Реферат на тему трансмиссия тракторов

Обновлено: 05.07.2024

Трансмиссия объединяет системы и узлы ходовой части тракторов. В нее входят механизмы, передачи и элементы сборки, которые обеспечивают запуск вращения в направлении от коленчатого вала двигателя. Благодаря трансмиссии происходит распределение и передача сил на ведущие колеса (или гусеницы), вал отбора мощности и гидропроводам.

Выполнение технологических операций требует от ходовой части трактора и, в частности, трансмиссии создания эффекта сопротивления движению и развития поступательной скорости в широком диапазоне.

Если говорить простым языком, то трансмиссия трактора предназначена для следующего функционала:

  • плавное трогание сельскохозяйственной техники с места;
  • не менее плавное изменение скоростных режимов;
  • обеспечение смены направления движения;
  • длительная остановка при отсутствии отключения мотора;
  • легкие и плавные повороты;
  • передача крутящего момента рабочим узлам.

На основании этого следует для ходовой части трактора разделить виды трансмиссии:

  • бесступенчатые;
  • ступенчатые;
  • комбинированные.

Устройство трансмиссии

Если рассматривать устройство трансмиссии любого трактора и, в первую очередь, гусеничного, то следует рассмотреть его конструктивные элементы:

  • муфта сцепления;
  • соединительный вал;
  • коробка передач;
  • механизмы планетарного типа;
  • главная и конечная передачи.

В дополнение для понимания необходимо разобраться с возможными принципами действия трансмиссии трактора:

  • механические;
  • гидравлические;
  • электрические;
  • комбинированные (например, гидро- или электромеханические).

Перечислим трансмиссии тракторов в ходовой части механического ступенчатого типа:

  • Т-25А;
  • МТЗ-80 и 82;
  • Т-70С;
  • ДТ-75МВ;
  • Т-4А;
  • Т-130М.

Они получили наибольшее распространение. А наиболее редкими в использовании при этом являются варианты с трансмиссиями электрического и гидравлического формата.

Особенности конструкции трансмиссии трактора напрямую зависят от типа двигателя, который может быть колесным или гусеничным, а также количества ведущих колес в системе конкретного транспортного средства.

Устройства трансмиссии гусеничных тракторов соответствует усложненной схеме в сравнении с колесными. Это связано с присутствием в системе дополнительных конструктивных составляющих в виде правого и левого механизмов поворота. Они обеспечивают разные крутящие моменты для ведущих звездочек. Для этого используют следующие варианты поворотных механизмов:

  • планетарные;
  • с многодисковыми фрикционными муфтами.

Устройство трансмиссии трактора Т-150

Отдельно следует разобрать устройство ходовой части гусеничного трактора Т-150. Она включает следующие элементы:

  • двигатель;
  • муфта сцепления;
  • коробка передач;
  • главные, карданные и конечная передачи;
  • ведущая звездочка;
  • редуктор ВОМ.

Трансмиссия трактора Т-150 содержит коробку передач с двумя вторичными валами, которые являются выходными. Их концы соединяются с главными передачами при помощи карданных. От главных передается вращение к ведущим валам и далее распространяется на ведущие звездочки, расположенные с правой и левой сторон. Последний процесс осуществляется через конечные передачи, которые являются планетарными механизмами.

Еще одним ключевым отличием в конструкции трансмиссии трактора Т-150 служат отсутствие механизма поворота. Для этого предназначена коробка передач, снабженная приводом вторичных валов гидравлического типа.

Отличие от обычных автомобилей

Для понимания, что представляет собой трансмиссия трактора, удобно сравнить систему с автомобильной. В данном случае механическая энергия передается в направлении от мотора не 1, 2 или 3 потоками. Для этого служит крутящий момент на ведущих колесах или звездочках, который идет сразу к нескольким конструктивным составляющим: задние и боковые ВОМ, насосы внутри гидропривода.

Также следует отметить, что трансмиссия трактора нередко включает ряд дополнительных устройств, которые отвечают за возможность переключения передач. Такими элементами служат гидроподъемные муфты. Используются не на всех моделях сельскохозяйственной техники, но на многих. Например, на ТЗ-100, Т-150, Т-150К, МТЗ-102, К-701.


Трактора

Большинство колесных и гусеничных тракторов работают по одному принципу, ведь наличие ряда конструктивных особенностей позволяет технике удобно передвигаться и выполнять отведенные задачи. Трансмиссия является незаменимой частью любого трактора, ведь ее основная задача — передавать и преобразовывать полученную энергию к потребителю. Причем передача проходит максимально удобно и просто, а значит управлять трактором сегодня достаточно просто.

Назначение и схема трансмиссии трактора

Нынешние тракторы создаются в различных вариантах трансмиссии, можно выделить две основных трансмиссии:

  • Механическая — в основе лежат лишь механизмы и шестерни;
  • Гидромеханическая — трансмиссия также имеет механизмы, но также присутствуют гидродинамические преобразователи.

Также производители создают несколько трансмиссий, которые различаются по изменению передаточного числа. В зависимости от этого выделяют комбинированную, ступенчатую и бесступенчатую трансмиссии.

Механическая и гидромеханическая трансмиссии

Наиболее популярной, недорогой и практичной считается механическая трансмиссия, она достаточно удобная и неприхотливая в работе. В основе механической коробки лежат такие главные механизмы как: сцепление, коробка передач, главная передача, дифференциал, конечные передачи, механизм поворота и карданная передача.

Назначение и схема трансмиссии трактора

Также в зависимости от производителя выбранного трактора в его трансмиссию могут устанавливаться ходоуменьшители, раздаточная коробка и система повышения крутящего момента.

Также следует понимать, что нынешние зарубежные тракторы могут предлагаться с трансмиссиями электрического и смешанного типа. Вышеуказанные виды трансмиссий обычно различаются по способу обработки крутящего момента.

Классификация по преобразованию передаточного числа

В тракторах принято использовать ступенчатые трансмиссии, они удобные, неприхотливые в обслуживании и недорогие.

Назначение и схема трансмиссии трактора

  • Ступенчатая — предполагает специальные интервалы передаточного числа, в эти интервалы трактор способен выдать максимальную мощность и при этом оставаться экономичным.
  • Бесступенчатая — определенные заданные интервалы передаточного числа способствуют изменению положения, поэтому не требуется усилие и внимание для выбора оптимального соотношения экономичности и мощности.
  • Комбинированная — данный механизм позволяет сочетать одну бесступенчатую передачу и ступенчатую передачу. Таким образом вы получаете все плюсы бесступенчатой трансмиссии, одновременно контролируется максимальная мощность и экономичность.

Особенности трансмиссии гусеничного трактора

Для работы трактора на гусеничном ходу используется иная трансмиссия, предполагает наличие двух больших гидравлических передач. На каждой передаче устанавливается регулируемый насос и гидравлический мотор.

Назначение и схема трансмиссии трактора

Гидравлические насосы созданы таким образом, что соединяются с двигателем, гидравлические моторы в передачах соединяются с ведущими звездочками. Непосредственно данные звездочки уже соединены зубчатым механизмом. Схемы трансмиссии гусеничного трактора позволяют проще оценить принцип работы и все особенности.

Какое использовать масло в трансмиссию трактора?

Для полноценной работы такого узла трактора как трансмиссия приходиться использовать специальное масло, характеристики которого устанавливаются еще на заводе производителе. Трансмиссионное масло создается согласно ГОСТ 17479.2-85, при маркировке масла производитель может указать буквы ТМ.

Также марка масла обозначается цифрами, обозначающими наличие присадок и определенную вязкость. Приведем пример: масло ТС-3-1H можно расшифровать как трансмиссионное, относиться к 3 группе и создано по 4 классу вязкости.

Масло для сельскохозяйственной техники имеет в составе дистиллятную и нефтяную разновидности, хорошее масло должно иметь присадки, уменьшающие износ и появление задиров. В основе могут содержаться такие компоненты как фосфор, сера, хлор и т. д.

Назначение и схема трансмиссии трактора

При использовании на тракторе ведущего моста и гипоидной скорости обязательно требуется использование специального смазочного вещества — гипоидного масла. Также играют важную роль — защищают от появления задиров. Любое трансмиссионное масло должно выполнять единственную роль — смазка внутренних механизмов трансмиссии и обеспечение правильного теплоотвода.

Видео

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Схемы трансмиссии, их сравнение. Крутящие моменты двигателя и ведущий момент движителя. Основные понятия о гидромеханических и электрических трансмиссиях.

Тема 11. Трансмиссия тракторов и автомобилей.

Назначение и классификация трансмиссий тракторов и автомобилей . Трансмиссия

Тракторов (автомобилей) объединяет агрегаты и механизмы, которые передают крутящий момент двигателя ведущим колесам и изменяют крутящий момент и частоту вращения по величине и направлению. У тракторов, кроме этого, трансмиссия может передавать часть мощности двигателя машине, которая агрегатируется с трактором.

Трансмиссия необходима по таким причинам:

— существует разница частоты вращения валов двигателя и движителя;

— возникает изменение сопротивления перемещению машины, в зависимости от условий эксплуатации, в широких пределах

Двигатели внутреннего сгорания имеют ограниченные свойства саморегулирования — автоматического изменения крутящего момента и частоты вращения в зависимости от изменения внешних сопротивлений. Эти причины предопределяют установление трансмиссий на трактора и автомобили.

Трансмиссия служит для передачи крутящего момента двигателя ведущим колесам трактора (автомобиля), а также используется для передачи части мощности двигателя агрегатируемой с трактором машине.

С помощью трансмиссии можно изменить крутящий момент и частоту вращения ведущих колес по значению и направлению.

По способу изменения крутящего момента трансмиссии подразделяются на:

Ступенчатые, бесступенчатые и комбинированные.

Ступенчатая трансмиссия включает в себя муфту сцепления, промежуточные соединения (карданные передачи), коробку передач, главную передачу, дифференциал, конечные передачи.

передает крутящий момент от вала двигателя к ведущим колесам , а также приводит в действие различное оборудование, смонтированное на автомобиле.

В Трансмиссия входят:

1) постояннозамкнутая дисковая фрикционная муфта (сцепление), служащая для плавного соединения и быстрого разъединения работающего двигателя с трансмиссией;

2) ступенчатая коробка передач, которая выполнена в виде зубчатого редуктора с переменным передаточным числом и предназначена для изменения величины крутящего момента, подводимого к ведущим колесам в зависимости от условий движения, обеспечения движения автомобиля задним ходом и разъединения работающего двигателя с трансмиссией при длительных остановках машины;

3) карданные валы, передающие крутящий момент под меняющимся углом от коробки передач, укрепленной на раме, к подрессоренному заднему мосту;

4) главная передача (одинарная или двойная), увеличивающая тяговую силу на ведущих колесах;

5) дифференциал, служащий для распределения крутящего момента между ведущими колесами и обеспечивающий их вращение с различными угловыми скоростями при движении автомобиля на поворотах и по неровной поверхности;

6) полуоси (валы) , передающие крутящий момент к закрепленным на них ведущим колесам; главная передача, дифференциал и полуоси, заключенные в кожух, называются задним ведущим мостом.

Автомобили нормальной проходимости, приспособленные для работы на шоссе и грунтовых дорогах, имеют один ведущий мост —задний, а автомобили повышенной проходимости— два (передний и задний) или три (передний и два задних) ведущих моста. В трансмиссию автомобиля с двумя ведущими мостами кроме сцепления, коробки передач, карданного вала 6 и заднего ведущего моста входят также передний ведущий мост с управляемыми колесами и раздаточная коробка, соединенная с ним и коробкой передач карданными валами.

В трансмиссиях автомобилей нормальной и повышенной проходимости, используемых в качестве базы строительных машин, предусмотрен подвод части мощности двигателя к раздаточному редуктору, имеющему вал отбора мощности для привода навесного рабочего оборудования. Раздаточный редуктор может приводить в действие гидронасос системы управления навесным оборудованием.

Ходовая часть передает на дорогу силу тяжести автомобиля и осуществляет его поступательное движение. Она состоит из несущей рамы, на которой монтируются все агрегаты, кузов и кабина водителя, переднего и заднего мостов с пневмоколесами и упругой подвески, соединяющей несущую раму с мостами.

Колеса автомобилей нормальной проходимости снабжаются, как правило, пневматическими шинами высокого давления 5—7 кгс/см2 (0,49—0,69 мпа), а автомобилей повышенной проходимости — шинами низкого давления 1,75—5 кгс/см2 (0,17— 0,49 мпа) с увеличенной опорной поверхностью.

Механизмы управления объединены в две независимые системы: рулевую — для изменения направления движения автомобиля посредством поворота передних управляемых колес и тормозную — для снижения скорости и быстрой остановки машины

Тракторы применяются на строительстве для перемещения тяжеловесных грузов на прицепах по плохим дорогам и пересеченной местности там, где не может пройти автомобиль, а также передвижения и работы навесных или прицепных строительных машин.

Различают пневмоколесные и гусеничные тракторы, которые делятся на несколько классов в зависимости от максимального тягового усилия в тс (кн) на крюке трактора при номинальной мощности двигателя. Тракторы, применяемые в строительстве и сельском хозяйстве, относятся к тяговому классу 0,2. 0,6. 0,9. 1,4 тс (13,8 кн), 3 тс (29,5 кн), 6 тс (59 кн), 9 тс (88 кн), 15 тс (149 кн), 25 тс (345 кн) и 35 тс (343 кн).

Пневмоколесные тракторы обладают сравнительно большими скоростями передвижения (до 40 км/ч), высокой мобильностью и маневренностью; их используют как транспортные машины и как базу для установки различного навесного оборудования ( погрузочного, кранового, бульдозерного и землеройного), применяемого при производстве землеройных и строительно-монтажных работ небольших объемов на рассредоточенных объектах. Наиболее эффективно пневмоколесные тракторы используются на дорогах с твердым покрытием. Основной их недостаток — сравнительно высокое удельное давление на грунт (0,2—0,4 мпа), значительно снижающее проходимость машины.

Гусеничные тракторы нашли более широкое применение в строительстве благодаря значительному тяговому усилию на крюке (не менее 3 те), надежному сцеплению гусеничного хода с грунтом, малому удельному давлению на грунт (0,02— 0,06 мпа) и высокой проходимости. Основным недостатком гусеничных тракторов является их тихоходность (не более 12 км/ч).

Основные узлы пневмоколесных и гусеничных тракторов — двигатель, силовая передача (трансмиссия), остов (рама), ходовое устройство, система управления, вспомогательное и рабочее оборудование.

Гусеничные тракторы оснащаются дизелями и карбюраторными двигателями, механическими, гидромеханическими и электромеханическими трансмиссиями.

Расположение двигателя может быть передним, средним и задним. Наибольшее распространение получили гусеничные тракторы с дизелями и передним расположением двигателя. Трансмиссия служит для передачи крутящего момента от вала двигателя к ведущим звездочкам гусеничных лент (гусениц), плавного трогания и остановки машины, изменения тягового усилия трактора в соответствии с условиями движения, изменения скорости и направления его движения, а также привода рабочего оборудования.

В состав механической трансмиссии входят: фрикционная дисковая муфта сцепления (постоянно или непостоянно замкнутая), коробка передач, соединительные валы, главная передача, механизм поворота с тормозами и бортовые редукторы, соединенные с ведущими звездочками гусениц. Муфта сцепления и коробка передач выполняют те же функции, что и одноименные узлы автомобиля.

Главная передача (аналогичная автомобильной) и бортовые редукторы увеличивают крутящий момент, подводимый от двигателя к ведущим звездочкам гусениц. На поперечном валу трансмиссии между главной передачей и бортовыми редукторами установлен фрикционный или планетарный механизм поворота, предназначенный для изменения направления движения трактора. Наиболее распространенный фрикционный механизм поворота выполнен в виде двух постоянно замкнутых многодисковых фрикционных муфт (бортовых фрикционов).

При обоих включенных фрикционах ведущие звездочки гусениц вращаются синхронно, что обеспечивает прямолинейное движение машины. Частичным или полным выключением одного из фрикционов уменьшают скорость движения соответствующей гусеницы, в результате чего происходит поворот трактора в сторону отстающей гусеницы. На наружные (ведомые) барабаны фрикционов действуют ленточные тормоза , осуществляющие торможение отключенной от трансмиссии гусеницы для более крутого поворота трактора, а также торможение обеих гусениц при движении трактора на уклонах и затормаживание его на месте.

Прямолинейное движение трактора с планетарным механизмом поворота обеспечивается при затянутых тормозах до полной остановки солнечных шестерен. При этом водила и вал будут вращаться с одинаковой скоростью. Для поворота трактора необходимо отпустить правый или левый тормоз, в результате чего один из планетарных механизмов полностью или частично прекратит передавать крутящий момент ведущей звездочке 10 гусеницы. Включением тормоза достигается уменьшение радиуса поворота трактора. При одновременном включении обоих тормозов обеспечивается снижение скорости или полная остановка машины. Планетарный механизм поворота одновременно выполняет функции редуктора. Основным недостатком планетарного механизма поворота является сложность регулировки тормозов.

Наряду с такими достоинствами, как простота конструкции, высокая надежность, сравнительно большой кпд (0,82—0,86) и малая стоимость, механическая трансмиссия имеет ряд недостатков, основным из которых является необходимость частого переключения передач в процессе работы трактора, что приводит к нерациональному использованию мощности двигателя и повышенной утомляемости машиниста.

Этот недостаток устранен в гидромеханической и электромеханической трансмиссиях. В гидромеханической трансмиссии используется механическая ступенчатая коробка передач и гидротрансформатор, заменяющий муфту сцепления. Гидротрансформатор обеспечивает автоматическое бесступенчатое изменение крутящего момента, а также скорости движения трактора, в пределах каждой передачи коробки в зависимости от общего сопротивления движению машины. Это позволяет снизить число переключений передач, повысить долговечность двигателя и трансмиссии в результате уменьшения на последнюю динамических нагрузок, уменьшить вероятность остановки двигателя при резком увеличении нагрузки. Однако по сравнению с механической гидромеханическая трансмиссия имеет более сложную и дорогую конструкцию, значительно меньший кпд (0,7—0,75), что ухудшает топливную экономичность трактора.

В электромеханической трансмиссии крутящий момент дизеля передается через постоянно замкнутую фрикционную муфту, карданный вал и ускоряющий редуктор силовому генератору, который питает постоянным током тяговый электродвигатель. Крутящий момент якоря тягового электродвигателя передается главной конической передачей планетарным механизмам поворота, бортовым редукторам и ведущим звездочкам гусеничных лент. Электромеханическая трансмиссия по сравнению с механической и гидромеханической имеет более простую кинематику (отсутствует ступенчатая коробка передач) и обеспечивает высокие тяговые качества трактора за счет плавного бесступенчатого регулирования в широком диапазоне скоростей движения машины в зависимости от нагрузки. Так, при увеличении нагрузки скорость движения трактора уменьшается, а тяговое усилие возрастает. При снижении нагрузки скорость движения автоматически увеличивается. Основные недостатки такой трансмиссии — сложность, сравнительно большие габаритные размеры и масса, высокая стоимость.

Выбор узлов трансмиссии лесотранспортной машины

3.1 классификация трансмиссий

Трансмиссии лесных машин классифицируются по типу передач, с помощью которых происходит изменение передаточного числа. Существуют трансмиссии с механическими, гидравлическими и электрическими передачами, но в чистом виде две последние передачи обычно не применяются. Наряду с электрическими и гидравлическими агрегатами в этих трансмиссиях имеются и механические передачи. Поэтому трансмиссии подразделяются на: - механические; - гидромеханические; - гидрообъёмные; - электромеханические. Наибольшее распространение на современных отечественных и зарубежных автомобилях и тракторах получили механические и гидрообъёмные трансмиссии.

3.1.1. Электромеханическая трансмиссия

Электрические передачи находят применение в основном на машинах большой мощности. При малых мощностях они получаются переутяжелёнными и имеют низкий кпд. Применяются электромеханические трансмиссии постоянного и переменного тока. Электромеханические трансмиссии обладают преимуществами: - плавно, бесступенчато изменяют крутящий момент; - имеют упрощенную механическую часть привода; - меньшая масса трансмиссии на единицу массы машины для автомобилей с двигателем мощностью более 700…800,квт. Несмотря на ряд преимуществ, электропередача пока не получила широкого распространения на автомобилях и тракторах из-за следующих недостатков: больших масс агрегатов трансмиссий, превышающих массы механических и гидравлических трансмиссий; сравнительно низкого кпд; большого расхода дорогостоящих материалов; высокой стоимости изготовления; относительно больших величин неподрессоренных масс.

3.1.2. Гидромеханическая трансмиссия.

Гидромеханические трансмиссии включают гидравлические и механические преобразователи крутящего момента. В практике автотракторостроения распространение получили гидромеханические трансмиссии с гидромеханическими трансформаторами, при этом возможно последовательное и параллельное соединение их с механической частью трансмиссии. В качестве механических ступеней в гидромеханических трансмиссиях используются планетарные редукторы, ступенчатые коробки передач с переключением передач, как с разрывом, так и без разрыва потока мощности. Механическая часть гидромеханической трансмиссии от гидротрансформатора до двигателя машины одинакова с механической трансмиссией. Основные достоинства гидромеханических трансмиссий: - автоматическое и непрерывное изменение силы тяги на каждой передаче в соответствии с сопротивлением движению; - меньшее число ступеней, сокращающее число переключений, что существенно облегчает работу водителя. Вместе с тем гидродинамические передачи обладают рядом существенных недостатков: пониженным максимальным значением кпд и значительным снижением его при изменении режимов работы, что приводит к повышению расхода топлива; усложненной конструкцией трансмиссии в целом из-за введения дополнительного агрегата (гидротрансформатора); обеспечения охлаждения рабочей жидкостью и, как следствие, повышение стоимости машины.

3.1.3. Гидрообъёмная трансмиссия.

Гидрообъёмная трансмиссия- это устройство для передачи движения, в состав которого входит объёмный гидропривод. Мощность двигателя в такой трансмиссии передаётся ведущим органам машины от перемещения замкнутого объёма жидкости между вытеснителями насоса и гидроматора. Ряд положительных свойств гидрообъёмной трансмиссии в сочетании с широким применением гидрофицированного технологического оборудования способствует использованию этих передач в конструкциях как зарубежных, так и отечественных лесозаготовительных машин. К достоинствам гидрообъёмных передач, при использовании их в качестве основных агрегатов трансмиссий, относятся: - бесступенчатое регулирование скорости и плавность передачи крутящего момента; - реверсивность и возможность двигателя на малых “ползучих” скоростях; - удобство компоновки и минимальное использование механических звеньев; - возможность объединения гидропривода с механизмом поворота; - лёгкость управления его автоматизации. Наряду с достоинствами, эти передачи имеют ряд существенных недостатков: снижение кпд трансмиссии при больших диапазонах регулирования и, как следствие, неэкономичность длительной работы машины на режимах, не соответствующих номинальным нагрузкам; несколько большая масса трансмиссии на единицу передаваемой мощности; более высокая стоимость трансмиссии. Для лесных машин, имеющих гидрофицированное рабочее оборудование, этот тип трансмиссий наиболее перспективен.

3.1.4 механическая трансмиссия

Механические трансмиссии отличает простота конструкции, надёжность, высокий кпд, низкая стоимость. Масса этих трансмиссий значительно ниже, чем у других типов передач. Существенные недостатки механических трансмиссий: ступенчатое регулирование передаточного числа, разрыв силового потока и ударные нагрузки при переключениях передач; трудность управления; сложность компоновки на многоприводных машинах. Хотя механические передачи имеют существенные недостатки, но, тем не менее, перечисленные положительные качества механических трансмиссий обуславливают их повсеместное применение на современных лесных машинах.

Полезная модель относится к транспортным средствам, в частности, к трансмиссиям гусеничных тракторов. Трансмиссия гусеничного трактора, включает силовой привод, муфту сцепления, раздаточную коробку с гидронасосом, коробку передач, механизм поворота дифференциального типа, выполненный в отдельном корпусе и имеющий два выходных вала, на которых установлены тормоза и которые соединены карданными валами с конечными передачами. Механизм поворота состоит из двух суммирующих планетарных механизмов, ведущие элементы (эпициклические шестерни) которых соединены с выходным валом коробки передач, а ведомые элементы жестко соединены с выходными валами, регулирующие элементы (солнечные шестерни) соединены с возможностью разъединения с гидродвигателем таким образом, что они вращаются в разные стороны. При этом гидродвигатель гидравлически соединен с гидронасосом.

Полезная модель относится к трансмиссии транспортных средств, преимущественно, к гусеничным тракторам.

Недостатком известной трансмиссии является ее конструктивная сложность.

Недостатком этой трансмиссии является невозможность обеспечения бесступенчатого радиуса поворота для гусеничных тракторов и большие энергозатраты на поворот.

В основу предлагаемого технического решения положена задача создания трансмиссии для гусеничного трактора, выполненной на базе основных узлов колесного трактора и обеспечивающей бесступенчатый радиус поворота.

Согласно предлагаемому техническому решению достижение поставленной задачи осуществляется тем, что в трансмиссии, содержащей кинематически соединенные силовой привод, раздаточную коробку с гидронасосом, коробку передач, конечные передачи и тормоза, коробка передач дополнительно содержит дифференциальный механизм поворота, включающий установленные в отдельном закрепленном на коробке передач корпусе два суммирующих планетарных ряда, ведущие элементы (эпициклические шестерни) кинематически соединены с выходным валом коробки передач, а выходные валы ведомых элементов (водила) соединены с конечными передачами соответствующего борта, регулирующие элементы (солнечные шестерни) кинематически соединены с возможностью разъединения с жестко закрепленным на корпусе механизма поворота гидродвигателем гидрообъемной передачи таким образом, что они вращаются в разные стороны, а гидродвигатель гидравлически соединен с гидронасосом раздаточной коробки, при этом тормоза установлены на выходных валах механизма поворота.

Отличительными признаками предлагаемого технического решения являются наличие в кинематической схеме трансмиссии механизма поворота, содержащего установленные в отдельном закрепленном на коробке передач корпусе два суммирующих планетарных ряда, ведущие эпициклические шестерни которых соединены с выходным валом коробки передач, а выходные валы ведомых элементов соединены с конечными передачами соответствующего борта, и регулирующие элементы, кинематически соединенные с возможностью разъединения с выходным валом установленного на корпусе механизма поворота гидродвигателя таким образом, что они вращаются в разные стороны, при этом гидродвигатель гидравлически соединен с гидронасосом раздаточной коробки, а тормоза установлены на выходных валах механизма поворота.

Выполнение механизма поворота в отдельном корпусе и размещение его между коробкой передач и конечными передачами позволяет использовать для

трансмиссии гусеничного трактора основные узлы серийного колесного трактора. Конструкция механизма поворота дифференциального типа с использованием гидрообъемного привода для регулирующего элемента позволяет осуществлять бесступенчатый поворот трактора практически с любым радиусом без разрыва потока мощности, что значительно повышает производительность трактора и снижает утомляемость экипажа. Выполнение тормозов на выходных валах механизма поворота позволяет управлять поворотом трактора при буксировке после разъединения гидродвигателя с регулирующими элементами.

На фигуре изображена кинематическая схема трансмиссии гусеничного трактора.

Трансмиссия гусеничного трактора включает двигатель 1, муфту сцепления 2, раздаточную коробку 3 с регулируемым гидронасосом 4, коробку передач 5, механизм поворота 6,тормоза 7, карданные валы 8, конечные передачи 9 и ведущие звездочки 10. Механизм поворота 6 состоит из закрепленного на коробке передач 5 корпуса 11, в котором установлены два дифференциальных планетарных механизма 12. Эпициклические шестерни 13 планетарных рядов соединены шестернями 14 с шестерней 15, установленной на выходном валу коробки передач 5. Водила 16, являющиеся ведомым элементом планетарных рядов, жестко установлены на выходных валах 17 механизма поворота 6. Солнечные шестерни 18, являющиеся регулирующим элементом, соединены между собой шестернями 19 и с шестерней 20, установленной на валу гидрообъемного двигателя 21 с возможностью осевого перемещения. Гидродвигатель 21 соединен гидроприводами 22 и 23 с гидронасососм 4.

При прямолинейном движении трактора поток мощности поступает от двигателя 1 через муфту 2 на раздаточную коробку 3 для привода гидронасоса 4 и на коробку передач 5, из которой - на механизм поворота 6. В механизме поворота поток мощности раздваивается и в равных значениях поступает на эпициклические шестерни 13 правого и левого дифференциальных

планетарных механизмов 12. В гидрообъемной передаче насос 4 не создает давления и гидродвигатель 21 застопорен, а вместе с ним застопорены солнечные шестерни 18 планетарных механизмов.

Следовательно, выходные валы 17 и ведущие звездочки 10 вращаются с одинаковой скоростью.

Для изменения направления движения трактора поворотом рулевого колеса включается подача рабочей жидкости от гидронасоса 4 к гидродвигателю 21 по гидропроводу 22. При этом мощность от двигателя на механизм поворота передается двумя потоками: один через коробку передач на эпициклы 13 планетарных механизмов, а второй - через гидрообъемную передачу от гидродвигателя 21 через шестерни 20 и 19 на солнечные шестерни 18. Учитывая, что солнечные шестерни 18 вращаются в разные стороны, в одном из планетарных механизмов происходит суммирование скоростей вращения эпицикла и солнечной шестерни на водиле, а во втором - вычитание скоростей на ту же величину. Вследствие этого скорость вращения одного из выходных валов 17 и связанной с ним ведущей звездочки 10 увеличивается, а скорость другой уменьшается на ту же величину. Чем больше поворот рулевого колеса, тем больше рабочей жидкости поступает из насоса в гидродвигатель и тем больше разность в скоростях вращения ведущих звездочек. При этом средняя скорость движения трактора не уменьшается и не происходит разрыва потока передаваемой мощности, что очень важно для трактора.

При повороте рулевого колеса в другую сторону рабочая жидкость подается от насоса по гидроприводу 23 и гидродвигатель вращается в противоположную сторону, обеспечивая необходимое изменение направления движения трактора.

При буксировке трактора шестерня 20 выводится из зацепления с шестернями 19, а поворот трактора осуществляется торможением одного из выходных валов 17.

Трансмиссия гусеничного трактора, содержащая кинематически соединенные силовой привод, раздаточную коробку с гидронасосом, коробку передач, конечные передачи и тормоза, отличающаяся тем, что коробка передач дополнительно снабжена дифференциальным механизмом поворота, включающим установленные в отдельном закрепленном на коробке передач корпусе два суммирующих планетарных ряда, ведущие элементы которых кинематически соединены с выходным валом коробки передач, а выходные валы ведомых элементов соединены с конечными передачами соответствующего борта, и регулирующие элементы, кинематически соединенные с возможностью разъединения с жестко закрепленным на корпусе механизма поворота гидродвигателем гидрообъемной передачи таким образом, что они вращаются в разные стороны, при этом гидродвигатель гидравлически соединен с гидронасосом раздаточной коробки, а тормоза установлены на выходных валах механизма поворота.

Читайте также: