Реферат на тему поле

Обновлено: 04.07.2024

Электрическое поле как частная форма проявления электромагнитного поля, определяющая действие на электрический заряд. Силовые линии кулоновских полей положительных и отрицательных точечных зарядов. Понятие про дипольный момент. Поле заряженной нити.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.08.2012
Размер файла 382,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему: Электрическое поле

Электрическое поле

Электрическое поле - частная форма проявления (наряду с магн. полем) электромагнитного поля, определяющая действие на электрический заряд (со стороны поля) силы, не зависящей от скорости движения заряда. Представление об электрическом поле было введено М. Фарадеем в 30-х гг. 19 в. Согласно Фарадею, каждый покоящийся заряд создаёт в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд и наоборот; так осуществляется взаимодействие зарядов (концепция близкодействия). Основная количественная характеристика электрического поля - напряжённость электрического поля Е, которая в данной точке пространства определяется отношением силы F, действующей на заряд, помещённый в эту точку, к величине заряда q: E=F/q. Электрическое поле в среде наряду с напряжённостью характеризуется вектором электрической индукции D. Распределение э.п. в пространстве можно изображать с помощью силовых линий напряжённости э. п. Силовые линии потенц. э.п., порождаемого электрическими зарядами, начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность). Силовые линии вихревого э.п., порождаемого переменным магнитным полем, замкнуты.

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля - действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда - небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.

Для количественного определения электрического поля вводится силовая характеристика - напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

Напряженность электрического поля - векторная физическая величина. Направление вектора в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это поле обозначают общим термином - электрическое поле

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю

Это поле называется кулоновским. В кулоновском поле направление вектора зависит от знака заряда Q: если Q > 0, то вектор направлен по радиусу от заряда, если Q 0 вектор параллелен а при Q

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ПОЛЕ И ЕГО ОБИТАТЕЛИ

Описание презентации по отдельным слайдам:

ПОЛЕ И ЕГО ОБИТАТЕЛИ

ПОЛЕ И ЕГО ОБИТАТЕЛИ

Поле – это большой участок земли с травянистым покровом без деревьев и кустар.

Поле – это большой участок земли с травянистым покровом без деревьев и кустарников. Поле – это тоже природное сообщество, только искусственное (созданное человеком для выращивания культурных растений).

На полях люди выращивают ЗЕРНОВЫЕ КУЛЬТУРЫ – рожь, пшеницу, овёс, ячмень, про.

На полях люди выращивают ЗЕРНОВЫЕ КУЛЬТУРЫ – рожь, пшеницу, овёс, ячмень, просо, кукурузу, гречиху.

Рожь


Пшеница

Овёс

Ячмень

Просо

Кукуруза

Гречиха

Зерном называют плоды этих растений. Из них получают главный продукт питания.

Зерном называют плоды этих растений. Из них получают главный продукт питания – ХЛЕБ, а также корма для домашних животных.

Растут на полях и овощные культуры: капуста, свёкла, картофель, горох, морков.

Растут на полях и овощные культуры: капуста, свёкла, картофель, горох, морковь. Засевают поля и кормовыми травами: люцерна, люпин. На некоторых полях выращивают масляничные и прядильные культуры: лён и хлопок.


люцерна

люпин

лён

хлопок

Вместе с культурными растениями на полях вырастают сорняки. К сорнякам относя.

Вместе с культурными растениями на полях вырастают сорняки. К сорнякам относятся такие растения. Как осот, василёк полевой, лебеда, вьюнок, пастушья сумка, пырей, сурепка.

Осот

Василёк

Лебеда

Вьюнок

Пастушья сумка

Пырей

У них очень развита корневая система. Их сильные корни забирают у культурных.

У них очень развита корневая система. Их сильные корни забирают у культурных растений воду и питательные минеральные соли. А листья загораживают всходы культурных растений от солнечного света. Поэтому на полях, где много сорняков, всегда плохой урожай. Сельские труженики стараются избавиться от сорняков на полях. Самое безвредное удаление сорняков – это прополка.

Обилие пищи на полях обеспечивает кормом их обитателей. Особенно много здесь.

Обилие пищи на полях обеспечивает кормом их обитателей. Особенно много здесь насекомых – бабочек, цветочных мух, кузнечиков, пчёл, шмелей, различных жуков.

Есть среди них и вредители. Пищей им служат листья, стебли, корнеплоды, зёрна.

Есть среди них и вредители. Пищей им служат листья, стебли, корнеплоды, зёрна полевых растений.

Колорадский жук – страшный враг картофельных полей.

Колорадский жук – страшный враг картофельных полей.

Капустная белянка, тля – вредят овощным культурам.

Капустная белянка, тля – вредят овощным культурам.

Зерновые культуры страдают от жука-кузьки, хлебной жужелицы, шведской мухи.

Зерновые культуры страдают от жука-кузьки, хлебной жужелицы, шведской мухи.

Жук-кузька

Хлебная жужелица

Шведская муха

Но у растений есть и друзья. Рядом с колонией тлей можно заметить поедающих и.

Но у растений есть и друзья. Рядом с колонией тлей можно заметить поедающих их божьих коровок. Насекомоядные птицы – жаворонок, серая куропатка – тоже питаются насекомыми-вредителями. Серая куропатка уничтожает колорадских жуков и их личинок.

Жаворонок

Серая куропатка

Помогают полям грачи, галки, вороны. Когда вспахивают землю, они выбирают из.

Помогают полям грачи, галки, вороны. Когда вспахивают землю, они выбирают из почвы насекомых и их личинки.

Грач

Галка

В полях живут и мелкие зверьки – любители зерна. Это мыши и кроты. За мышами.

В полях живут и мелкие зверьки – любители зерна. Это мыши и кроты. За мышами охотятся ежи, горностаи и хищные птицы – сова, пустельга, полевой лунь. Живет в полях и заяц-русак. Цвет шерсти этого зайца к зиме не меняется.

Мышь - малютка

Мышь - полёвка

Горностай

Пустельга

Полевой лунь

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 932 человека из 80 регионов


Курс повышения квалификации

Дислексия, дисграфия, дискалькулия у младших школьников: нейропсихологическая диагностика и коррекция

  • Курс добавлен 24.12.2021
  • Сейчас обучается 202 человека из 51 региона


Курс повышения квалификации

Актуальные вопросы теории и методики преподавания в начальной школе в соответствии с ФГОС НОО

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 595 643 материала в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 12.02.2016 13988
  • PPTX 12 мбайт
  • 48 скачиваний
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Колесниченко Елена Дмитриевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

Время чтения: 1 минута

В приграничных пунктах Брянской области на день приостановили занятия в школах

Время чтения: 0 минут

Минпросвещения России подготовит учителей для обучения детей из Донбасса

Время чтения: 1 минута

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Рассматривается определение поля, примеры и простейшие свойства полей, определения подполя, простого поля и поля рациональных чисел.

п.1. Определение поля.

Определение. Пусть - кольцо с единицей 1. Элемент из множества называется обратным в кольце , если . называется обратным к .

Рассмотрим кольцо целых чисел, то есть кольцо , элемент 2 необратим в этом кольце, так как , элемент 5 необратим в кольце целых чисел. - обратимые элементы в кольце целых чисел

Рассмотрим кольцо рациональных чисел , обратимыми являются все элементы кроме .

Рассмотрим кольцо действительных чисел, то есть кольцо , обратимыми являются все элементы кроме .


Определение. Поле – это кольцо , если:

- коммутативное кольцо (операция коммутативна)

- кольцо с единицей 1, единица .


Всякий ненулевой элемент кольца обратим.


- поле рациональных чисел.


- поле действительных чисел.

Это поля с бесконечным числом элементов. Рассмотрим поле с конечным числом элементов.

Поле Галуа - галуафилд. ; . Определим

операции сложения и умножения:

И - бинарные операции, - унарная

Из этой таблицы видно, что операция - коммутативна, -бинарные операции, - унарная операция, т.к. , .

п.2. Простейшие свойства поля.

Пусть - поле. Обозначение: .

Если , то .

Доказательство. Пусть , докажем, что , то есть , тогда противоречие с аксиомой поля . Если , то по аксиоме полей | , .

Если , . умножим равенство справа на , то есть .


.

Доказательство. Если , то , умножая обе части равенства на слева, .

В поле нет делителей 0.

Доказательство. Следует из свойства 3, применяя законы контрапозиции: , , значит нет делителей нуля.

Каждое поле является областью целостности.

Доказательство. Следует из определения поля и области целостности.


.

Доказательство. . Умножим обе части равенства справа на , где .

, где .

Доказательство. Выпишем правую часть равна левой части.

, где .

Доказательство. Правая часть равна левой части.

, .

Доказательство. Правая часть левая часть.

, .

Доказательство. Левая часть .

, .

Если , то .

Доказательство. Вычислим произведение то есть обратный элемент к .

, где .

Доказательство. Левая часть равна равна правой части.


- коммутативная группа, которая называется мультипликативной группой не равных 0 элементов.


Доказательство. Следует из свойств поля:


1. , так как поле.


2.


3.


4. , так как поле

Так как поле – это кольцо определённого вида, то под гомоморфизмами полей понимаются гомоморфизмы полей. Аналогично для изоморфизмов.

Определение. Подполем поля называется подкольцом с единицей поля , в котором всякий ненулевой элемент обратим. Всякое подполе является полем. Подполе поля , отличное от называется собственным полем.

Определение. Поле называется простым, если оно не имеет собственных подполей.

Пример. Рассмотрим поле действительных чисел, то есть поле . Для того, чтобы найти подполе надо найти подмножества замкнутые относительно операции и подмножеству. Например, поле рациональных чисел является подполем поля действительных чисел.


Алгебраическая система называется системой рациональных чисел, если:


Алгебра - это поле с единицей 1.

Множество замкнуто относительно операции и


Аксиома минимальности, если такое, что:


а)

б) , тогда .

Список литературы

Е.Е. Маренич, А.С. Маренич. Вводный курс математики. Учебно-методическое пособие. 2002

Кострикин А.И. Введение в алгебру. Ч.1 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.2 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.3 Основные структуры алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Сборник задач по алгебре. Изд. третье – М.: Физмат лит-ра, 2001

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Когда два параллельных проводника подключены к источнику питания таким образом, что через них протекает электрический ток, проводники либо отталкиваются, либо втягиваются, в зависимости от направления тока в них.

Объяснение этого явления возможно с точки зрения возникновения вокруг проводников особого вида материи — магнитного поля.

Силы, с которыми проводники взаимодействуют с током, называются магнитными.

Магнитное поле — особый вид материи, особенностью которого является действие на движущийся электрический заряд, на проводники с током, на тела с магнитным моментом, где сила зависит от вектора скорости заряда, от направления тока в проводнике и от направления магнитного момента тела.

Магнитные полюса взаимодействуют друг с другом: отталкиваются полюса с одним и тем же именем и притягиваются полюса с разными именами. По аналогии с понятием электрического поля, окружающего электрический заряд, вводится идея магнитного поля вокруг магнита.

В 1820 году Эрстед (1777-1851) обнаружил, что магнитная стрелка рядом с электрическим проводником отклоняется при протекании тока вдоль проводника, т.е. вокруг проводника создается магнитное поле с током. Когда мы берем рамку с током, внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее токопроводящее воздействие, т.е. есть положение рамки, в котором внешнее магнитное поле оказывает на нее максимальное вращательное воздействие, и есть положение, в котором вращательный момент сил равен нулю.

Магнитное поле в любой точке может быть охарактеризовано вектором B, который называется вектором магнитной индукции или магнитной индукции в этой точке.

Магнитная индукция B — это векторная физическая величина, которая является силовой характеристикой магнитного поля в точке. Он равен отношению максимального механического момента сил, действующих на раму, когда ток находится в однородном поле, к произведению силы тока в раме на ее поверхности.

Направление вектора магнитной индукции В — это направление положительного эталона к раме, которая по правилу правого винта подключается к току в раме в механический момент, равный нулю.

Так же, как были показаны линии напряженности электрического поля, показаны и линии индукции магнитного поля. Индукционная линия магнитного поля — это воображаемая линия, касательная которой совпадает с направлением B в точке.

Направления магнитного поля в определенной точке также можно определить как направление, указанное северным полюсом стрелки-компаса, расположенной в этой точке. Предполагается, что индукционные линии магнитного поля направлены от северного полюса к южному.

Направление линий

Направление линий магнитной индукции магнитного поля, создаваемого электрическим током, проходящим по прямому проводнику, определяется правилом сверла или правым винтом. Направление линий магнитной индукции принимается за направление вращения головки винта, которое обеспечит его поступательное движение в направлении электрического тока.

В отличие от линий электростатического поля, которые начинаются с положительного заряда и заканчиваются отрицательным, линии индукции магнитного поля всегда закрыты. Магнитный заряд не обнаруживается так же, как и электрический заряд.

За единицу индукции принимается корпус (1 Тел) — индукция такого однородного магнитного поля, в котором максимальный механический момент сил, равный 1 Н — м, действует на раму площадью 1 м2, на которую протекает ток в 1 А.

Индукцию магнитного поля можно также определить по силе, воздействующей на проводник с током в магнитном поле.

Амперная сила действует на проводник с током в магнитном поле, величина которого определяется следующим выражением.

Направление ампер-силы может быть определено по правилу левой руки: Положим ладонь левой руки так, чтобы линии магнитной индукции проникали в ладонь, четырьмя пальцами в направлении тока в проводнике, затем согнутый большой палец указывает направление амперной силы.

Определите силу, прилагаемую магнитным полем к одной заряженной частице, движущейся в магнитном поле.

Эта сила известна как сила Лоренца (1853-1928). Направление силы Лоренца может быть определено по правилу левой руки: Ладонь левой руки расположена так, чтобы линии магнитной индукции проникали в ладонь, четыре пальца указывают направление положительного заряда, большой изогнутый палец указывает направление силы Лоренца.

Сила взаимодействия двух параллельных проводников, на которых токи I1 и I2 равны.

l является частью проводника, который находится в магнитном поле. Если токи равны в одном направлении, то проводники притягиваются (рис. 60), если в противоположном направлении, то они отталкиваются. Силы, действующие на каждый проводник, одинаковы в модуле, в противоположном направлении. Формула (3.22) является базовой формулой для определения единицы тока 1 ампер (1 А).

Магнитные свойства вещества характеризуются скалярной физической величиной — магнитной проницаемостью, которая показывает, как часто индукция магнитного поля в веществе, полностью заполняющем поле, отличается по модулю от индукции магнитного поля B0 в вакууме.

По своим магнитным свойствам все материалы делятся на надиамагнитные, парамагнитные и ферромагнитные.

Рассмотрим природу магнитных свойств веществ

Электроны в оболочке атомов материи движутся по разным орбитам. Для простоты эти орбиты считаются круговыми, и любой электрон, вращающийся вокруг ядра атома, может рассматриваться как круговой электрический ток. Как круговой ток, каждый электрон генерирует магнитное поле, которое мы называем орбитальным. Кроме того, электрон в атоме имеет собственное магнитное поле, называемое спином.

Если при введении во внешнее магнитное поле с индукцией В =1).

В разных областях индукция магнитных полей имеет разные направления и в большом кристалле они компенсируют друг друга.

Когда ферромагнитный образец помещается во внешнее магнитное поле, границы отдельных доменов смещаются таким образом, что объем доменов, выровненных с внешним полем, увеличивается.

С увеличением индукции внешнего поля В0 увеличивается магнитная индукция намагниченного вещества. При некоторых значениях B0 индукция останавливает сильное увеличение. Это явление называется магнитным насыщением.

Характерной особенностью ферромагнитных материалов является явление гистерезиса, заключающееся в неоднозначной зависимости индукции в материале от индукции внешнего магнитного поля по мере его изменения.

Петля магнитного гистерезиса представляет собой замкнутую кривую (cdc`d`c), выражающую зависимость индукции в материале от амплитуды индукции внешнего поля с периодическими, достаточно медленными изменениями последнего.

Петля гистерезиса характеризуется следующими значениями Bs, Br, Bc. Bs — максимальное значение индукции материала при B0s; Vg — остаточная индукция, равная значению индукции в материале при снижении индукции внешнего магнитного поля с B0s до нуля; -Bs и All — коэрцитивная сила — величина, равная индукции внешнего магнитного поля, необходимой для изменения индукции в материале с остаточной до нуля.

Для каждого ферромагнита существует температура (точка Кюри (J. Curie, 1859-1906)), выше которой ферромагнит теряет свои ферромагнитные свойства.

Существует два способа размагничивания намагниченного ферромагнитного материала: а) нагрев и охлаждение выше точки Кюри; б) намагничивание материала переменным магнитным полем с медленно уменьшающейся амплитудой.

Заключение

Ферромагнитные материалы с низкой остаточной индукцией и коэрцитивной силой называются магнитомагнетиками. Они используются в устройствах, в которых ферромагнитные материалы часто должны быть намагничены (сердечники трансформаторов, генераторы и т.д.).

Для постоянных магнитов используются магнитожесткие ферромагнитные материалы с высоким коэрцитивным сопротивлением.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: