Реферат на тему развитие практических знаний

Обновлено: 30.06.2024

В ранних человеческих обществах познавательные и производственные моменты были неразделимы, первоначальные знания носили практический характер, выполняя роль руководства определенными видами деятельности человека. Накопление таких знаний составило важную предпосылку будущей науки.

Содержание работы

ВВЕДЕНИЕ 3
1. ПРЕДНАУКА 4
2. АНТИЧНАЯ НАУКА 5
3. СРЕДНЕВЕКОВАЯ МАГИЧЕСКАЯ НАУКА 7
4. НАУЧНАЯ РЕВОЛЮЦИЯ И КЛАССИЧЕСКАЯ НАУКА 8
5. НЕОКЛАССИЧЕСКАЯ НАУКА 10
ВЫВОД 12
СПИСОК ЛИТЕРАТУРЫ 13

Файлы: 1 файл

реферат наука.docx

Министерство образования и науки, молодежи и спорта Украины

Харьковский торгово-экономический институт

"Основы научных исследований"

Студентка группы ТМ-12 В. О. Назарько

Руководитель: к.э.н., доц. М. Н. Будник

2. АНТИЧНАЯ НАУКА 5

3. СРЕДНЕВЕКОВАЯ МАГИЧЕСКАЯ НАУКА 7

4. НАУЧНАЯ РЕВОЛЮЦИЯ И КЛАССИЧЕСКАЯ НАУКА 8

5. НЕОКЛАССИЧЕСКАЯ НАУКА 10

СПИСОК ЛИТЕРАТУРЫ 13

В ранних человеческих обществах познавательные и производственные моменты были неразделимы, первоначальные знания носили практический характер, выполняя роль руководства определенными видами деятельности человека. Накопление таких знаний составило важную предпосылку будущей науки.

Для возникновения собственно науки нужны были соответствующие условия: определенный уровень развития производства и общественных отношений, разделение умственного и физического труда и наличие широких культурных традиций, обеспечивающих восприятие достижений других народов и культур.

Традиционно Древняя Греция считается колыбелью научного знания. Однако, другие цивилизации, например, Египет, Вавилон, Месопотамия, Индия, Китай накопили гигантский производственный опыт.

Для чего же нужна наука человечеству и каковы причины её появления? Первой и главной причиной возникновения науки является формирование субъектно-объектных отношений между человеком и природой, между человеком и окружающей его средой. Это связано, в первую очередь, с переходом человечества от собирательства к производящему хозяйству.

Преднаука – подготовительный этап на пути становления науки, рассматривающий возникновение собственно научного знания к XVII веку. Согласно такой позиции на пути формирования науки выделяют два этапа: подготовительный и собственно научный. Преднаучный этап способствовал формированию научного мышления в Древней Греции, где человек открыл возможность создавать мысленно-идеальные образы, что связано с формированием рациональности. В античном мире преднаука возникла как особая форма духовной культуры. Появилась группа людей, специализировавшихся на получении нового знания. Но в целом знание носило умозрительный характер, не было связано с экспериментом и только эпизодически имело выход на практику. В качестве преднауки выступала натурфилософия, представляющая собой сплав античного естествознания, математики, астрономии и других наук. Античная преднаука внесла серьёзный методологический вклад в дальнейшее развитие теоретических знаний: открытие Сократом метода индукции, Аристотелем метода дедукции и формальной логики, применение аксиоматического метода изложения научных теорий Эвклидом. В средние века в схоластики оттачивались логические приёмы мышления, значительные достижения были сделаны в области техники (создание механизмов водяных и ветряных мельниц, механических часов, компаса, бумаги, компаса, очков, пороха, бумаги). Таким образом, этап преднауки способствовал становлению науки в собственном смысле слова, формируя научный стиль мышления [1, 3, 5].

2 АНТИЧНАЯ НАУКА

1) попыткой целостного охвата и объяснения действительности;

2) созданием умозрительных конструкций (не связанных с практическими задачами);

3) вплоть до XIX в. отсутствием дифференцированостью наук (только в XVIIIв. самостоятельными областями науки стали механика, математика, астрономия и физика; химия, биология и геология – только начали формироваться);

4) отрывчатостью знаний об объектах природы (оставалось место для вымышленных связей).

3 СРЕДНЕВЕКОВАЯ МАГИЧЕСКАЯ НАУКА

- Энциклопедическое образование – знание обширных авторитетных текстов отцов церкви и способность их дословно цитировать.

- Ведение диспутов: противники ловили друг друга на противоречиях, парадоксах. Диспут – одна из характерных форм существования знания в средневековой Европе.

Средневековое знание, мышление являлось антитетическим (противоречивым, парадоксальным): Бог наделялся атрибутом бесконечности, а человеческий разум считался конечным. С 13 века на передний план вышла логика. Опыт астрологии, алхимии и натуральной магии оценивался как промежуточное звено между техническим мастерством и натурфилософией и являлся зародышем экспериментальной науки. С экспериментом связывалось намерение содействовать воле Бога. Так осуществлялся переход к науке Нового Времени.

В Средневековье имели место как умозрительные тенденции, так и эмпирические. Однако вне католической церкви ничто не имело прав на развитие. Поэтому научный статус имела только теология. Первые ростки соединения теории и эмпирики появились в науке эпохи Возрождения [1, 2].

4 НАУЧНАЯ РЕВОЛЮЦИЯ И КЛАССИЧЕСКАЯ НАУКА

Научная революция – перестройка оснований науки, коренное качественное преобразование системы научных знаний, которая осуществляется путём изменения философских оснований науки, её методологии идеалов и норм научной деятельности. Это процесс быстрого и существенного продвижения в познании природы, общества, вызванный появлением новых материальных или интеллектуальных средств исследования, формированием новых методов, новым пониманием предметов исследования, интенсификацией исследовательской работы. Научная революция – неотъемлемый фактор научно-технической революции и научно-технического прогресса. Классическим примером научной революции являются открытия в физике в конце XIX в. Специфическая черта научной революции – возрастание связи преобразований в науке с изменениями в обществе и системе производства. Развитие науки происходит не путем плавного и постепенного наращивания новых знаний, а через периодическую коренную смену ведущих представлений. Развитие науки – это постепенное количественное накопление новых знаний об окружающей действительности, которое приводит к переломным качественным этапам. Если процесс простого приращения знаний был присущ для периода античной натурфилософии и преднауки средневековья и Возрождения, то в XVI в. характер развития науки резко изменяется. Происходят изменения в её структуре, принципах познания, категориальном аппарате, но главное – в методах и формах её организации. Эти изменения являются показателем научной революции. Периоды нормального развития науки отражают ситуацию, когда все научные дисциплины развиваются на основе принятой системы требований и предписаний. В этот период времени формируется общность установок и видимая согласованность действий. Однако постепенно накапливаются новые факты и данные, возникают кризисные состояния, что разрушает привычную научную практику и взрывает старую научную парадигму, сформировывая новую систему предписаний и требований. Научная революция изменяет существующую картину мира, открывает новые закономерности, изменяет историческую перспективу научного анализа, заменяет стиль мышления, влияет на структуру научных работ и учебную литературу. Научная революция начинается с осознания научным сообществом того, что существующая парадигма не в состоянии осветить новые исследования природной действительности. Но научная революция – это не одномоментный акт, а длительный процесс переоценки радикальной перестройки всех фундаментальных оснований науки. По своей масштабности различают следующие научные революции:

- глобальная, которая полностью изменяет взгляд на мир;

- революция в отдельных фундаментальных науках, которые преобразуют их основы;

- микрореволюции, которые связаны с появлением новых теорий в отдельных научных сферах.

Огромное значение в истории науки имели: революция XVII в., определившая развитие науки на два века, когда все достижения вписывались в классическую (галилеево-ньютоновскую) картину мира, и революция XX в. – основанная на теории относительности и квантовой механики, кардинально пересмотревшая представления о движении, пространстве и времени, которая, проникнув в промышленность, технику и технологию, превратилась в научно-техническую революцию.

Классическая наука – специфическое состояние научного интеллекта, реализовавшееся как главенствующее умонастроение на масштабном историко-культурным ареале от Галилея до Пуанкаре. Эвристическое начало типических особенностей теоретизирования (способы постановки проблем, приемы исследования, описание предметных областей, характер обоснования выводов, формы подачи, изложения, фиксации результатов) на классической фазе развития науки составляли: фундаментализм, финализм, имперсональность, абсолютизм, наивный реализм, субстанциальность, динамизм, сумматизм, эссенциализм, аналитизм, механицизм, кумулятизм [2, 3].

5 НЕОКЛАССИЧЕСКАЯ НАУКА

Неоклассическая наука (к. XIX – пер. пол. XX) базирующаяся на принципиально иных (в отличие от классической науки) онтологических (многовариантность, альтернативность, релятивизм, вероятностность развития событий), гносеологических (взаимодействие объекта и субъекта в процессе познания, относительность истины, частичная верифицируемость научного знания), методологических (теоретический плюрализм, отказ от поиска единого и общепринятого научного метода, опора на интуицию, взаимопроникновение методологических установок естественных и гуманитарных наук, понимание субъективности как черты, присущей самой действительности) основаниях.

Современная научная картина мира воссоздает реальность, с трудом воспринимаемую с точки зрения законов классической формальной логики. Появилась настоятельная потребность в формировании иного мировосприятия, новых навыков мышления и критериев научной достоверности, альтернативных картин мира и языков науки. В неоклассической науке принимаются такие типы объяснения и описания, которые в явном виде содержат ссылки на средства и операции познавательной деятельности. Например, в квантово-релятивистской физике в качестве необходимого условия объективности объяснения и описания выдвигается требование четкой фиксации особенностей средств наблюдения, которые взаимодействуют с объектом. Признается возможность одновременного существования различных теоретических систем, по-разному объясняющих один и тот же класс явлений действительности и реальности в целом и в то же время остающихся в одинаковой степени истинными, поскольку в каждой из них может содержаться момент объективно-истинностного знания.

В исследованиях по истории науки обычно выделяют две стадии: первую из них называют стадией ее возникновения или преднаукой, а вторую — наукой в собственном смысле слова или развитой наукой. Возникновение науки связано с непосредственными запросами материального производства и повседневной практики людей. Оно сопровождалось появлением первоначальных эмпирических понятий и представлений, которые постепенно приобретали более общий и абстрактный характер. Первые теоретические понятия и системы возникли в рамках древнегреческой математики, но математические методы начали широко применяться для изучения природы только в XVII веке, когда возникло экспериментальное естествознание. Элементарная математика античности, хотя достигла зрелого теоретического уровня, но изучала лишь постоянные величины. Следовательно, она не могла быть использована для изучения зависимостей между переменными величинами. А последние были необходимы для исследования простейшей формы движения — механического перемещения земных и небесных тел. Именно поэтому в ответ на запросы механики и астрономии была создана в XVII веке Ньютоном и Лейбницем математика переменных величин в форме дифференциального и интегрального исчислений.

Осваивая действительность самыми разнообразными методами, научное познание проходит различные этапы. Каждому из них соответствует определенная форма развития знания. Основными из них являются факт, теория, проблема, гипотеза, программа.

Факт и теория. В обычном смысле слово "факт" (от лат. factum - сделанное, свершившееся) является синонимом слова "истина", "событие", "результат". Как категория методологии науки факт - это достоверное знание о единичном в рамках некоторой научной дисциплины. Факты выражаются, например, в высказываниях: "Вода при давлении в 1 атм закипает при 100° С", "Медь - хороший проводник электричества", "Вторая мировая война началась 1 сентября 1939 года".

Научные факты генетически связаны с практической деятельностью человека. В повседневном опыте происходил отбор фактов, которые составили фундамент науки. Большую роль в выработке и накоплении фактов, особенно в естествознании, всегда играли наблюдения и эксперименты.

Можно утверждать, что наука начинается с фактов. Каждая научная дисциплина проходит достаточно длительный период их накопления. Для естественных наук - физики, химии, биологии он охватывает XV - XVII столетия и совпадает со стадией становления капиталистического способа производства. Значительную роль в формировании фактологической базы естествознания сыграли великие географические открытия.

Становление факта - длительный и, как правило, противоречивый процесс, требующий использования специально выработанных и проверенных методов. В естествознании, прикладной социологии, экономической науке, технических дисциплинах в качестве их выступают, например, статистические методы. Фактом признается не всякий полученный результат. Отдельный эксперимент, наблюдение или измерение, как правило, является следствием взаимодействия таких факторов, как а) обстоятельства исследования, б) случайное состояние приборов, в) специфика изучаемого объекта, г) возможности и состояние исследователя. Чтобы прийти к знанию, выступающему в форме факта, необходимо множество исследовательских операций и процедур и их статистическая обработка. Поэтому пословица "семь раз отмерь, а один отрежь" имеет не только повседневный, но и глубокий научно-методологический смысл.

Теория это высшая, самая развитая форма организации научного знания, дающая целостное представление о закономерностях некоторой области действительности и представляющая собой знаковую модель этой сферы. Эта модель строится таким образом, что некоторые из ее характеристик, носящие наиболее общий характер, составляют ее основу, другие же подчиняются основным или выводятся на них по логическим правилам. Например, классическая механика может быть представлена как система, в фундаменте которой находится закон сохранения импульса ("вектор импульса изолированной системы тел с течением времени не изменяется"), тогда как другие законы, в том числе известные каждому студенту законы динамики Ньютона, являются его конкретизациями. Строгое построение геометрической теории, предложенное Евклидом, привело к системе высказываний (теорем), которые последовательно выведены из немногих определений и истин, принятых без доказательств (аксиом).

Положения теории отображает существенные связи некоторой области действительности. Но, в отличие от фактов, они представляют эти связи в обобщенном виде. Каждое положение теории является истиной для множества обстоятельств, в которых проявляется эта связь. Поэтому оно выражается с помощью общего высказывания, в то время как факт – с помощью единичного.

Обобщая факты и опираясь на них, теория, между тем, согласуется с господствующим мировоззрением, картиной мира, направляющей ее возникновение и развитие. Известны случаи, когда теории или отдельные их положения отвергались не в силу противоречия фактическому материалу, а по причинам мировоззренческого, философского характера. Так случилось с известными физиками Э.Махом, В.Оствальдом, не принявшими атомной теории. «Предубеждения этих ученых против атомной теории, – писал А.Эйнштейн, – можно, несомненно, отнести за счет их позитивистской философии. Это – интересный пример того, как философские предубеждения мешают правильной интерпретации фактов даже ученым со смелым мышлением и с тонкой интуицией”.

Теории разделяют по различным основаниям. Исходя из особенностей предметных областей, выделяют математические, физические, биологические, социальные и прочие теории.

С логической точки зрения можно выделить дедуктивные и недедуктивные теории. Основу дедуктивной теории составляет понятие логического следования. Говорят, что из высказывания А логически следует высказывание В тогда и только тогда, когда истинность А гарантирует истинность В , и не бывает так, что А истинно, а В ложно. Для построения фундамента дедуктивной теории важно отобрать положения соответствующей ветви знания (аксиомы), которые бы, во-первых, не противоречили одно другому. В противном случае система аксиом будет противоречивой, и, соответственно с законами логики, в пределах теории можно получить любое положение, она потеряет свою познавательную ценность. Во-вторых, из множества аксиом должно следовать максимальное количество истинных положений данной ветви знания (система аксиом, из которой выводятся все истинные положения области знания, называется полной). В-третьих, аксиомы должны быть независимы друг от друга, т.е. не должны находиться между собой в отношении логического следования. В противном случае система аксиом окажется избыточной.

Дедуктивный способ построения теории используется, прежде всего, в математике, логике, математическом естествознании. Но нужно иметь в виду ограниченность применения дедуктивного метода в науке. Австрийский математик К. Гёдель доказал теорему о неполноте формализованных систем. В соответствии с этой теоремой ни одна дедуктивная теория содержательно богатой области знаний (например, арифметика) не может быть полной. Это означает, что существуют такие истинные положения этой области, которые не следуют из множества первоначально взятых аксиом. Поэтому надежды на возможности дедуктивных теорий не должны быть слишком большими.

Недедуктивные теории характерны для опытных наук. Здесь "господствуют" вероятностные формы выводов - аналогия, индукция и др. Недедуктивным путем идет большинство естественных наук, а также науки гуманитарного и обществоведческого циклов. Теории в этих науках опираются на изучение действительности, используя наблюдения, эксперименты, реконструируя ход событий по отображению в памятниках культуры.

С точки зрения глубины проникновения в сущность изучаемых явлений теории делятся на феноменологические и эссенциальные . Глубина познания в феноменологических теориях не выходит за рамки сферы явлений и поэтому характеризуется использованием близких к опыту понятий. Эссенциальные теории идут значительно дальше и отображают внутренние механизмы изучаемых процессов. В эссенциальных теориях широко применяются абстрактные понятия, которые характеризуют наблюдаемые объекты. Феноменологические теории, как правило, возникают на начальных стадиях развития науки и с течением времени поглощаются эссенциальными.

В последнее время среди исследователей в различных областях знаний пристальное внимание привлекает разделение эссенциальных теорий на теории простых и сложных систем . К простым системам относятся такие, что отличаются однородностью, линейностью и устой-чивостью протекающих процессов. Знания об эволюции простой системы позволяют иметь всю информацию и по любому моментальному состоянию однозначно предсказать ее будущее и восстанавливать прошлое. Классическим примером простой теории служит механика Ньютона.

Но большинство систем окружающего мира имеют неоднородный, нелинейный, неустойчивый и необратимый характер. В разработке теорий таких систем особая роль принадлежит лауреату Нобелевской премии бельгийскому ученому И. Пригожину. Поведение сложной системы во многом зависит от случайных факторов и поэтому характеризуется неопределенностью и непредсказуемостью. Владея теорией сложной системы, можно делать достоверные предсказания, но, как правило, на коротких временных интервалах, и по прохождению некоторого времени предсказания не совпадают с ходом событий. К наиболее сложным системам относится человеческое общество, и именно здесь предсказание связано с особым риском.

Можно выделить теории завершенные и незавершенные . Завершенная теория представляет собой окончательную знаковую модель некоторого целостного фрагмента реальности с точно установленными границами. Положения завершенной теории - научные законы как достоверные высказывания о сущности познаваемых процессов. Незавершенная теория является вариационной, во многом гипотетической знаковой моделью. Границы развития такой теории пока что неизвестны, они носят открытый характер в том смысле, что отсутствуют представления о предметах, к которым она неприменима. О ее обобщениях нельзя утверждать как о достоверно установленных законах. Примерами завершенных теорий могут служить геометрия Евклида, механика Ньютона. Сегодня точно известна сфера применения евклидовой геометрии - трехмерное пространство. Но до открытия неевклидовых геометрий она существовала в виде модели, которая варьировалась в связи с попытками доказательства знаменитого пятого постулата. То же происходило и с механикой Ньютона до начала XX столетия, пока не была уточнена область ее применения - множество макротел. Рожденная XX столетием квантовая теория на сегодняшний день не является завершенной, о чем свидетельствуют многие модели, которые конкурируют между собой в рамках ее развития.

В развитой науке теория и факт - соотносимые понятия. Наличие одного из них немыслимо без наличия другого, одно из этих понятий имеет своей предпосылкой другое. По словам А. Эйнштейна, "не существует эмпирического метода без чисто умозрительных понятий и систем чистого мышления, при более близком изучении, которых не обнаруживался бы эмпирический материал, на котором они строятся".

На развитом уровне науки в факте воплощается некая теоретическая конструкция. В качестве его для теории выступает не все богатство связей, которые можно наблюдать и преобразовывать в повседневной деятельности, а их ограниченный комплекс, выделенный соответственно фиксируемым в теории отношениям. Земля вращается вокруг Солнца, солнечные процессы воздействовали и воздействуют на все, что совершается на Земле. Благодаря им возникли и существуют материки и океаны, горы и долины, био- и ноосфера. Но небесную механику как теорию в данном случае интересует не все. Для нее фактом является, например, то, что материальная точка одной массы движется вокруг материальной точки другой массы с некоторой скоростью на определенном расстоянии.

Ни одна практическая задача не решается математическими средствами до того времени, пока она не будет сведена к соответствующей математической задаче и не преобразуется, таким образом, в факт, соотнесенный с некоторой математической теорией. Сведение сопровождается абстрагированием от многих заключенных в условиях задачи обстоятельств, которые с точки зрения этой теории носят несущественный, привнесенный характер. Об аналогичных процессах в гуманитарной сфере точно сказал А. Блок: "Есть факты неоспоримые, но сами по себе не имеющие никакого значения, например: Бэкон Веруламский - взяточник, Спиноза - стекольщик, Гаршин - переплетчик. Горький - социал-демократ". Такого рода несущественности Гегель называл дурной единичностью, в отличие от которой единичность факта - форма необходимости.

Таким образом, факт - это не просто "кусочек бытия", а результат сложной мыслительной процедуры, при которой изо всей эмпирической данности выделяются характеристики, соотносимые с некоторой теорией. То, что не является фактом в одной теоретической системе, может оказаться им в другой. При переходе от одной теоретической системе к другой, с одного уровня знаний на другой меняется и совокупность характеристик научного факта.

По отношению к фактам теория выполняет ряд познавательных функций, важнейшие из которых описательная, объяснительная и предсказательная. 0писательная функция состоит в том, что сведения об итогах наблюдений, измерений, экспериментов излагаются на языке данной теории, и, таким образом, происходит их первичная обработка. Описание является предварительным условием объяснения события, явления, процесса. При объяснении из элементов теории выбираются некоторые законы, которым подчиняется объясняемый факт, и которые позволяют осмыслить соответствующие ему явления в системе теоретического знания. Предсказательная функция теории связана с ее способностью к дальним и точным прогнозам, к опережению наличной практической деятельности людей. Как заметил известный австрийский физик Л.Больцман, нет ничего практичней хорошей теории.

Вопрос о предсказательных свойствах теории заслуживает особого внимания. Предсказательная мощь теории зависит в основном от двух взаимосвязанных обстоятельств: во-первых, от глубины и полноты отображения сущности, изучаемых предметов; очевидно, чем глубже и полнее такое отображение, тем надежней опирающиеся на теорию прогнозы. Во-вторых, теоретическое предсказание находится в обратной зависимости от сложности и нестабильности исследуемого процесса, и чем сложнее и неустойчивее этот процесс, тем рискованнее прогноз.

К относительно простым системам причисляются, как известно, системы, изучаемые небесной механикой. Уже первоначальные обобщения астрономических таблиц, сделанные древними китайцами более 2000 лет до н.э., позволили им с большой точностью предсказывать солнечные затмения. Геоцентрическая система Птолемея была более мощной в своих предсказаниях и позволяла предвидеть также расположения планет на небосклоне, моменты равноденствий и др. Пользуясь ею, прокладывали пути своих каравелл Диаш и Колумб, Васко да Гама и Америго Веспуччи. Но ее беспомощность во многих предсказаниях, как, например, при определениях длительности года, в конце концов привела к созданию гелиоцентрической теории Коперника, где трудности, с которыми столкнулась тогдашняя астрономия, оказались снятыми.

Сложнее дело с неустойчивыми процессами. Классическим и простым примером неустойчивой системы может служить маятник в его верхнем положении. Можно предсказать, что, в конце концов, он займет нижнее положение и превратится в стабильную систему, но поскольку альтернативы его движения влево и вправо являются равновероятными и зависят от случайных причин, то предсказать направление движения весьма трудно. Вероятность предсказания увеличивается с улучшением знаний о сущности процесса, т.е. с повышением уровня теоретического владения предметом познания.

Расхождение теории с фактами, противоречие между ними свидетельствует об ограниченности теоретической системы знания. Вместе с тем такое противоречие является источником дальнейшего развития знания, его совершенствования. Прежде всего, оно приводит к постановке новых проблем в науке.

Как форма развивающегося знания проблема фиксирует недостаточность познавательных средств для достижения поставленных в науке целей. Это не только недостаточность теории для объяснения или предсказания фактов. Источником недостаточности может быть противоречие между различными теоретическими системами, осваивающими один и тот же объект, между совокупностями фактов, между объектом и методом науки и др.

Гипотеза. Попытки разрешения проблем связаны с выдвижением гипотез. Гипотеза – это предположительное решение некоторой научной проблемы. Важнейшее требование к гипотезе – ее принципиальная проверяемость фактическим материалом, означающая возможность соотнесения гипотезы с данными экспериментов, наблюдений, измерений. Связь между гипотезой и соотносимыми с ней фактами характеризуется логической, или индуктивной, вероятностью, означающей, что факты обеспечивают ту или иную вероятность истинности гипотезы.

Хорошо удостоверенная гипотеза становится теорией или ее фрагментом – научным законом. Методами обоснования гипотезы, превращения ее в достоверное знание выступают, прежде всего, подтверждение и доказательство.

Итак, теория, факт, проблема, гипотеза – важнейшие формы, в которых протекает процесс развития научного знания. Если теория и факт применяются, прежде всего, для оформления готовых, сложившихся знаний, то проблема и гипотеза используются на переходных этапах их становления. Между различными формами не существует жестких границ, для них характерны диалектические связи, взаимопереходы и взаимопроникновения.

1. Павлов И.П. Лекции по физиологии высшей нервной деятельности. М., 1952.

2. Мудрагей В.И . Единство научного знания: опыт решения проблемы в философии эмпиризма // Вопр. философии. 1985. № 5.

3. Кэмпбелл Д. Модели экспериментов в социальной психологии и прикладных исследованиях. – М.: Прогресс, 1980.

4. Ахутин А.В . История принципов физического эксперимента. М., 1976.

5. Гастев Ю.А . Гомоморфизм и модели. Логико-алгебраические аспекты моделирования. М., 1975.

6. Кузнецов И.В . Избранные труды по методологии физики. М., 1975.

7. Горский Д.П . Проблемы общей методологии наук и диалектической логики. М., 1966.

8. Меськов В.С . Очерки по логике квантовой механики. М., 1986.

9. Садовский В.Н . Моделирование глобальное // Филос. энциклопед. словарь. М., 1989.

10. Богданов А.А .Всеобщая организационная наука (тектология) 3-е изд. Т.1. М., 1925

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Научные открытия и изобретения в средние века

Описание презентации по отдельным слайдам:

Научные открытия и изобретения в средние века

Научные открытия и изобретения в средние века

Развитие практических знаний В средние века процветали астрология и алхимия.

Астрологи утверждали, что по звездам можно определить будущее. С ними совето.

Астрологи утверждали, что по звездам можно определить будущее. С ними советовались короли, полководцы и путешественники. Астрологи изучали расположение звезд и светил, их движение и законы физики.

Накапливала полезные знания медицина. В больницах не только лечили, но и дав.

Накапливала полезные знания медицина. В больницах не только лечили, но и давали приют паломникам и нищим. Раны и переломы чаще лечили не врачи, а Цирюльники (парикмахеры), они же вырывали зубы.

В математике появилась цифра 0; вместе с распространением арабских цифровых.

В математике появилась цифра 0; вместе с распространением арабских цифровых обозначений (вместо римских) это позволило решать сложные задачи.

Первые механизмы В XIV веке в горном деле и ремесле стали активно применять в.

Первые механизмы В XIV веке в горном деле и ремесле стали активно применять водяные мельницы, которые приводились в действие от водяного колеса. Позднее изобрели более мощное колесо. Реку перегораживали платиной и отводили от неё узкие каналы – желоба. Вода устремлялась в желоб и падала сверху на лопасти колеса, ускоряя его вращение. Энергия колеса использовалась : на мельницах, в сукноделии, для плавки металла и поднятия тяжестей.

Новое в металлургии и обработке металлов. С XIV века стали строить домны – пл.

Новое в металлургии и обработке металлов. С XIV века стали строить домны – плавильные печи 3 – 4 м. в высоту. Водяное колесо было соединено с большими мехами, с помощью которых вдувался воздух. Это приводило к повышению температуры в печи, что позволяло плавить железную руду и получать жидкий чугун. Металла выплавлять стали значительно больше.

Много чугуна и железа нужно было для Производство огнестрельного оружия: тяжё.

Много чугуна и железа нужно было для Производство огнестрельного оружия: тяжёлых пушек для осады крепостей и лёгких орудий для полевых сражений. Распространение пушек стало началом переворота в военном деле.

Развитие мореплавания и кораблестроения Долгое время европейцы не решались пу.

Развитие мореплавания и кораблестроения Долгое время европейцы не решались пускаться в далекие плавания в открытое море. Выходить в открытое море стало безопасней, после того, как моряки освоили компас. Была изобретена астролябия – прибор для определения места, где находится корабль.

В 1492 году. Генуэзский мореплаватель Христофор Колумб, состоящий на службе у.

В 1492 году. Генуэзский мореплаватель Христофор Колумб, состоящий на службе у испанских королей, достиг прибрежных островов Америки в районе Карибского моря. Открытие европейцами Америки имело всемирно историческое значение. Оно положило начало в ближайшие столетия новым Великим географическим открытиям.

Изобретение книгопечатания Возрастание объёма знаний требовало увеличения кол.

В середине XV века немец Иоганн Гутенберг изобрел книгопечатание. Он стал отл.

В середине XV века немец Иоганн Гутенберг изобрел книгопечатание. Он стал отливать из металла отдельные буквы (литеры), из них составлялись Строки с страницы набора, с которого делался оттиск на бумагу. С помощью разборного шрифта можно было набрать любое количество страниц текста.

Гутенберг изобрел и печатный станок. В 1456 году он выпустил первую печатную.

Гутенберг изобрел и печатный станок. В 1456 году он выпустил первую печатную книгу – Библию. До конца XV века было издано 30 тысяч книг. Изобретение книгопечатания – одно из величайших открытий в истории человечества.

Спасибо за внимание!

Спасибо за внимание!

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания


Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 25 человек из 18 регионов


Курс повышения квалификации

Методика преподавания истории и обществознания в общеобразовательной школе

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 602 945 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 22.12.2016 20853
  • PPTX 3.3 мбайт
  • 609 скачиваний
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Терехов Алексей Сергеевич. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

Время чтения: 2 минуты

Минпросвещения России подготовит учителей для обучения детей из Донбасса

Время чтения: 1 минута

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Но хозяйственная жизнь требовала надежных прикладных знаний, кото­рые можно было бы применить на практике. Поэтому в XIII в. появились первые опытные знания, прежде всего в механике и математике. У их истоков стоял выдающийся английский уче­ный Роджер Бэкон, которого считали чародеем. Он высказывал смелые идеи, которые церкви казались еретически­ми. Например, он считал, что можно пользоваться знаниями не только хрис­тиан, но и язычников. Поэтому не уди­вительно, что последние 14 лет своей жизни ученый провел в темнице.

XIII в. Из трудов Роджера Бэкона

Есть три источника знания: авторитет, разум и опыт. Однако авторитет недостаточен, если у него нет разумного доказательства. И разум сам не может отличить софизм (ошибочный вывод, который кажется правильным) от настоящего доказательства, если он не может подтвердить свои выводы опытом.

Человек, никогда не видевший огня, имел достаточно доказательств того, что огонь жжет, портит и разрушает вещи. Однако дух его не удов­летворился бы таким знанием, и он не вел бы себя осторожно с огнем, по­ка не положил бы в огонь руку или какой-либо горючий предмет и не убе­дился через опыт в том, о чем он узнал из доказательств.

Много сделала для развития исследовательского знания средневеко­вая алхимия, пришедшая в Европу через Византию из египетской Александрии. В VII-VIII вв. ею занимались во всех завоеванных араба­ми странах, особенно в Испании.

Ученые-алхимики тем не менее сделали немало важных научных открытий. Они дали толчок развитию химии и металлургии.

В эпоху Крестовых походов умножились географические знания. Особенно содействовали их развитию странствующие купцы. Так, в XIII в. венецианский купец Марко Поло посетил Китай и Центральную Азию. В XIV-XV вв. другие путешественники описали и ряд иных земель. Это дало возможность составить более совершенные географи­ческие карты, даже первые атласы. Развитие средневековой географии подготовило условия для Великих географических открытий.

Алхимия — попытки изобрести универсальное лекарство, искус­ственно добыть золото или серебро.

Панацея — мифическое лекарство от всех болезней.

Философский камень — мифический способ превращения обычно­го металла (меди и свинца) в золото или серебро.

Читайте также: