Реферат на тему подшипники качения

Обновлено: 04.07.2024

Отличие подшипников качения от подшипников скольжения.

В любом механизме или машине различают два типа подвижных опор: опоры с трением скольжения и опоры с трением качения.

В первом случае происходит взаимное перемещение и взаимодействие рабочих поверхностей вала и корпуса, чаще всего разделённых вкладышем скольжения и смазочными веществами. Работа опоры происходит при чистом скольжении соприкасающихся деталей.

Во втором случае между взаимно подвижными поверхностями закладываются тела качения (шарики или ролики) и работа опоры происходит при трении качения. В этом случае вместо вкладышей из бронзы, баббитов пластиков или других материалов в опорах с трением качения устанавливаются шариковые или роликовые стальные подшипники.

В зависимости от характера нагружения вращающихся опор они называются радиальными, если опора воспринимает радиальные нагрузки, упорными, если опора воспринимает только осевые нагрузки, и радиально-упорными или упорно-радиальными подшипниками (в зависимости от того какие преобладают), если опора воспринимает радиальные и осевые нагрузки одновременно.

Каждый тип опоры характеризуется своими размерами, конструкцией, техническими условиями на изготовление, установку и эксплуатацию.

Подшипники качения и подшипники скольжения по-разному сопротивляются движению и так же по-разному определяют изнашивание элементов подвижных опор и поверхностей деталей машин. Тот или другой тип подшипника выбирается исходя из оценки технико-экономических условий эксплуатации машины или конкретных узлов.

Сравнительные характеристики двух типов подшипников.

От 0,7 до 2 диаметров вала

Малы (от 0,2 до 1 диаметра вала)

Обычно выше в 1,5-2 раза

малых и средних размеров

Низкая при массовом производстве

Как правило, силами самих предприятий с заказом соответствующих материалов

Специализированными подшипниковыми заводами

Необходимая точность изготовления

Способность выдерживать нагрузки:

Продолжение таблицы 1.

При трогании с места (стартовое)

Меньше в 5-10 раз

При умеренной скорости

Меньше в 2-4 раза

При очень высокой скорости и жидкой смазке (более 10000 об/мин )

Масло, мази, сухие смазки, воздух, вода

Условия создания самоустанавливаемости опор

Условия приработки новых опор и ввода и ввода в эксплуатационный режим.

Длительные (в сильно нагруженных и высокооборотных узлах – десятки часов ­­­­­)

Короткие (не более нескольких часов)

Преимущества подшипников качения перед подшипниками скольжения сводятся главным образом к значительно меньшему трению при трогании с места и при малых скоростях движения. Кроме того, подшипники качения имеют меньшие осевые размеры, конструктивно просто позволяют компоновать самоустанавливающиеся опоры, не требуют длительной и трудоёмкой индивидуальной подгонки вкладышей и их приработки, особенно в тех случаях, когда речь идёт о цапфах больших диаметров с высокими нагрузками, скоростями вращения, температурами.

При применении подшипников качения облегчается снабжение узлов машин смазкой, обслуживание и уход, обеспечивается сохранность посадочных поверхностей шеек валов и цилиндров, т.е. для абсолютного большинства опор целлюлозно-бумажного оборудования они имеют весьма большие преимущества.

Однако наряду с преимуществами подшипники качения обладают и рядом недостатков.

Так, крупно- и особокрупногабаритные подшипники, которые широко представлены в целлюлозно-бумажном оборудовании, изготовляются мелкими сериями и имеют весьма высокую стоимость. Подшипники качения уступают подшипникам скольжения по радиальным размерам, весу, жёсткости.

Весьма сложным является выбор подшипников качения при сочетании одновременно действующих высоких нагрузок и скоростей вращения. Известно, что увеличение скорости вращения и нагрузки влечёт за собой снижение долговечности (срока службы) подшипника. Если, например, нагрузка увеличивается на 25% против ранее принятой, то долговечность подшипника сокращается вдвое, а если нагрузка увеличивается вдвое, срок службы уменьшается в 10 раз.

Основные типы подшипников качения.

ШАРИКОПОДШИПНИКИ РАДИАЛЬНЫЕ ОДНОРЯДНЫЕ.

Наиболее распространенный тип подшипников качения. Широко применяются в узлах самого раз­личного оборудования, в том числе целлюлозно-бумажного (валики картонных и бумажных машин, электромоторы, насосы редукторы, кон­вейеры, сортировки и др.). Подшипники предна­значены в основном для восприятия радиаль­ных нагрузок, но способны воспринимать также двусторонние осевые нагрузки. Нередко применя­ются для чисто осевых нагрузок, особенно при больших числах оборотов, когда упорные подшип­ники не могут быть использованы. Допустимая осевая нагрузка на подшипник не должна превы­шать 70% от неиспользованной допустимой ради­альной нагрузки. При увеличенных радиальных за­зорах осевая грузоподъемность подшипника уве­личивается, так как в этом случае подшипники приобретают свойства радиально-упорных. Под­шипники могут работать с перекосом внутреннего кольца по отношению к наружному не более 15—20°.

Шарикоподшипники однорядные изготовляются со стальными штампованными сепараторами из стали 10) или массив­ными точеными сепараторами из антифрикцион­ных материалов из текстолита, дюралюминия (Д-1), бронзы (Бр. АЖМЦ), латуни (ЛС 59-1). В последние годы для изготовления мас­сивных сепараторов применяют также полиамид­ные смолы. Подшипники высокого класса точности с массивными точеными сепараторами (иногда облегченной конструкции), центрируемыми по бортам наружного кольца при эффективных режимах смазки, могут работать на скоростях вращения выше предельных, указанных в каталогах.

Шарикоподшипники радиальные однорядные имеют следующие конструктивные разновидности: с одной защитной шайбой; с двумя защитными шайбами; с канавной на наружном кольце и уста­новочным кольцом; с установочным кольцом и за­щитной шайбой; с односторонним и двусторонним уплотнением; с канавкой для ввода шариков без сепаратора.

Подшипники с одной защитной шайбой.

Изготовляются только со штампованными сепараторами. Применять их на повышенных скоростях не рекомендуется. Предназначены такие подшипники в основном для работы на консистентных смазках. Защитная металлическая шайба, запрессованная в канавку наружного кольца подшип­ника, удерживает смазку в подшипнике лишь с од­ной стороны. С другой стороны смазка, заложен­ная в подшипник, ограничивается уплотнением, предусмотренным в узле, или крышкой. Образую­щееся свободное пространство (объем) частично заполняется смазкой, выбранной для конкретных условий работы. Подшипники такой конструкции можно в любое время осмотреть (со стороны уплотнения или крышки) и в процессе работы добавить смазочный материал.

Подшипники с двумя защитными шайбами.

Имеют те же сепараторы и те же скоро­стные характеристики, что и подшипники с одной защитной шайбой, однако рабочей консистентной смазкой, закладываемой между шайбами, их за­полняют при сборке на подшипниковом заводе. Применять такие подшипники весьма выгодно в тех случаях, когда уплотнение нельзя выпол­нить непосредственно в узле. В этом случае кон­струкция упрощается и узел в целом меньше ве­сит.

Осматривать внутренние детали подшипника (сепаратор, шарики, беговые дорожки) в период его работы нельзя.

Подшипники с канавкой на наружном кольце.

При помощи раз­резного установочного кольца, которое входит в канавку на наружном кольце, подшипник можно за­фиксировать в корпусе без упора наружного кольца в опорные заплечики корпуса или направляющие крышек. Однако воспринимать сколько-нибудь значительные осевые нагрузки установоч­ные кольца не могут, поэтому такие подшипники рекомендуется применять главным образом для восприятия радиальных нагру­зок. Применение установоч­ных колец упрощает кон­струкцию, сокращает габа­риты узлов и позволяет пр­изводить сквозную расточку отверстий корпусов.

Похожие страницы:

Подшипники качения (2)

. г. Содержание. Отличие подшипников качения от подшипников скольжения 3 Основные типы подшипников качения 5 Специальные типы подшипников качения 14 Список .

Вибрационная диагностика подшипников качения

. для вибрационной диагностики подшипников качения; алгоритмов диагностирования подшипников качения в со­ставе . параметров подшипников. 3.5. Возможности автоматической диагностики подшипников качения Под автоматизацией диагностики подшипников качения обыч­но .

Нормирование точности и посадки подшипников качения

. случаев выгоднее пользоваться готовыми стандартными подшипниками. Подшипники качения классифицируют по конструктивным разновидностям . . Точность подшипников качения более подробно описана ниже. Точность подшипников качения Качество подшипника в значительной .

Технология организации промышленного производства подшипников качения

. . Основные типы подшипников: подшипники качения подшипники скольжения газостатические подшипники газодинамические подшипники гидростатические подшипники гидродинамические подшипники магнитные подшипники Основные типы .

Назначение посадок гладких цилиндрических сопряжений, подшипников качения, шпоночных соединений,

. натягом…………………………………………….5 2 Расчет и выбор посадок подшипников качения……………………………..11 3 Нормирование допусков и назначение . 1982. - 4.2. - 448 с. Нарышкина В.Н., Коросташевского Р.В. Подшипники качения: Справочник. - М.: Машиностроение, 1984. – 220 с. .

Общие сведения и классификация подшипников качения. Условные обозначения подшипников качения. Основные критерии работоспособности и расчета. Подбор подшипников по динамической и по статической грузоподъемности. Основные достоинства подшипников.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 04.03.2018
Размер файла 166,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

§1. Общие сведения и классификация подшипников качения

Подшипники качения состоят из двух колец - внутреннего и внешнего, между которыми расположены тела качения в сепараторе или без сепаратора. Область их использования очень широка и определяется их достоинствами и недостатками.

Достоинства подшипников качения.

1. Трение качения с малым коэффициентом трения, значение которого близко к значению коэффициента жидкостного трения (f = 0,0015 0,006).

2. Упрощенная система смазки и обслуживания. Подшипники в защищенном исполнении могут работать только со смазкой, заложенной в них при изготовлении, то есть не требуют дополнительной смазки в течение всего срока службы.

3. Возможность стандартизации и массового производства, что значительно снижает их стоимость.

Недостатки подшипников качения.

1. Отсутствие разъемных конструкций. Поэтому, в частности, их невозможно установить на коленчатых валах.

2. Бульшие радиальные габариты, по сравнению с подшипниками скольжения.

3. Ограниченная быстроходность, что связано с неблагоприятными условиями работы тел качения при высоких скоростях.

4. Низкая работоспособность при вибрационных и ударных нагрузках. Это связано с тем, что контакт тел качения с кольцами подшипника происходит в высшей кинематической паре - по линии или в точке.

5. Невозможность работы в воде и агрессивных средах. Кольца и тела качения подшипников выполнены из стали и подвержены коррозии.

Классификация стандартных подшипников качения по конструктивным признакам (по типам) представлена в таблице 1.

Название типа подшипника состоит из двух частей - названия тел качения и вида воспринимаемой нагрузки.

В левом столбце таблицы приведены первые части названий, а в верхней строке - вторые Главными размерами подшипника, как это показано в таблице, являются диаметр внешнего кольца D (диаметр отверстия в корпусе), диаметр внутреннего кольца d (диаметр вала) и ширина b.

Радиальный шариковый подшипник наиболее распространен. Шарики располагаются в торообразных канавках на кольцах подшипника. Для возможности чистого качения радиусы канавок больше, чем радиус шариков, так что контакт шарика с кольцом происходит в точке. Тем не менее, наряду с радиальной нагрузкой, такой подшипник может воспринимать постоянную осевую нагрузку величиной до 80 % от радиальной. Подшипник неразборный, может быть (также как и остальные) различных модификаций: открытый, защищенный (с пластинами, закрывающими тела качения), с канавкой на внешнем кольце и пр. Допускает небольшой перекос вала - до 0,25°. Обозначается цифрой 0 (подробнее об обозначении см. ниже).

Шариковый радиально-упорный подшипник может воспринимать бульшую, чем радиальный подшипник осевую нагрузку, в том числе и переменную. Он также неразборный и допускает небольшой перекос вала. Обозначается цифрой 6.

Шариковый сферический подшипник допускает значительный перекос вала - до 3°. Он имеет сферическую контактную поверхность наружного кольца и шарики, расположенные в два ряда в шахматном порядке. Допускает небольшие осевые нагрузки. Обозначается цифрой 1.

Шариковый упорный подшипник является разборным, воспринимает только осевые нагрузки и не допускает перекоса вала. Обозначается цифрой 8.

Роликовый радиальный подшипник содержит цилиндрические ролики, допускает бьльшую, чем шариковый, радиальную нагрузку, так как ролик контактирует с кольцом по линии, а не в точке. Совершенно не допускает осевой нагрузки и перекоса вала; является разборным, то есть, внешнее кольцо свободно снимается. Обозначается цифрой 2.

Роликовый радиально-упорный (конический) подшипник имеет конические ролики, воспринимает значительные радиальные и осевые нагрузки, причем, чем больше угол конуса, тем больше воспринимаемая осевая нагрузка. Заметим, что при равных диаметрах внутренних колец, роликовый конический подшипник воспринимает большую осевую нагрузку, чем шариковый упорный. Подшипник разборный - наружное кольцо снимается, перекос вала недопустим. Обозначается цифрой 7.

Роликовый сферический подшипник имеет бочкообразные ролики и допускает большую нагрузку, чем шариковый сферический, ввиду того, что радиус кривизны образующей ролика больше, чем радиус шарика. В остальном свойства его такие же, как у шарикового сферического. Обозначается цифрой 3.

Роликовый упорный подшипник содержит конические ролики, поэтому воспринимает большие осевые нагрузки, чем шариковый упорный. Обозначается цифрой 9.

Игольчатые подшипники бывают только радиальными. Тела качения - иголки, то есть цилиндрические ролики, диаметр которых в

5 ч 8 раз меньше их длины. Это дает возможность значительно уменьшить радиальные габариты подшипникового узла. Подшипник разборный, воспринимает только радиальные нагрузки. Используется редко ввиду сложности монтажа и скоростных ограничений. Обозначается цифрой 4.

Игольчатые подшипники с витыми иголками имеют винтовую канавку на поверхности цилиндрических иголок, что способствует их лучшему смазыванию. Обозначаются цифрой 5. (Этот подшипник не передает осевой нагрузки, как это может показаться из таблицы 1).

Кольца и тела качения подшипников изготавливаются из специальных высокопрочных сталей ШХ6, ШХ9 и ШХ15 (шарикоподшипниковые хромистые), после предварительной механической обработки их закаливают до высокой твердости, а затем шлифуют.

Сепараторы в подшипниках служат для разделения и направления тел качения. Большинство сепараторов выполняют штампованными из стальной ленты. В подшипниках, предназначенных для работы при высоких окружных скоростях (> 15 м/с) применяют массивные сепараторы из бронзы, латуни, дюралюминия или пластмассы. Игольчатые подшипники в большинстве случаев не имеют сепараторов.

По нагрузочной способности и габаритам подшипники разделены на 7 серий диаметров и ширин: сверхлегкую (обозначается цифрой 8), особо легкую (цифра 1), легкую (цифра 2), легкую широкую (цифра 5), среднюю (цифра 3), среднюю широкую (цифра 6) и тяжелую (цифра 4).

По точности исполнения различают подшипники пяти классов: 0 - нормальный класс, 6 - повышенный класс, 5 - высокий класс, 4 - особо высокий класс и 2 - сверхвысокий класс. Точность изготовления значительно влияет на стоимость подшипников (таблица 2), что необходимо учитывать при их выборе.

В любом механизме или машине различают два типа подвижных опор: опоры с трением скольжения и опоры с трением качения.
В первом случае происходит взаимное перемещение и взаимодействие рабочих поверхностей вала и корпуса, чаще всего разделённых вкладышем скольжения и смазочными веществами. Работа опоры происходит при чистом скольжении соприкасающихся деталей.

Содержание

1. Виды подшипников. Отличие подшипников качения от подшипников скольжения
2. Подшипники качения. Классификация и устройство подшипников.
3. Основные типы подшипников качения
4. Специальные типы подшипников качения
5. Выбор подшипников качения
6. Посадки подшипников. Конструкции подшипниковых узлов
7. Список литературы

Вложенные файлы: 1 файл

ПК реферат.docx

  1. Виды подшипников. Отличие подшипников качения от подшипников скольжения
  1. Подшипники качения. Классификация и устройство подшипников.
  2. Основные типы подшипников качения
  3. Специальные типы подшипников качения
  4. Выбор подшипников качения
  5. Посадки подшипников. Конструкции подшипниковых узлов
  6. Список литературы

Виды подшипников.

Отличие подшипников качения от подшипников скольжения.

В любом механизме или машине различают два типа подвижных опор: опоры с трением скольжения и опоры с трением качения.

В первом случае происходит взаимное перемещение и взаимодействие рабочих поверхностей вала и корпуса, чаще всего разделённых вкладышем скольжения и смазочными веществами. Работа опоры происходит при чистом скольжении соприкасающихся деталей.

Во втором случае между взаимно подвижными поверхностями закладываются тела качения (шарики или ролики) и работа опоры происходит при трении качения. В этом случае вместо вкладышей из бронзы, баббитов пластиков или других материалов в опорах с трением качения устанавливаются шариковые или роликовые стальные подшипники.

В зависимости от характера нагружения вращающихся опор они называются радиальными, если опора воспринимает радиальные нагрузки, упорными, если опора воспринимает только осевые нагрузки, и радиально-упорными или упорно-радиальными подшипниками (в зависимости от того какие преобладают), если опора воспринимает радиальные и осевые нагрузки одновременно.

Каждый тип опоры характеризуется своими размерами, конструкцией, техническими условиями на изготовление, установку и эксплуатацию.

Подшипники качения и подшипники скольжения по-разному сопротивляются движению и так же по-разному определяют изнашивание элементов подвижных опор и поверхностей деталей машин. Тот или другой тип подшипника выбирается исходя из оценки технико-экономических условий эксплуатации машины или конкретных узлов.

Сравнительные характеристики двух типов подшипников.

Преимущества подшипников качения перед подшипниками скольжения сводятся главным образом к значительно меньшему трению при трогании с места и при малых скоростях движения. Кроме того, подшипники качения имеют меньшие осевые размеры, конструктивно просто позволяют компоновать самоустанавливающиеся опоры, не требуют длительной и трудоёмкой индивидуальной подгонки вкладышей и их приработки, особенно в тех случаях, когда речь идёт о цапфах больших диаметров с высокими нагрузками, скоростями вращения, температурами.

При применении подшипников качения облегчается снабжение узлов машин смазкой, обслуживание и уход, обеспечивается сохранность посадочных поверхностей шеек валов и цилиндров, т.е. для абсолютного большинства опор целлюлозно-бумажного оборудования они имеют весьма большие преимущества.

Однако наряду с преимуществами подшипники качения обладают и рядом недостатков.

Так, крупно- и особокрупногабаритные подшипники, которые широко представлены в целлюлозно-бумажном оборудовании, изготовляются мелкими сериями и имеют весьма высокую стоимость. Подшипники качения уступают подшипникам скольжения по радиальным размерам, весу, жёсткости.

Весьма сложным является выбор подшипников качения при сочетании одновременно действующих высоких нагрузок и скоростей вращения. Известно, что увеличение скорости вращения и нагрузки влечёт за собой снижение долговечности (срока службы) подшипника. Если, например, нагрузка увеличивается на 25% против ранее принятой, то долговечность подшипника сокращается вдвое, а если нагрузка увеличивается вдвое, срок службы уменьшается в 10 раз.

Подшипники качения. Классификация и устройство подшипников

Подшипник качения представляет собой готовый стандартный узел, основными элементами которого являются тела качения – шарики или ролики различной формы, установленные между кольцами – наружным и внутренним. Внутреннее кольцо насаживается на вал или ось, наружное – устанавливается в корпусе механизма. В процессе работы тела качения катятся по беговым дорожкам колец, геометрическая форма которых определяется формой тел качения. Для равномерного распределения тел качения между кольцами служит сепаратор. Основными размерами подшипника качения (рис. 2) являются внутренний и наружный диаметры, ширина. Обычно подвижным является внутреннее кольцо, а наружное – неподвижной деталью. Бывают более сложные по конструкции подшипники, включающие дополнительно защитные шайбы, уплотнения, крепежные втулки и другие элементы.

К достоинствам подшипников качения относятся: малые потери на трение, невысокая стоимость вследствие их массового производства, широчайший диапазон размеров и типов, высокая степень взаимозаменяемости, простота монтажа и обслуживания, малая разница момента трения при пуске и установившемся движении, небольшие осевые размеры.

Недостатками подшипников качения являются сравнительно большие радиальные размеры, высокая чувствительность к ударным и вибрационным нагрузкам из-за жесткости конструкции, значительно меньшая по сравнению с подшипниками скольжения долговечность при больших частотах вращения и больших нагрузках.

По форме тел качения различают шариковые и роликовые подшипники. Последние могут быть с цилиндрическими (а), коническими (б), бочкообразными (в) и игольчатыми (г) роликами (см. рис. 2).

По направлению воспринимаемой нагрузки подшипники бывают радиальные (рис. 3, а), радиально-упорные (рис. 3, б) и упорные (рис. 3, в); по числу рядов тел качения – одно-, двух- и четырехрядные; по способности самоустанавливаться – не- и самоустанавливаемые.

Подшипники с одинаковым диаметром (d) внутреннего кольца подразделяются в зависимости от диаметра наружного кольца на следующие серии: сверхлегкую, особо легкую, легкую, среднюю и тяжелую. В зависимости от ширины кольца (В) подшипники делят на узкие, нормальные, широкие и особо широкие.

Подшипники разных типов, размеров и серий имеют различные грузоподъемность и быстроходность. Подшипники более тяжелых серий менее быстроходны, но имеют более высокую грузоподъемность. Шариковые подшипники имеют большую быстроходность по сравнению с роликовыми подшипниками, однако последние обладают большей грузоподъемностью.

При высокой частоте вращения и действии небольших нагрузок целесообразно использовать подшипники сверхлегкой и особо легкой серий. Для восприятия повышенных нагрузок при высокой частоте вращения используют подшипники легкой серии. Наиболее часто применяют на практике подшипники легкой и средней серий, нормальные по ширине.

Подшипники изготавливаются следующих классов точности в порядке ее повышения: 0 (нормальный), 6 (повышенный), 5 (высокий), 4 (особо высокий), 2 (сверхвысокий).

Выбор класса точности подшипника производится в зависимости от требований, предъявляемых к механизму. Например, подшипники класса 0 используются в механизмах, к точности которых особых требований не предъявляют; подшипники класса 6 применяют в тех случаях, когда потери на трение в опорах должны быть минимальны; классы 5, 4 и 2 предназначены для механизмов, точность которых является основной характеристикой функционирования. Увеличение точности подшипника приводит к росту его стоимости:

Класс точности 0 6 5 4 2
Сравнительная стоимость 1 1,92 10 20 100

Чаще всего используют подшипники нормальной точности – класса 0.

Шариковый радиальный однорядный подшипник (см. рис. 2, а) является наиболее распространенным. Он предназначен для радиальной нагрузки, но может воспринимать и осевую в пределах 70% от неиспользованной радиальной допускает перекос осей колец не более 0,25 ° . При равных габаритных размерах из всех конструкций подшипников качения он имеет минимальные потери на трение и возможность наибольшей скорости вращения. Подшипник обеспечивает осевое фиксирование вала в двух направлениях.

Радиально-упорные подшипники (рис. 3, б) воспринимают радиальную и осевую нагрузку (косозубые, конические и червячные передачи), действующую на вал. Одинарный подшипник может воспринимать чисто осевую нагрузку, действующую в одном направлении. Подшипники, смонтированные попарно, воспринимают осевые усилия, действующие в обоих направлениях.

Шариковые радиальные 2-рядные сферические подшипники могут работать при значительном перекосе до 3 ° осей внутреннего и наружного колец, обладают способностью самоустанавливания оси вала относительно корпуса. Величина осевой нагрузки, действующей одновременно с радиальной, не должна превышать 20% от неиспользованной допустимой радиальной нагрузки.

Тела качения и кольца подшипников качения изготавливают из высокоуглеродистых шарикоподшипниковых хромистых сталей ШХ9, ШХ15 с термообработкой до твердости 60 … 65 HRCэ и последующим шлифованием и полированием, в некоторых случаях используют стали других марок (нержавеющие, жаропрочные и др.); сепараторы делают из низкоуглеродистой мягкой листовой стали, массивные сепараторы – из бронзы, латуни, алюминиевых и магниевых сплавов, пластмасс. При антикоррозионных и антимагнитных требованиях детали подшипников выполняются из беррилиевой бронзы БрБ-2, нержавеющих немагнитных сталей.

Подшипники качения (рис. 1) представляют собой готовый узел, основными элементами которого являются тела качения – шарики 2 или ролики, установленные между кольцами 1 и 3 и удерживаемые на определенном расстоянии друг от друга сепаратором 4.

Сепаратор служит для направления и удержания тел качения в определенном положении (для обеспечения соосности колец) и для разделения тел качения от их взаимного контакта с целью уменьшения изнашивания и уменьшения потерь на трение.

подшипники качения

Внешнее и внутреннее кольца подшипника (или, как их еще называют – обоймы) имеют на рабочей поверхности желобки – дорожки качения, по которым и перекатываются тела качения. Форма колец подшипников качения (наружных и внутренних) определяет угол контакта тел качения с дорожкой качения и, соответственно, влияет на величину осевой или радиальной грузоподъёмности подшипника.

Распределение радиальной нагрузки между телами качения, находящимися в нагруженной зоне (ограниченной дугой не более 180˚), неравномерно (рис. 2) вследствие контактных деформаций колец и различных тел качения. На размер зоны нагружения и неравномерность распределения нагрузки оказывают влияние величина радиального зазора в подшипнике и жесткость корпуса.

В отдельных случаях для уменьшения радиальных размеров подшипник применяют без колец (рис. 3) и тела качения катятся по дорожкам качения, образованным непосредственно на цапфе и в корпусе (в блоке зубчатых колес). Твердость, точность и шероховатость поверхности дорожек качения в этом случае должны быть такими же, как у подшипниковых колец (обойм). Такие игольчатые подшипники могут применяться без сепаратора (а) или с сепаратором (б).

типы подшипников качения

Подшипники качения стандартизированы и широко распространены во всех отраслях машиностроения. Их изготовляют в больших количествах на специализированных подшипниковых заводах, которые организованы во многих городах России и других стран.

Достоинства и недостатки подшипников качения

По сравнению с подшипниками скольжения подшипники качения обладают рядом положительных свойств и преимуществ:

  • Сравнительно малая стоимость благодаря возможности стандартизации и массового производства.
  • Небольшие потери на трение и незначительный нагрев при работе, при этом потери на трение в момент пуска и в рабочем режиме практически не отличаются.
  • Полная взаимозаменяемость, что облегчает монтаж и ремонт машин и механизмов.
  • Небольшой расход дефицитных цветных материалов по сравнению с подшипниками скольжения, в конструкции которых обычно применяются медесодержащие сплавы и цветные металлы.
  • Незначительный расход смазочного материала во время эксплуатации.
  • Малые осевые размеры, простота монтажа и эксплуатации.

Не лишены подшипники качения и недостатков:

  • Относительно большие радиальные размеры.
  • Высокая чувствительность к ударным и вибрационным нагрузкам.
  • Большое сопротивление вращению, шум и низкая долговечность при высоких частотах вращения.
  • Повышенный шум из-за циклического перекатывания тел вращения через нагруженную зону подшипника (рис. 2).
  • Более сложная конструкция по сравнению с подшипниками скольжения.

Область применения подшипников качения

Подшипники качения являются основным видом опор в машинах (автомобилях, сельскохозяйственной, дорожной и военной технике, самолетах, станках и т. п.). Так, в одном автомобиле может применяться более 120 типоразмеров подшипников качения, в самолете их количество может превышать 1000 шт. При этом надежность и долговечность подшипников во многом определяют ресурс машины или механизма.

Классификация подшипников качения

Подшипники качения классифицируют по следующим основным признакам:

По форме тел качения (рис. 4) – шариковые и роликовые, причем последние могут быть с цилиндрическими, коническими, бочкообразными, игольчатыми и витыми роликами. Применяют и тела качения сложной геометрической формы (рис. 4,а).

классификация подшипников качения
тела качения подшипников

По направлению воспринимаемой нагрузки – радиальные, радиально-упорные, упорные и упорно-радиальные. Деление подшипников в зависимости от направления воспринимаемой нагрузки носит в ряде случаев условный характер. Например, широко распространенный шариковый радиальный однорядный подшипник успешно применяют для восприятия не только радиальной или комбинированной, но и чисто осевой нагрузки, а упорно-радиальные подшипники обычно используют только для восприятия осевых нагрузок.

По числу рядов тел качения – одно-, двух- и четырехрядные.

По основному конструктивному признаку – самоустанавливающиеся (например, сферические самоустанавливающиеся при угловом смещении осей вала и отверстия в корпусе) и несамоустанавливающиеся; с цилиндрическим или конусным отверстием внутреннего кольца (обоймы), сдвоенные и др.

Кроме основных подшипников каждого типа изготавливают их конструктивные разновидности (модификации).

Условные обозначения и маркировка подшипников качения

обозначение и маркировка подшипников качения

Условное обозначение подшипника обычно наносится на торцевую поверхность внешнего или/и внутреннего кольца (см. рисунок).

Основное условное обозначение может быть составлено из семи цифр, условно обозначающих внутренний диаметр подшипника, размерную серию, тип, конструктивные особенности и др. Нули, стоящие левее последней значащей цифры, не проставляют. В этом случае число цифр в условном обозначении может быть меньше семи, например: 7206.

Две первые цифры справа обозначают диаметр d отверстия внутреннего кольца подшипника. Для подшипников с внутренним диаметром d = 20…495 мм размер внутреннего диаметра определяется умножением указанных двух цифр на 5. Так, подшипник 7206 имеет диаметр внутреннего кольца d = 30 мм (06×5).

Третья цифра справа обозначает серию диаметров и совместно с седьмой цифрой, обозначающей серию ширин, определяет размерную серию подшипника, т. е. условно характеризует его внешние габариты. В порядке увеличения наружного диаметра подшипника (при одном и том же внутреннем диаметре d) серии бывают: особо легкая – 1, легкая – 2, средняя – 3, тяжелая – 4 и др. Так, подшипник 7206 – легкой серии диаметров 2.

Четвертая цифра справа обозначает тип подшипника:

  • 0 - Шариковый радиальный
  • 1 – Шариковый радиальный сферический двухрядный
  • 2 – Роликовый радиальный с короткими цилиндрическими роликами
  • 3 – Роликовый радиальный сферический двухрядный
  • 4 – Роликовый радиальный игольчатый однорядный
  • 5 – Роликовый радиальный с витыми роликами
  • 6 – Шариковый радиально-упорный однорядный
  • 7 – Роликовый конический
  • 8 – Шариковый упорный, шариковый упорно-радиальный
  • 9 – Роликовый упорный, роликовый упорно-радиальный

Приведенный выше в качестве примера подшипник 7206 является роликовым коническим.

Пятая и шестая цифры справа обозначают отклонение конструкции подшипника от основного (базового) типа. Например, подшипник 7206 основной конструкции пятой цифры в обозначении не имеет, а аналогичный подшипник с упорным бортом на наружном кольце имеет обозначение 67206.

Седьмая цифра справа обозначает серию подшипника по ширине. В порядке увеличения ширины подшипника (при одних и тех же наружном и внутреннем диаметрах) серии по ширине бывают 0, 1, 2, 3 и др.

Кроме цифр основного обозначения справа и слева от него могут быть нанесены дополнительные буквенные или цифровые знаки, характеризующие специальные условия изготовления данного подшипника.

Так, класс точности подшипника маркируется цифрой слева от основного обозначения через тире (дефис). В порядке повышения классы точности обозначают: 0, 6, 5, 4, 2. Класс точности, обозначаемый цифрой 0 и соответствующий нормальной точности, не проставляют.
В общем машиностроении применяют подшипники классов 0 и 6. В изделиях высокой точности или работающих с высокой частотой вращения (высокооборотные электродвигатели, шпиндели скоростных станков и т. п.) применяют подшипники классов 5 и 4. Приведенный в нашем примере подшипник 7206 имеет класс точности 0.
Помимо приведенных выше имеются и дополнительные (более высокие и низкие) классы точности.

В зависимости от наличия дополнительных требований к уровню вибраций, отклонениям формы и расположения поверхностей качения, моменту трения и другим параметрам установлены три категории подшипников:
А – повышенные регламентированные нормы;
В – регламентированные нормы;
С – без дополнительных требований.
Знак категории указывают слева от обозначения класса точности.

Возможные знаки справа от основного обозначения:
Е – сепаратор выполнен из пластических материалов;
Р – детали подшипника из теплопроводных сталей;
С – подшипник закрытого типа, заполненный смазочным материалом и др.

Примеры обозначений подшипников:

311 – подшипник шариковый радиальный однорядный средней серии диаметров 3, серии по ширине 0, с внутренним диаметром 55 мм, основной конструкции класса точности 0.

6-36209 – подшипник шариковый радиально-упорный однорядный, легкой серии диаметров 2, серии по ширине 0, с внутренним диаметром 45 мм, с углом контакта α = 12˚, класса точности 0.

4-12210 – подшипник роликовый однорядный с короткими цилиндрическими роликами, легкой серии диаметров 2, серии по ширине 0, с внутренним диаметром 50 мм, с одним бортом на наружном кольце, класса точности 4.

4- 3003124Р – подшипник роликовый радиальный сферический двухрядный особо легкой серии диаметров 1, серии по ширине 3, с внутренним диаметром 120 мм, основной конструкции, класса точности 4, детали подшипника изготовлены из теплостойких сталей.

Читайте также: