро - начальное (атмосферное) давление в помещении (101 кПа);

z – доля участия взвешенного дисперсного продукта во взрыве;

Vсв – свободный объем помещения, м 3 ;

ρв – плотность воздуха (1,29 кг/м 3 );

ср - теплоемкость воздуха [1,01 кДж/(кг∙К)];

То – начальная температура воздуха в помещении, К;

Кн – коэффициент, учитывающий негерметичность помещения и неадиабатичность процесса горения (допускается принимать Кн = 3).

Контрольные вопросы

1. Охарактеризуйте каждую из четырех групп конденсированных

взрывчатых веществ по степени взрывоопасности.

2. Охарактеризуйте физические взрывы сосудов со сжатыми газами (парами).

3. При каких условиях возможны взрывы горючих парогазовых смесей?

4. Почему возможен взрыв приналичии перегретых жидкостей?

5. Какими факторами характеризуется уровень опасности взрыва пыли?

6. Приведите формулу для оценки уровня взрывоопасности аэрозоля в помещении (сосуде).

7. Приведите формулу для определения избыточного давления взрыва пылевоздушной смеси в помещении.

В технологических процессах, связанных с добычей, транспортировкой, переработкой, получением, хранением и применением горючих газов (ГГ) и легковоспламеняющихся жидкостей (ЛВЖ), всегда имеется опасность образования взрывоопасных газо- и паровоздушных смесей.

Взрывоопасную среду могут образовать смеси веществ (газов, паров, пылей) с воздухом и другими окислителями (кислород, озон. хлор, окислы азота и др.) и вещества, склонные к взрывному превращению (ацетилен, озон, гидразин и др.).

Причинами взрывов наиболее часто является нарушение правил безопасной эксплуатации оборудования, утечки газов через неплотности в соединениях, перегрев аппаратов, чрезмерной повышение давления, отсутствие надлежащего контроля за технологическим процессом, разрыв или поломка деталей оборудования и др.

Источником инициирования взрыва являются:

открытое пламя, горящие и раскаленные тела;

- тепловые проявления химических реакций и механических воздействий;

искры от удара и трения:

- электромагнитные и другие излучения.

Согласно ПБ 09-540-03 Взрыв это:

I.Процесс скоротечного высвобождения потенциальной энергии, связанный с внезапным изменением состояния вещества и сопровождающийся скачком давления или ударной волной.

2. Кратковременное высвобождение внутренней энергии, создающее избыточное давление

Взрыв может происходить с горением (процессом окисления) или без него.

Параметры и свойства, характеризующие взрывоопасность среды:

- концентрационные и температурные пределы воспламенения;

- нормальная скорость распространения пламени;

- минимальное взрывоопасное содержание кислорода (окислителя);

-минимальная энергия зажигания;

-чувствительность к механическому воздействию (удару и трению). Опасными и вредными факторами, воздействующими на работающих

в результате взрыва, являются:

-ударная волна, во фронте которой давление превышает допустимое значение;

-обрушивающиеся конструкции, оборудование, коммуникации, здания и сооружения и их разлетающиеся части;

-образовавшиеся при взрыве и (или) выделившиеся из поврежденного оборудования вредные вещества, содержание которых в воздухе рабочей зоны превышает предельно допустимые концентрации.

Основные факторы, характеризующие опасность взрыва:

- максимальное давление и температура взрыва;

- скорость нарастания давления при взрыве;

- давление во фронте ударной волны;

- дробящие и фугасные свойства взрывоопасной среды.

При взрыве исходная потенциальная энергия вещества превращается, как правило, в энергию нагретых сжатых газов, которая в свою очередь при их расширении переходит в энергию движения, сжатия, разогрева среды. Часть энергии остается в виде внутренней (тепловой) энергии расширившихся газов.

Полное количество выделившейся при взрыве энергии определяет общие параметры (объема, площади) разрушений. Концентрация энергии (энергия в единице объема) определяет интенсивность разрушений в очаге взрыва. Эти характеристики в свою очередь зависят от скорости высвобождения энергии взрывоопасной системой, обуславливающей взрывной волны.

Взрывы, наиболее часто встречающиеся в практике расследования, можно подразделить на две основные группы: химические и физические взрывы.

К химическим взрывам относятся процессы химического превращения вещества, проявляющиеся горением и характеризующиеся выделением тепловой энергии за короткий промежуток времени и в таком объеме, что образуются волны давления, распространяющиеся от источника взрыва.

К физическим взрывам относятся процессы, приводящие к взрыву и не связанные с химическими превращениями вещества.

Причиной случайных взрывов чаще всего являются процессы горения. Взрывы такого рода чаще всего происходят при хранении, транспортировке и изготовлении взрывчатых веществ (ВВ). Они имеют место:

- при обращении с ВВ и взрывоопасными веществами химической и нефтехимической промышленности;

- при утечках природного газа в жилых домах;

при изготовлении, транспортировке и хранении легколетучих или сжиженных горючих веществ;

при промывке резервуаров для хранения жидкого топлива;

при изготовлении, хранении и использовании горючих пылевых систем и некоторых самовозгорающихся твердых и жидких веществ.

Особенности химического взрыва

Существуют два основных типа взрывов: взрыв конденсированного ВВ и объемный взрыв (взрыв паров пылегазовых смесей). Взрывы конденсированных ВВ вызываются всеми твердыми ВВ и относительно незначительным числом жидких ВВ, включая нитроглицерин. Такие ВВ обычно имеют плотность 1300-1800 кг/м3, однако первичные ВВ содержащие свинец или ртуть, имеют намного большие плотности.

Самый простой случай взрыва - процесс разложения с образованием газообразных продуктов. Например, разложение пероксида водорода с большим тепловым эффектом и образованием водяного пара и кислорода:

2Н2О2 → 2Н2О2 + О2 + 106 кДж/моль

Пероксид водорода опасен, начиная с концентрации 60%.

Разложение при трении или ударе азида свинца:

Pb(N3)2 → Pb -ь 3N2 + 474 кДж/моль.

Вещества, склонные к взрывчатому разложению, почти всегда содержат одну или несколько характерных химических структур, ответственных за внезапное развитие процесса с выделением большого количества энергии. Эти структуры включают следующие группы:

-NO2 и NО3 - в органических и неорганических веществах;

-N=N-N - в органических и неорганических азидах;

-NX3, где X - галоид,

-N=C в фульминатах.

На основании законов термохимии представляется возможным выявить соединения, процесс разложения которых может оказаться взрывоопасным. Одним из решающих факторов, определяющих потенциальную опасность системы, является превалирование ее внутренней энергии в начальном состоянии по сравнению с конечным состоянием. Такое условие выполняется при поглощении тепла (эндотермическая реакция) в процессе образования вещества. Примером соответствующего процесса является образование ацетилена из элементов:

2С + Н2 → СН=СН - 242 кДж/моль.

К веществам не взрывоопасным, которые теряют тепло в процессе образования (экзотермическая реакция), относятся, например, диоксид углерода

С + О2 → СО2 + 394 кДж/моль.

Следует учитывать, что применение законов термохимии позволяет лишь выявить возможность взрывного процесса. Осуществление его зависит от скорости реакции и образования летучих продуктов. Так, например, реакция парафина свечи с кислородом, несмотря на высокую экзотермичность, не приводит к взрыву из-за ее низкой скорости.

Реакция 2Аl+ 4АС2О2 → Аl2О3 + 2Fе сама по себе, несмотря на высокую экзотермичность, также не приводит к взрыву, так как не образуются газообразные продукты.

Окислительно-восстановительные реакции, составляющие основу реакций горения, по указанной причине могут приводив к взрыву только в условиях благоприятствующих достижению высоких скоростей реакции и росту давления. Сгорание сильно диспергированных твердых веществ и жидкостей может привести в условиях закрытого объема к росту избыточного давления вплоть до 8 бар Сравнительно редко, например в системах жидкого воздуха, где аэрозоль представляет собой туман из масляных капель.

При реакциях полимеризации, сопровождаемых экзотермическим эффектом, и наличии летучего мономера часто достигается стадия, при которой может произойти опасное повышение давления, для некоторых веществ таких как этиленоксид, полимеризация может начаться при комнатной температуре особенно когда исходные соединения загрязняются веществами, ускоряющими полимеризацию. Этиленоксид может также изомеризоваться в ацетальдегид экзотермическим путем:

СН2СН2О — СН3НС = О + 113,46 кДж/моль

Реакции конденсации широко применяются в производстве красок, лаков и смол и вследствие экзотермичности процесса и наличия летучих компонентов приводят подчас к взрывам

Для выяснения общих условий, благоприятствующих возникновению горения и его переходу во взрыв, рассмотри график (рисунок 1) зависимости температуры, развиваемой в горючей системе, от времени при наличии с ней объемного тепловыделения за счет химической реакции и теплопотерь.

Если представить температуру Т1 на графике как критическою точку, при которой возникает горение в системе, становится очевидным, что в условиях, когда имеет место превышение теплопотерь над теплоприходом, такое горение возникнуть не может. Этот процесс начинается лишь при достижении равенства между скоростями тепловыделения и теплопотерь (в точке касания соответствующих кривых) и дальше способен ускоряться с повышением температуры и. тем самым, давления до взрыва.

Таким образом, при наличии условий, благоприятствующих теплоизоляции, протекание экзотермической реакции в горючей системе может привести не только к горению, но и к взрыву.

Возникающие неконтролируемые реакции, благоприятствующие взрыву, обусловлены тем, что скорость переноса тепла, например, и сосудах является линейной функцией разности температур между реакционной массой и охладителем, тогда как скорость экзотермической реакции и, тем самым, приток тепла от нее растет по степенному, закону с увеличением начальных концентраций реагентов и быстро возрастает при повышении температуры в результате экспоненциальной зависимости скорости химической реакции от температуры (закон Аррениуса). Эти закономерности обуславливают наименьшие скорости горения смеси и температуру на нижнем концентрационном пределе воспламенения. По мере приближения концентрации горючего и окислителя к стехиометрическим скорость горения и температура возрастают до максимальных знамений.

Концентрация газа стехиометрического состава - концентрация горючего газа в смеси с окислительной средой, при которой обеспечивается полное без остатка химическое взаимодействие горючего и окислителя смеси.

3. Особенности физического взрыва

Физические взрывы, как правило, связывают со взрывами сосудов от давления паров и пазов. Причем основной причиной их образования является не химическая реакция, а физический процесс, обусловленный высвобождением внутренний энергии сжатого или сжиженного газа. Сила таких взрывов зависит от внутреннего давления, а разрушения вызываются ударной волной от расширяющегося газа или осколками разорвавшегося сосуда. Физический взрыв может произойти в случае, например, падения переносного баллона с газом под давлением и срыва вентиля, понижающего давление. Давление сжиженного газа редко превышает 40 бар (критическое давление большинства обычных сжиженных газов).

К физическим взрывам относятся также явление так называемой физической детонации. Это явление возникает при смешении горячей и холодной жидкостей, когда температура одной из них значительно превышает температуру кипения другой (например, выливание расплавленного металла в воду). В образовавшейся парожидкостной смеси испарение может протекать взрывным образом вследствие развивающихся процессов тонкой флегматизации капель расплава, быстрого теплоотвода от них и перегрева холодной жидкости с сильным ее парообразованием.

Физическая детонация сопровождается возникновением ударной волны с избыточным давлением в жидкой фазе, достигающем в ряде случаях более тысячи атмосфер. Многие жидкости хранятся или используются в условиях, когда давление их паров значительно превышает атмосферное. К числу таких жидкостей относятся: сжиженные горючие газы (например, пропан, бутан) сжиженные хладагенты аммиак или фреон, хранимые при комнатной температуре, метан, который должен храниться при пониженной температуре, перегретая вода в паровых котлах. Если емкость с перегретой жидкостью повреждается, то происходит истечение пара в окружающее пространство и быстрое частичное испарение жидкости. При достаточно быстром истечении и расширении пара в окружающей среде генерируются взрывные волны. Причинами взрывов сосудов с газами и парами под давлением являются:

- нарушения целостности корпуса из-за поломки какого-либо узла, повреждения или коррозии при неправильной эксплуатации;

- перегрев сосуда за счет нарушений в электрообогреве или режиме работы топочного устройства (в этом случае давление внутри сосуда повышается, а прочность корпуса понижается до состояния, при котором происходит ею повреждение);

- взрыв сосуда при превышении допустимого давления.

Взрывы газовых емкостей с последующим горением в атмосфере в основе своей содержат те же причины, которые описаны выше и характерны для физических взрывов. Основное различие заключается в образовании в данном случае огненного шара, размер которого зависит от количества выброшенного в атмосферу газообразного горючего. Это количество зависит, в свою очередь от физического состояния, в котором находится газ в емкости. При содержании горючего в газообразном состоянии его количество получится намного меньше, чем в случае хранения в той же емкости в жидком виде. Параметры взрыва, обуславливающие его последствия, в основном определяются характером распределения энергии в области взрыва и ее распределением по мере того, как взрывная волна распространяется от источника взрыва.

4. Энергетический потенциал

Взрыв обладает большой разрушительной способностью. Важнейшей характеристикой взрыва являемся суммарная энергия вещества. Этот показатель называют энергетическим потенциалом взрывоопасности, он входит во все параметры, характеризующие масштабы и последствия взрыва.

Энергетический потенциал взрывоопасности Е (кДж) блока определяется полной энергией сгорания парогазовой фазы, находящейся в блоке, с учетом величины работы ее адиабатического расширения, а также величины энергии полного сгорания испарившейся жидкости с максимально возможной площади ее пролива, при этом считается:

-при аварийной разгерметизации аппарата происходит его полное раскрытие (разрушение);

-площадь пролива жидкости определяется исходя из конструктивных решений зданий или площадки наружной установки;

- время испарения принимается не более 1 часа:

Е= ЕII1+ ЕII2+ ЕII1+ ЕII2+ ЕII3+ ЕII4 ,

взрыв пожарный помещение опасность

где ЕI1 - сумма энергий адиабатического расширения и сгорания парогазовой фазы (ПГФХ непосредственно находящейся в блоке, кДж;

ЕI2 - энергия сгорания ГПФ, поступившей к разгерметизированному участку от смежных объектов (блоков), кДж;

ЕII1- энергия сгорания ГТГФ, образующейся за счет энергии перегретой ЖФ рассматриваемого блока и поступившей от смежных объектов кДж;

ЕII2 - энергия сгорания ПГФ, образующейся из жидкой фазы (ЖФ) за счет тепла экзотермических реакций, не прекращающихся при разгерметизации, кДж;

ЕII3 - энергия сгорания ПГФ. образующейся из ЖФ за счет теплопритока от внешних теплоносителей, кДж;

ЕII4 - энергия сгорания ПГФ, образующейся из пролитой на твердую поверхность (пол, поддон, грунт и т.п.) ЖФ за счет теплоотдачи от окружающей среды (от твердой поверхности и воздуха, к жидкости по ее поверхности), кДж.

По значениям общих энергетических потенциалов взрывоопасности и определяются величины приведенной массы и относительного энергетического потенциала, характеризующих взрывоопасность технологических блоков.

Приведенная масса - это общая масса горючих паров (газов) взрывоопасного парогазового облака, приведенная к единой удельной энергии сгорания, равной 46000 кДж/кг:


Относительный энергетический потенциал взрывоопасности Qв технологического блока, который характеризует полную энергию сгорания и может находиться расчетным методом по формуле:


где Е - общий энергетический потенциал взрывоопасности технологического блока.

По значениям относительных энергетических потенциалов Ов к приведенной массе парогазовой среды т осуществляется категорирование технологических блоков. Показатели категории взрывоопасности технологических блоков приведены в таблице 1.

Читайте также: