Реферат на тему основные тригонометрические формулы

Обновлено: 18.05.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

. Стадии развития тригонометрии

.1 Свойства функции синус

.2 Свойства функции косинус

.3 Свойства функции тангенс

.4 Свойства функции котангенс

.1 Теорема синусов

.2 Теорема косинусов

.3 Теорема тангенсов

. Решение простых тригонометрических уравнений

. Применение тригонометрических вычислений

Список используемых источников ВведениеТригонометрия (от греч. τρίγονο (треугольник ) и греч. μετρειν (измерять), то есть измерение треугольников) - раздел математики , в котором изучаются тригонометрические функции и их использование в геометрии . Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса (1561-1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии (науке, исследующей размеры и форму Земли). Еще в Древней Греции использовалась техника хорд для измерений и построений, связанных с измерением дуг окружности. Еще в трудах Евклида и Архимеда теоремы были представлены в геометрическом виде, аналогичном современным тригонометрическим формулам.

1. Стадии развития тригонометрии

тригонометрия синус косинус тангенс

1. Тригонометрия была вызвана к жизни в раннюю пору разумной деятельности людей, необходимостью производить измерения углов.

. Первыми шагами тригонометрии было установление связей между величиной угла и отношением специально построенных отрезков прямых. Непосредственным результатом этого было то, что стало возможным решать плоские треугольники главным образом с целью определения расстояний до удаленных или недоступных объектов.

. В интересах практической астрономии и географических исследований были получены аналогичные результаты для треугольников на сферических поверхностях. С тех пор плоская и сферическая тригонометрии развивались как неотъемлемые части единой науки.

. Измерительный характер задач тригонометрии при массовом их повторении приводил к настоятельной необходимости табулировать значения вводимых тригонометрических функций.

. По мере оформления представлений о тригонометрических функциях они превращались в самостоятельные объекты исследований, т. е. собственно в функции, объекты, обладающие самостоятельным значением и своими особыми свойствами.

. В начале XVI в. были установлены взаимные интерпретации между решениями определенного класса неприводимых алгебраических уравнений и задачами о делении угла, тем самым положено начало установлению связей между алгеброй и тригонометрией.

. В XVIII в. тригонометрические функции были включены в систему математического анализа в качестве одного из классов аналитических функций. Почти одновременно тригонометрия получила широкие обобщения в геометрическом плане.

В наше время современные школьники должны уметь и выполнять следующие задачи:

. Определять синус, косинус, тангенс и котангенс числа. Знать формулы основных тригонометрических тождеств.

. Вычислять значения тригонометрических функций по известному значению одной из них, выполнять преобразования тригонометрических

Сущность и стадии развития тригонометрии. Свойства функции синус, косинус, тангенс, котангенс. Решение простых тригонометрических уравнений. Формула Эйлера как связь между математическим анализом и тригонометрией. Применение тригонометрических вычислений.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 15.06.2014
Размер файла 648,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Стадии развития тригонометрии

2. Основы тригонометрии

2.1 Свойства функции синус

2.2 Свойства функции косинус

2.3 Свойства функции тангенс

2.4 Свойства функции котангенс

3. Стандартные тождества

3.1 Теорема синусов

3.2 Теорема косинусов

3.3 Теорема тангенсов

4. Формула Эйлера

5. Решение простых тригонометрических уравнений

6. Тригонометрические формулы

7. Сферическая тригонометрия

8. Применение тригонометрических вычислений

Список используемых источников

Тригонометрия (от греч. фсЯгпнп (треугольник) и греч. мефсейн (измерять), то есть измерение треугольников) -- раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса (1561--1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии (науке, исследующей размеры и форму Земли). Еще в Древней Греции использовалась техника хорд для измерений и построений, связанных с измерением дуг окружности. Еще в трудах Евклида и Архимеда теоремы были представлены в геометрическом виде, аналогичном современным тригонометрическим формулам.

1. Стадии развития тригонометрии

тригонометрия синус косинус тангенс

1. Тригонометрия была вызвана к жизни в раннюю пору разумной деятельности людей, необходимостью производить измерения углов.

2. Первыми шагами тригонометрии было установление связей между величиной угла и отношением специально построенных отрезков прямых. Непосредственным результатом этого было то, что стало возможным решать плоские треугольники главным образом с целью определения расстояний до удаленных или недоступных объектов.

3. В интересах практической астрономии и географических исследований были получены аналогичные результаты для треугольников на сферических поверхностях. С тех пор плоская и сферическая тригонометрии развивались как неотъемлемые части единой науки.

4. Измерительный характер задач тригонометрии при массовом их повторении приводил к настоятельной необходимости табулировать значения вводимых тригонометрических функций.

5. По мере оформления представлений о тригонометрических функциях они превращались в самостоятельные объекты исследований, т. е. собственно в функции, объекты, обладающие самостоятельным значением и своими особыми свойствами.

6. В начале XVI в. были установлены взаимные интерпретации между решениями определенного класса неприводимых алгебраических уравнений и задачами о делении угла, тем самым положено начало установлению связей между алгеброй и тригонометрией.

7. В XVIII в. тригонометрические функции были включены в систему математического анализа в качестве одного из классов аналитических функций. Почти одновременно тригонометрия получила широкие обобщения в геометрическом плане.

В наше время современные школьники должны уметь и выполнять следующие задачи:

1. Определять синус, косинус, тангенс и котангенс числа. Знать формулы основных тригонометрических тождеств.

2. Вычислять значения тригонометрических функций по известному значению одной из них, выполнять преобразования тригонометрических выражений.

3. Применять основные формулы тригонометрии при преобразовании тригонометрических выражений. Проводить практические расчёты по формулам содержащим тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства. используя при необходимости справочные материалы и простейшие вычислительные устройства.

4. Знать формулы приведения. Формулы синуса суммы и разности двух углов и косинуса суммы и разности двух углов. Формулы синуса, косинуса, тангенса суммы и разности двух углов.

5. Знать тригонометрические функции, их свойства и графики. Чётность, нечётность, периодичность, ограниченность.

6. Определять арксинус, арккосинус и арктангенс числа.Уметь решать простейшие тригонометрические уравнения и неравенства.

7. Решать тригонометрические уравнения методом группировки и разложения на множители. Решать тригонометрические уравнения, приводимые к квадратному.

8. Решать простейшие тригонометрические неравенств.

2. Основы тригонометрии

Вот одни из самых основных понятий и правил тригонометрии:

Основы тригонометрии: тригонометрический круг, синус (sin), косинус (cos), тангенс (tg), котангенс (ctg) угла. Основное тригонометрическое тождество.

Синусом острого угла в прямоугольном треугольнике называется отношение катета этого треугольника, лежащего против угла, к гипотенузе треугольника.

Тригонометрические функции угла и внутри единичной окружности

Косинусом острого угла б в прямоугольном треугольнике называется отношение катета, прилежащего к углуб, к гипотенузе треугольника.

Радианной мерой угла называется отношение длины дуги окружности, заключенной между сторонами угла ис центром в вершине угла, к радиусу этой окружности.

Тангенсом острого угла в прямоугольном треугольнике называется отношение катета этого треугольника,лежащего против угла, к катету треугольника, прилежащему к углу.

Первоначально тригонометрические функции были связаны с соотношениями сторон в прямоугольном треугольнике. Их единственным аргументом является угол (один из острых углов этого треугольника).

· Синус -- отношение противолежащего катета к гипотенузе.

· Косинус -- отношение прилежащего катета к гипотенузе.

· Тангенс -- отношение противолежащего катета к прилежащему.

· Котангенс -- отношение прилежащего катета к противолежащему.

· Секанс -- отношение гипотенузы к прилежащему катету.

· Косеканс -- отношение гипотенузы к противолежащему катету.

Данные определения позволяют вычислить значения функций для острых углов, то есть от 0° до 90° (от 0 до радиан). В XVIII веке Леонард Эйлер дал современные, более общие определения, расширив область определения этих функций на всю числовую ось. Рассмотрим в прямоугольной системе координатокружность единичного радиуса (см. рисунок) и отложим от горизонтальной оси угол (если величина угла положительна, то откладываем против часовой стрелки, иначе по часовой стрелке). Точку пересечения построенной стороны угла с окружностью обозначим A. Тогда:

· Синус угла определяется как ордината точки A.

· Косинус -- абсцисса точки A.

· Тангенс -- отношение синуса к косинусу.

· Котангенс -- отношение косинуса к синусу (то есть величина, обратная тангенсу).

· Секанс -- величина, обратная косинусу.

· Косеканс -- величина, обратная синусу.

Для острых углов новые определения совпадают с прежними.

Возможно также чисто аналитическое определение этих функций, которое не связано с геометрией и представляет каждую функцию её разложением в бесконечный ряд.

2.1 Свойства функции синус

Синус

1. Область определения функции -- множество всех действительных чисел: .

2. Множество значений -- промежуток [?1; 1]: = [?1;1].

3. Функция является нечётной: .

4. Функция периодическая, наименьший положительный период равен : .

5. График функции пересекает ось Ох при .

6. Промежутки знакопостоянства: при и при .

7. Функция непрерывна и имеет производную при любом значении аргумента:

8. Функция возрастает при , и убывает при .

9. Функция имеет минимум при и максимум при .

2.2 Свойства функции косинус

Косинус

1. Область определения функции -- множество всех действительных чисел: .

2. Множество значений -- промежуток [?1; 1]: = [?1;1].

3. Функция является чётной: .

4. Функция периодическая, наименьший положительный период равен : .

5. График функции пересекает ось Ох при .

6. Промежутки знакопостоянства: при и при

7. Функция непрерывна и имеет производную при любом значении аргумента:

8. Функция возрастает при и убывает при

9. Функция имеет минимум при и максимум при

1. 2.3 Свойства функции тангенс

Тангенс

1. Область определения функции -- множество всех действительных чисел: , кроме чисел

2. Множество значений -- множество всех действительных чисел:

3. Функция является нечётной: .

4. Функция периодическая, наименьший положительный период равен : .

5. График функции пересекает ось Ох при .

6. Промежутки знакопостоянства: при и при .

7. Функция непрерывна и имеет производную при любом значении аргумента из области определения:

8. Функция возрастает при .

2.4 Свойства функции котангенс

Котангенс

1. Область определения функции -- множество всех действительных чисел: кроме чисел

2. Множество значений -- множество всех действительных чисел:

3. Функция является нечётной:

4. Функция периодическая, наименьший положительный период равен :

5. График функции пересекает ось Ох при

6. Промежутки знакопостоянства: при и при

7. Функция непрерывна и имеет производную при любом значении аргумента из области определения:

8. Функция убывает при

3. Стандартные тождества

Тождества -- это равенства, справедливые при любых значениях входящих в них переменных.

Формулы преобразования суммы углов. Общие формулы

Треугольник со сторонами a, b, c и соответственно противоположные углами A, B, C. В следующих тождествах, A, B и C являются углами треугольника; a, b, c -- длины сторон треугольника, лежащие напротив соответствующих углов.

3.1 Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов. Для произвольного треугольника

где -- радиус окружности, описанной вокруг треугольника.

3.2 Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. Для плоского треугольника со сторонами и углом , противолежащим стороне ,

3.3 Теорема тангенсов 4. Формула Эйлера

Формула Эйлера утверждает, что для любого действительного числа выполнено следующее равенство:

где -- основание натурального логарифма, -- мнимая единица.

Формула Эйлера предоставляет связь между математическим анализом и тригонометрией, а также позволяет интерпретировать функции синуса и косинуса как взвешенные суммы экспоненциальной функции:

Вышеуказанные уравнения могут быть получены путем сложения или вычитания формул Эйлера:

с последующим решением относительно синуса или косинуса.

Также эти формулы могут служить определением тригонометрических функций комплексной переменной. Например, выполняя подстановку x = iy, получаем:

5. Решение простых тригонометрических уравнений

Если -- вещественных решений нет.

Если -- решением является число вида

Если -- вещественных решений нет.

Если -- решением является число вида

Решением является число вида

Решением является число вида

6. Тригонометрические формулы

Основные тригонометрические тождества.

sinІ б + cosІ б = 1

tg б = sin б ч cos б

ctg б = cos б ч sin б

1 + tgІ б = 1 ч cosІ б

1 + ctgІ б = 1 ч sinІ б

sin (б + в) = sin б · cos в + sin в · cos б

sin (б - в) = sin б · cos в - sin в · cos б

cos (б + в) = cos б · cos в - sin б · sin в

cos (б - в) = cos б · cos в + sin б · sin в

tg (б + в) = (tg б + tg в) ч (1 - tg б · tg в)

tg (б - в) = (tg б - tg в) ч (1 + tg б · tg в)

ctg (б + в) = (ctg б · ctg в + 1) ч (ctg в - ctg б)

ctg (б - в) = (ctg б · ctg в - 1) ч (ctg в + ctg б)

Формулы двойного угла.

cos 2б = cosІ б - sinІ б

cos 2б = 2cosІ б - 1

cos 2б = 1 - 2sinІ б

sin 2б = 2sin б · cos б

tg 2б = (2tg б) ч (1 - tgІ б)

ctg 2б = (ctgІ б - 1) ч (2ctg б)

Формулы тройного угла.

sin 3б = 3sin б - 4sinі б

cos 3б = 4cosі б - 3cos б

tg 3б = (3tg б - tgі б) ч (1 - 3tgІ б)

ctg 3б = (3ctg б - ctgі б) ч (1 - 3ctgІ б)

Формулы понижения степени.

sinІ б = (1 - cos 2б) ч 2

sinі б = (3sin б - sin 3б) ч 4

cosІ б = (1 + cos 2б) ч 2

cosі б = (3cos б + cos 3б) ч 4

sinІ б · cosІ б = (1 - cos 4б) ч 8

sinі б · cosі б = (3sin 2б - sin 6б) ч 32

Переход от произведения к сумме.

sin б · cos в = Ѕ (sin (б + в) + sin (б - в))

sin б · sin в = Ѕ (cos (б - в) - cos (б + в))

cos б · cos в = Ѕ (cos (б - в) + cos (б + в))

Переход от суммы к произведению.

7. Сферическая тригонометрия

Важным частным разделом тригонометрии, используемым в астрономии, геодезии, навигации и других отраслях, является сферическая тригонометрия, рассматривающая свойства углов между большими кругами на сфере и дуг этих больших кругов. Геометрия сферы существенно отличается от евклидовой планиметрии; так, сумма углов сферического треугольника, вообще говоря, отличается от 180°, треугольник может состоять из трёх прямых углов. В сферической тригонометрии длины сторон треугольника (дуги больших кругов сферы) выражаются посредством центральных углов, соответствующих этим дугам. Поэтому, например, сферическая теорема синусов выражается в виде:

и существуют две теоремы косинусов, двойственные друг другу.

8. Применение тригонометрических вычислений

Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёздв астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Существует множество областей, в которых применяются тригонометрия и тригонометрические функции. Например, метод триангуляции используется в астрономии для измерения расстояния до ближайших звезд, в географии для измерения расстояний между объектами, а также в спутниковых навигационных системах. Синус и косинус имеют фундаментальное значение для теории периодических функций, например при описании звуковых и световых волн.

Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов, когда требуется сферическая тригонометрия), в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятностей, в статистике, в биологии, в медицинской визуализации (например, компьютерная томография и ультразвук), в аптеках, в химии, в теории чисел (следовательно, и в криптологии), в сейсмологии, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Пример применения тригонометрии

Секстант -- навигационный измерительный инструмент, используемый для измерения высоты светила над горизонтом с целью определения географических координат той местности, в которой производится измерение.

Список используемых источников

1.Инженерная математика: Джон Берд -- Москва, Додэка XXI, 2008 г.- 544 с. 2.Сферическая тригонометрия: П. Кранц -- Санкт-Петербург, ЛКИ, 2007 г.- 100 с.

5.Башмаков М.И. Алгебра и начала анализа. 10-11. Учебное пособие для 10-11 классов средней школы. М.Просвещение,1998.-335 с.: ил

Подобные документы

Обозначение основных тригонометрических терминов: радианная и градусная мера угла, синус, косинус, тангенс, котангенс. Область определения функций и построение их графиков. Выведение формул сложения, суммы, разности и двойного аргумента функций.

презентация [229,3 K], добавлен 13.12.2011

История развития тригонометрии, характеристика ее основных понятий и формул. Общие вопросы, цели изучения и способы определения тригонометрических функций числового аргумента в школьном курсе. Рекомендации и методы решения тригонометрических уравнений.

курсовая работа [257,7 K], добавлен 19.10.2011

Характеристика тригонометрических понятий. Свойства тригонометрических функций, особенности их практического применения в электротехнике. Исследование электрических сигналов путем визуального наблюдения графика сигнала на экране с помощью осциллографа.

презентация [287,9 K], добавлен 28.05.2016

Углы и их измерение, тригонометрические функции острого угла. Свойства и знаки тригонометрических функций. Четные и нечетные функции. Обратные тригонометрические функции. Решение простейших тригонометрических уравнений и неравенств с помощью формул.

учебное пособие [876,9 K], добавлен 30.12.2009

Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

дипломная работа [1,9 M], добавлен 06.05.2010

Элементарные функции, их анализ. Линейная функция. Квадратичная функция. Степенная функция. Показательная функция (экспонента). Логарифмическая функция. Тригонометрическая функция: синус, косинус, тангенс, котангенс. Обратная функция: аrcsin x, аrctg x.

реферат [325,7 K], добавлен 17.02.2008

Исторический обзор формирования тригонометрии как науки от древности до наших дней. Введение понятия тригонометрических функций на уроках алгебры и начал анализа по учебникам А.Г. Мордковича, М.И. Башмакова. Решения линейных дифференциальных уравнений.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Кафедра математики и методики обучения математике

ПО ИЗБРАННЫМ ВОПРОСАМ ЭЛЕМЕНТАРНОЙ МАТЕМАТИКЕ

Тригонометрические функции в школьном курсе математики

Студентка 2 курса группы МДМ-214 ______________________________М.В. Краснова

1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале……………………………………………………….4

2. Методика введения определений тригонометрических функций углов……7

Список использованной литературы…………………………………………. 25

Решение задач является важнейшим видом учебной деятельности, в процессе которой учащимися усваивается математическая теория и развиваются логическое мышление и творческие способности, а особенно при решении тригонометрических задач.

Тригонометрические задачи одна из самых сложных тем в школьном курсе математики. Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях.

Все выше сказанное является актуальностью реферата

Цель реферата – тригонометрические функции в школьном курсе математики

Задачи реферата:

- Дать понятие тригонометрических функций

- Провести анализ тригонометрических функций в школьном курсе математики

Предмет реферата: математика

Объект реферата : тригонометрические функции

Реферат написан из введения, основных глав, заключения и списка использованной литературы

Основная часть

1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале

Знакомство с тригонометрическим материалом начинается в курсе геометрии при знакомстве с прямоугольным треугольником. Понятия , и острых углов треугольника вводится для углов от до , как отношение сторон этого треугольника. Предварительно учащиеся должны усвоить названия сторон прямоугольного треугольника: катеты (стороны прямого угла) и гипотенуза (сторона противолежащая прямому углу). Для этого необходимо предложить учащимся прямоугольные треугольники, разнообразные по расположению вершин прямого угла и предложить назвать стороны треугольника.


Назовите катеты в ABC , APN . Назовите гипотенузы в LKM и EFA . Будут ли гипотенузами следующие отрезки: AB , KL , AP , AN , EF , FA в указанных треугольниках и почему?

Следующие выражения "прилежащий" и "противолежащий" отрабатываются на следующем этапе. Для этого необходимо по указанным треугольникам предложить учащимся назвать прилежащие и противолежащие острым углам катеты. Назвать отрезки: KL , PN , EA и попросить учащихся назвать те углы, против которых лежат эти катеты или, которым они прилегают.

Первым вводится понятие угла и доказывается теорема: " Косинус угла зависит от градусной меры угла и не зависит от расположения и размеров треугольника". Это определение уже " работает" при доказательстве теоремы Пифагора.

С остальными понятиями учащиеся знакомятся в пункте " Соотношения между сторонами и углами в прямоугольном треугольнике". sin , tg


Формируется свойство: синус и тангенс угла так же, как и косинус, зависят от величины угла.

Для синуса это доказывается так:

так как косинус зависит только от величины угла, то и синус зависит только от величины угла.

Из определений , и получаем следующие правила:

· Катет, противолежащий углу , равен произведению гипотенузы на синус ;

· Катет, прилежащий к углу , равен произведению гипотенузы на косинус ;

· Катет, противолежащий углу , равен произведению второго катета на тангенс .

По этим правилам можно находить неизвестные элементы в прямоугольном треугольнике.

Перечисленные правила могут быть выведены учащимися самостоятельно. Для этого предлагаются вопросы: В прямоугольном треугольнике MNP , LN = , LM = , гипотенуза MP = m . Найти длины катетов этого треугольника. ( Задача решается по определению).

Раньше по программе тригонометрические функции и соотношения между углами и сторонами в прямоугольном треугольнике изучались в курсе 8 класса.

После введения понятий , и рассматривались решения основных задач, связанных с отысканием длин сторон и величин углов в прямоугольном треугольнике.

Задача №1. Дано: a , b . Требуется найти A , B , c .

Задача №2. Дано: a , c . Требуется найти A , B , b .

Задача №3. Дано: a , A . Требуется найти A , b , c .

Задача №4. Дано: a , B . Требуется найти A , b , c .

Задача №5. Дано: a , A . Требуется найти B , a , b .

По действующей программе эти задачи в курсе 8 класса (бывший 7 класс) заменены такой: В прямоугольном треугольнике даны: гипотенуза c и острый угол . Найдите катеты, их проекции на гипотенузу и высоту, опущенную на гипотенузу.

Вводятся основные тригонометрические тождества:

В частности, основное тригонометрическое тождество выводится из формулировки теоремы Пифагора:

Учащиеся знакомятся с некоторыми свойствами функций острого угла: 1) при возрастании острого угла и возрастают, а - убывает; 2) для любого острого угла : , ; которые формулируются как теоремы. Их доказательство связывается с соотношениями острых углов в прямоугольном треугольнике:


тогда из равенства правых частей получаем:

Вывод свойства возрастания и убывания выглядит так:


Пусть и - острые углы, и , и она пересекает стороны углов и в точках и соответственно.

Так как , то точка лежит между точками и , тогда . А значит, по свойству наклонных, (через сравнение их проекций). Так как , , то косинус убывает. А так как , то синус возрастает.

Расширение области определения тригонометрических функций от до происходит в теме: "Декартовы координаты на плоскости".


Рассмотрим окружность с центром в начале координат произвольного радиуса R . Откладываем в полуплоскость угол . Пусть точка имеет координаты и . , , то из треугольника : , .

Определяются значения и этими формулами для любого угла α (для 0 -исключается).


Можно найти значения этих функций для углов 90 0 , 0 0 , 180 0 . Доказывается, что для любого угла α , 0 0 α 0 , .

повернем подвижный радиус на угол 180 0 - α =

по гипотенузе и острому углу: => OB 1 = OB ; A 1 B 1 = AB => x = - x 1 , y = y 1 =>

Итак, в школьном курсе геометрии понятие тригонометрической функции вводится геометрическими средствами ввиду их большей доступности.

Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 0 0 до 180 0 ; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.

Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin , решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".

Конкретизировать, например, понятие cos острого угла прямоугольного треугольника, можно по следующей методической схеме:

1) построить на миллиметровой бумаге прямоугольный треугольник ABC ;

2) обозначить величину острого угла А буквой α ;

3) измерить (по клеткам) прилежащий катет АС и гипотенузу АВ;

4) вычислить отношение

5) записать значение cos α (делается следующая запись cos α ≈ в которой для α не указывается его конкретное значение);

6) измерить транспортиром угол α , найти его величину и записать значение косинуса этого угла данного прямоугольного треугольника.

Определенные трудности в изучение элементов тригонометрии (по Пифагору) порождает теорема: "Косинус угла α зависит только от градусной меры угла". Необходимость изучения данной теоремы можно разъяснить учащемуся так: Пусть требуется на основании определения найти cos 37 0 . Предположим, что это задание выполняют отдельно друг от друга несколько человек. Чтобы найти cos 37 0 , они построят прямоугольный треугольник (каждый свой) с углом в 37 0 , измерят прилежащий катет и гипотенузу, найдут отношение прилежащего катета к гипотенузе. Полученное число и будет являться cos 37 0 . Есть ли гарантия, что каждый ученик получит один и тот же ответ? Этот вопрос возникает по той причине, что каждый строит свой треугольник, получает свои значения длин прилежащего катета и гипотенузы. Так, может быть, и искомое отношение у каждого ученика будет какое-то свое? Понятно, что если бы значение cos 37 0 при переходе от одного прямоугольного треугольника к другому изменялось, то ценность такого понятия в математике была бы не велика. Изучаемая терема является ответом на поставленные вопросы. Она утверждает, что косинус острого угла зависит не от выбора прямоугольного треугольника, а только от меры угла.

При решении прямоугольных треугольников необходимо обратить внимание учащегося на тот факт, что с каждой из формул для cos , sin и tg α связывается еще две формулы:

Определение cos , sin , tg углов от 0 0 до 180 0 являются генетическими, т.к. в них указываются построения и вычисления, позволяющие найти значение тригонометрической функции.

В пособие говорится следующее (стр. 132, 1, 2 абзац), обратите внимание учащихся на следующее обстоятельство. Ранее для острых углов были установлены некоторые тригонометрические тождества. "Справедливы ли эти тождества для углов от 0 0 до 180 0 . Справедливы ли прежние доказательства этих тождеств или необходимо привести новые?"

Сравним доказательства основного тригонометрического тождества: для острых углов и для углов от 0 0 до 180 0 :

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Я заинтересовался этой темой, потому что хотел узнать больше о тригонометрии и особенно о ее истории.

Я поставил перед собой цель: определить на основе отобранного материала, где тригонометрия, за исключением школьного курса, встречается в решении проблем и идентичностей.

Прочитав литературу, я узнал, что тригонометрические вычисления используются практически во всех областях геометрии, физики и технологии. Большое значение имеет метод триангуляции, который может быть использован для измерения расстояний до далеких звезд в астрономии, между географическими достопримечательностями для управления спутниковыми навигационными системами.

Также стоит отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансового рынка, электроника, теория вероятности, статистика, биология, медицина (в том числе ультразвук и компьютерная томография), фармация, химия, теория чисел (и), как следствие криптографии), сейсмологии, метеорологии, океанографии, картографии, многих областях физики, топографии и геодезии, архитектуры, фонетики, экономики, электротехники, машиностроения, компьютерной графики, кристаллографии, а также я узнал много нового, чего раньше не знал.

По истории тригонометрии

Тригонометрия — греческое слово и буквально означает измерение треугольников (Триггунон — треугольник и измерение Метрю).

В этом случае под измерением треугольников следует понимать треугольное решение, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, но также и задачи планаметрии, стереометрии, астрономии и другие даны задачам решения треугольников.

Появление тригонометрии связано с астрономией и строительством.

Хотя название науки появилось сравнительно недавно, многие понятия и факты, связанные с тригонометрией, были известны уже две тысячи лет назад.

Решения для треугольников, основанные на зависимостях между сторонами и углами треугольника, были впервые найдены древнегреческими астрономами Гиппархом (II в. до н.э.) и Клавдием Птолемеем (II в. н.э.). Позже отношения между сторонами треугольника и его углами стали называться тригонометрическими функциями.

В долгой истории существует понятие синуса. Фактически, различные соотношения сечений треугольника и круга (а по существу, и тригонометрические функции) встречаются уже в III в. до н.э. в трудах великих математиков Древней Греции — Евклида, Архимеда, Аполлонии Пергусской. В римский период эти отношения систематически изучались Менелаем (I в. н.э.), хотя конкретное название им не давалось. Современный синус a, например, изучался как полуаккорд, на котором центральный угол лежит в размере a, или как двухдуговой аккорд.

Уже в IV-V веке в астрономических трудах великого индийского ученого Ариабхаты, чье имя было дано первому индийскому спутнику Земли, существовал особый термин. Он назвал отрезок АМ (рис. 1) аргаджива (арга — половина, джива — луковая струна, которая напоминает аккорд). Позже появилось более короткое имя Джива. Арабские математики в IX в. заменили это слово на арабское слово jib (выпуклость). В переводе арабских математических текстов в этом столетии он был заменен на латинский синус (синус — кривизна, изгиб).

Касательные появились в связи с решением задачи определения длины тени. Тангент (как и кокангент) был введен в X. столетие арабский математик Абу-л-Вафа, который создал первые таблицы для нахождения тангенса и кокангента. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенты были заново открыты только в XIV веке немецким математиком и астрономом Реджимонтаном (1467 г.). Он доказал теорему о тангенте. Regimontan также сделал подробные тригонометрические таблицы, благодаря его работам плоские и сферические тригонометрии стали отдельной дисциплиной в Европе.

Дальнейшее развитие тригонометрии состоялось в трудах выдающегося астронома Николая Коперника (1473-1543) — создателя мировой гелиоцентрической системы Тихо Браге (1546-1601) и Иоганна Кеплера (1571-1630), а также в трудах математика Франсуа Виета (1540-1603), который полностью решил задачу определения всех элементов плоского или сферического треугольника на три даты.

Долгое время тригонометрия была чисто геометрической. Факты, которые мы сейчас формулируем в виде тригонометрических функций, были сформулированы и доказаны с помощью геометрических концепций и высказываний. Так было уже в средние века, хотя иногда использовались аналитические методы, особенно после появления логарифмов. Пожалуй, наибольший стимул для развития тригонометрии возник в связи с решением астрономических задач, представлявших большой практический интерес (например, для решения задач определения положения корабля, прогнозирования отключения электроэнергии и т.д.). Астрономов интересовали отношения между сторонами и углами сферических треугольников. И надо сказать, что математики древнего мира успешно справились с поставленными задачами.

С XVII века тригонометрические функции стали использоваться для решения уравнений, задач механики, оптики, электротехники, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, изучения переменного тока и др. Поэтому тригонометрические функции были всесторонне и глубоко исследованы и приобрели значение для всей математики.

Аналитическая теория тригонометрических функций была разработана в основном Леонардом Эйлером (1707-1783), выдающимся математиком XVIII века, членом Санкт-Петербургской Академии наук. Большое научное наследие Эйлера включает в себя блестящие результаты, связанные с математическим анализом, геометрией, теорией чисел, механикой и другими математическими приложениями. Именно Эйлер первым ввел известные определения тригонометрических функций, начал рассматривать функции любого угла, и получил формулы редукции. По словам Эйлера, тригонометрия получила форму расчета: различные факты стали доказываться формальным применением формул тригонометрии, доказательства стали намного компактнее.

Таким образом, тригонометрия, зародившаяся как наука о разрешении треугольников, со временем переросла в науку о тригонометрических функциях.

Тригонометрические функции

Элементарные функции, которые исторически возникали при взгляде на прямоугольные треугольники и выражают зависимость сторон этих треугольников от острых углов гипотенузы (или, эквивалентно, зависимость аккордов и высоты от центрального угла в круге). Эти функции нашли самое широкое применение в различных областях науки. В результате было расширено определение тригонометрических функций, и их аргументом теперь может быть любое реальное или даже сложное число.

Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

Ссылка на тригонометрические функции:

Во-первых, прямые тригонометрические функции:

Во-вторых, противоположные тригонометрические функции:

В-третьих, производные тригонометрические функции:

В западной литературе загар х, кроватка х, цхх называются загаром, кроватка х, цхх.

В дополнение к этим шести, существуют также некоторые редко используемые тригонометрические функции (верна и т.д.) и обратные тригонометрические функции (арксин, аркозин и т.д.), которые рассматриваются в отдельных статьях.

Синусоидальный и косинусоидальный вещественные аргументы являются периодически непрерывными и бесконечно дифференцируемыми вещественными функциями.

Остальные четыре функции на реальной оси также являются материально значимыми, периодическими и бесконечно различимыми в областях определения, но не непрерывными.

Тангенты и секанты имеют паузы второго поколения на ±rp, в то время как катангенсы и секанты имеют паузы на ±rp.

Геометрическое определение

Обычно тригонометрические функции определяются геометрически. Укажем декартовую систему координат на плоскости и сформируем окружность радиусом R, центр которой находится в начале координат O. Измеряем углы как вращения от положительного направления оси абсциссы к акустическому пучку. Направление против часовой стрелки считается положительным, направление по часовой — отрицательным. Если мы обозначим абсциссой точку B с xB, то мы обозначим ординату с yB.

Понятно, что значения тригонометрических функций не зависят от радиуса окружности R из-за свойств подобных фигур.

Следует также отметить, что этот радиус часто принимается равным значению одного сечения.

Исходя из этого, синус является просто ординатой yB, а косинус — абсциссой xB.

Если b является вещественным числом, то в математическом анализе синус b называется угловым синусом, радиан которого равен b, аналогично другим тригонометрическим функциям.

Рассмотрим графическое изображение этого явления на рисунке 3.

Определение тригонометрических функций как решений дифференциальных уравнений, уравнений функций и по ряду

Во многих учебниках элементарной геометрии тригонометрические функции острого угла до сих пор определялись как отношения сторон прямоугольного треугольника. Пусть ОАБ будет треугольником с углом b.

Ну, тогда:

  • Синус угла b называется отношением AB/OB (отношение противоположного катетера к гипотенузе);
  • Козин угла b называется отношением OA/OB (отношение смежного катетера к гипотенузе);
  • Касательная угла b называется отношением AB/OA (отношение противоположного катетера к соседнему катетеру);
  • Катангензис угла b называется отношением OA/AB (отношение смежного катетера к противоположному катетеру);
  • Секанс угла b называется отношением ОВ/ОА (отношение гипотенузы к соседнему катетеру);
  • Угол cosecansome b называется отношением OV/AB (отношение гипотенузы к контркатетеру).

После того, как мы построили систему координат с началом в точке О, изменили направление оси абсциссы вдоль ОА и, при необходимости, ориентацию треугольника (перевернув его) так, чтобы он лежал в первой четверти системы координат, а затем построили окружность с радиусом, равным гипотенусе, сразу замечаем, что такое определение функций приводит к тому же результату, что и предыдущее.

На основании геометрии и свойств предельных значений можно доказать, что производная синуса равна косинусу, а производная косинуса равна минус синус. Затем можно использовать преимущества теории рядов Тейлора и представить синус и косинус как сумму степенных рядов.

Самые простые личности

Тригонометрические тождества — это математические выражения для тригонометрических функций, которые выполняются по всем значениям аргумента (из общего диапазона определений).

Поскольку синус и косинус являются ординатой и абсциссой точки, соответствующей единичной окружности впадин, то в соответствии с уравнением единичной окружности или пифагорейской теоремой.

Это соотношение называется базовой тригонометрической идентичностью.

Мы делим это уравнение на квадрат косинуса и синуса.

Синус и косинус являются непрерывными функциями. У тангентов и секантов есть точки перелома: катангенез и косекансы.

Где f — произвольная тригонометрическая функция, g — соответствующая ей кофункция (т.е. косинус для синуса, синус для косинуса и подобная для других функций), n — целое число. Полученной функции предшествует знак, который имеет начальную функцию в данной координатной четверти, при условии, что угол b острый.

Формулы для работы с касательными и катангами трех углов получены путем деления правой и левой частей соответствующих уравнений, представленных выше.

Вид одного параметра.

Все тригонометрические функции могут быть выражены полукруглым касательным.

Производные и интегралы

Все тригонометрические функции непрерывно и бесконечно дифференцируются по всему диапазону определения:

Интегралы тригонометрических функций в домене выражаются элементарными функциями следующим образом.

Большинство из вышеперечисленных свойств тригонометрических функций были сохранены даже в сложном случае.

Некоторые дополнительные свойства: тригонометрическое уравнение идентичности:

  • Сложные синусоидальные и косинусоидальные значения, в отличие от реальных, могут принимать любое количество значений модуля;
  • Все нули сложного синуса и косинуса лежат на оси материала.

Заключение

В данной работе были выполнены все задачи: получены более подробные сведения о тригонометрических функциях, приведены доказательства теорем косинуса и синуса, а также теоремы о площади треугольников, применены при решении задач по нахождению неизвестных элементов треугольника, научились применять эти теоремы при измерении работы на местности. Представленные проблемы представляют большой практический интерес, закрепляют полученные знания в области геометрии и могут быть использованы в практической работе.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: