Реферат на тему нитросоединения

Обновлено: 01.06.2024

Нитроалканы имеют общую формулу C n H 2 n +1 NO 2 или R - NO 2 . Они также изомерны алкилнитритам (эфирам азотистой кислоты) с общей формулой R - ONO .

Изомерия нитроалканов связана с изомерией углеродного скелета. Различают первичные RCH 2 NO 2 , вторичные R 2 CHNO 2 и третичные R 3 CNO 2 нитроалканы. Нитроалканы называют по углеводороду с приставкой нитро-. По систематической номенклатуре положение нитрогруппы обозначается цифрой.

Способы получения нитроалканов

1. Нитрование алканов (Коновалов, Хэсс).

Алканы окисляются концентрированной азотной кислотой или смесью азотной и серной кислот. Нитрование протекает только под действием разбавленной азотной кислоты пр нагревании (М.И. Коновалов, 1888 г .):

R-H + HO-NO 2 ® R-NO 2 + H 2 O

Скорость реакции невелика и выходы низкие. Лучшие результаты получаются с алканами, содержащими третичные углеродные атомы. Реакция сопровождается образованием полинитросоединений и окислительными процессами.

практическое значение получили следующие методы нитрования алканов: 1) в газовой фазе при 350-400 о С с помощью 40-70%- ной HNO 3 (нитрование по Хэссу, 1936 г .); 2) в жидкой фазе при 100-200 о С с 50-70%- ной HNO 3 ; 3)в жидкой или газовой фазе тетраоксидом или диоксидом азота. В промышленности получило применение нитрование парами азотной кислоты при 250-500 о С - парофазное нитрование. Выбор температуры процесса зависит от дины углеродной цепи и строения углеводорода: изобутан реагирует уже при 150 о С, тогда как метан - при 370. Реакция сопровождается крекингом углеводорода, в результате чего образуются мононитроалканы с углеродной цепью различной длины (деструктивное нитрование).

На реакцию нитрования расходуется около 40% азотной кислоты, остальная ее часть действует как окислитель. Поэтому наряду с нитросоединениями образуются также спирты, кетоны и кислоты. Кроме того, образуются и непредельные углеводороды.

Реакция нитрования - радикальный процесс.

RH + NO 2 ® · R

· R+ NO 2 ® R NO 2

RH + · Cl ® · R

· R+ NO ® R NO

CH 3 Br + AgNO 2 ® CH 3 NO 2 + AgBr реакция Мейера

CH 3 CH 2 Br + NaNO 2 ® CH 3 CH 2 NO 2 + NaBr реакция Корнблюма

Реакция протекает по механизму S N 2 . В качестве побочных продуктов образуются эфиры азотистой кислоты (механизм S N 1 ).

3. Окисление аминов .

Ниросоединения также могут быть получены окислением аминов:

Нитросоединениям может быть придана следующая октетная формула:

1. Образование солей .

Первичные и вторичные нитросоединения растворимы в щелочах с образованием солей. Это объясняется тем, что водородные атомы пр углероде, связанном непосредственно с нитрогруппой, под влиянием последней активируются, и в щелочной среде нитросоединения перегруппировываются в аци-нитро-форму (кислотную):

Таким образом, нитроалканы являются таутомерными веществами, существующими в нитро- и аци-нитро-формах.

Если щелочные растворы нитросоединений обработать минеральной кислотой, то происходит медленный обратный сдвиг равновесия:

2. Образование аминов (восстановление) - см. Лекцию №32.

3. Реакции с азотистой кислотой.

Активность водородных атомов у углерода, непосредственно связанного с нитрогруппой, проявляется и в ряде других реакций, например, в реакциях с азотистой кислотой. Первичные и вторичные нитросоединения реагируют с азотистой кислотой, а третичные не реагируют:

Щелочные соли нитроловых кислот в растворе имеют красный цвет. Псевдонитролы в растворах и расплавах окрашены в синий или зеленовато-синий цвет.

4. Конденсация с альдегидами .

Первичные и вторичные нитросоединения конденсируются с альдегидами, образуя нитроспирты:

Нитрометан с формальдегидом дает триметилолнитрометан NO 2 - C ( CH 2 OH ) 3 . При восстановлении последнего получается аминоспирт NH 2 - C ( CH 2 OH ) 3 , используемый в производстве моющих средств и эмульгаторов. Азотнокислые эфиры нитроспиртов, например, NO 2 - C ( CH 2 ONO 2 ) 3 , являются ценными взрывчатыми веществами.

5. Образование альдегидов и кетонов .

Аци -формы первичных и вторичных спиртов нитросоединений в водных растворах при действии минеральных кислот образуют альдегиды или кетоны:

6. Образование карбоновых кислот .

Первичные нитросоединения при нагревании 85%-ной серной кислоты переходят в карбоновые кислоты с отщеплением гидроксиламина. Реакция может служить промышленным способом получения гидроксиламина:

Нитропарафины используют в технике как растворители, для производства альдегидов, кислот, взрывчатых веществ, в реактивной технике, резиновой промышленности (вулканизаторы), при изготовлении пластмасс и др.

Ароматические нитросоединения

Получение ароматических нитросоединений

1. Нитросоединения с нитрогруппой в ядре получают нитрованием ароматических углеводородов смесью азотной и серной кислот (нитрующая смесь):

При нитровании бензола вторая нитрогруппа вступает в м-положение. Введение ее достигается применением более жестких условий нитрования - более высокая температура, концентрированные кислоты. Третья группа вводится с еще большим трудом в м-положение:

При наличии в ядре заместителей электронодонорных заместителей, удается ввести три нитрогруппы в обычных условиях. Так, толуол нитруется по следующей схеме:

При нитровании гомологов бензола, содержащих два заместителя, сказывается стерический эффект. Если эти заместители находятся в п-положении, то нитрогруппа становится рядом с меньшим заместителем:

Скорость реакции нитрования зависит от субстрата и состава нитрующей смеси; для каждого соединения существует оптимальный состав. Так, при нитровании нитробензола оптимальный результат достигается при использовании 90%- ной серной кислоты. Снижение ее концентрации до 80% уменьшает скорость реакции в 3000 раз.

В настоящее время установлено, что в растворе азотной кислоты в серной имеет место равновесие:

Чистая азотная кислота в условиях нитрования диссоциирует по схеме:

2 HONO 2 « NO + 2 + NO - 3 + H 2 O

Сам процесс нитрования с участием нитроний-катиона NO + 2 представляет собой замещение водорода:

2. Нитросоединения с нитрогруппой в боковой цепи получают теми же методами, что и нитросоединения алифатического ряда:

1. Нитрование гомологов бензола разбавленной азотной кислотой (реакция Коновалова).

Ar - CH 3 + HONO 2 ® Ar - CH 2 NO 2 + H 2 O

Реакция галогенпроизводных с галогеном в боковой цепи с нитритом серебра (реакция Мейра)

Химические свойства нитросоединений ароматического ряда обусловлены присутствием в молекулах нитрогруппы и ароматического ядра и их взаимного влияния.

Впервые нитробензол был восстановлен в анилин с помощью сернистого аммония в 1842 г . Н.Н. Зининым. Это открытие сыграло важнейшую роль в развитии химической технологии, особенно в области химии красителей, медикаментов и фотохимикатов. Ароматические нитросоединения в зависимости от условий восстановления дают различные продукты. Ароматические амины являются конечными продуктами восстановления. Обычно их получают в кислой среде.

В нейтральной, щелочной и слабокислой средах можно получить различные промежуточные продукты восстановления. Ниже приведена схема восстановления нитросоединений:

В нейтральной и кислой средах идут реакции 1-4, причем в кислой среде не удается выделить промежуточные продукты. В нейтральной среде можно выделить нитрозобензол и фенилгидроксиламин. В щелочной среде нитро- и нитрозобензолы конденсируются с фенилгидразином и идут реакции 5-9. Различные продукты восстановления можно получать, пользуясь методом электролитического восстановления. В зависимости от потенциала на электродах можно получать различные вещества.

2. Реакции замещения.

Нитрогруппа в реакциях электрофильного замещения направляет заместитель в мета-положение причем реакционная способность бензольного кольца уменьшается:

В реакциях нуклеофильного замещения нитрогруппа направляет заместители в орто- и пара-положения. Так, при нагревании нитробензола с порошкообразным KOH получается смесь о- и п-нитрофенолятов:

Благодаря сильно выраженному электроноакцепторному характеру нитрогруппа оказывает значительное влияние на атомы и группы, находящиеся по отношению к ней в о- и п-положениях. Так, в случае о- и п-нитрохлорбензолов галоген под влиянием нитрогруппы приобретает высокую подвижность, и легко замещается на гидроксил, алкоксил или аминогруппу:

Нитроалканы имеют общую формулу Cn H 2 n +1 NO 2 или R - NO 2 . Они также изомерны алкилнитритам (эфирам азотистой кислоты) с общей формулой R - ONO .

Изомерия нитроалканов связана с изомерией углеродного скелета. Различают первичные RCH 2 NO 2 , вторичные R 2 CHNO 2 и третичные R 3 CNO 2 нитроалканы. Нитроалканы называют по углеводороду с приставкой нитро -. По систематической номенклатуре положение нитрогруппы обозначается цифрой.

Способы получения нитроалканов

1. Нитрование алканов (Коновалов, Хэсс) .

Алканы окисляются концентрированной азотной кислотой или смесью азотной и серной кислот. Нитрование протекает только под действием разбавленной азотной кислоты пр нагревании (М.И. Коновалов, 1888 г.):

Скорость реакции невелика и выходы низкие. Лучшие результаты получаются с алканами, содержащими третичные углеродные атомы. Реакция сопровождается образованием полинитросоединений и окислительными процессами.

практическое значение получили следующие методы нитрования алканов: 1) в газовой фазе при 350-400 о С с помощью 40-70%- ной HNO 3 (нитрование по Хэссу, 1936 г.); 2) в жидкой фазе при 100-200 о С с 50-70%- ной HNO 3 ; 3)в жидкой или газовой фазе тетраоксидом или диоксидом азота. В промышленности получило применение нитрование парами азотной кислоты при 250-500 о С - парофазное нитрование . Выбор температуры процесса зависит от дины углеродной цепи и строения углеводорода: изобутан реагирует уже при 150 о С, тогда как метан - при 370. Реакция сопровождается крекингом углеводорода, в результате чего образуются мононитроалканы с углеродной цепью различной длины (деструктивное нитрование ).

На реакцию нитрования расходуется около 40% азотной кислоты, остальная ее часть действует как окислитель. Поэтому наряду с нитросоединениями образуются также спирты, кетоны и кислоты. Кроме того, образуются и непредельные углеводороды.

Реакция нитрования - радикальный процесс.

RH + NO2 ® · R

· R+ NO2 ® R NO2

RH + · Cl ® · R

· R+ NO ® R NO

CH3 Br + AgNO2 ® CH3 NO2 + AgBr реакция Мейера

CH3 CH2 Br + NaNO2 ® CH3 CH2 NO2 + NaBr реакция Корнблюма

Реакция протекает по механизму SN 2 . В качестве побочных продуктов образуются эфиры азотистой кислоты (механизм SN 1 ).

3. Окисление аминов .

Ниросоединения также могут быть получены окислением аминов:


Нитросоединениям может быть придана следующая октетная формула:




1. Образование солей .

Первичные и вторичные нитросоединения растворимы в щелочах с образованием солей. Это объясняется тем, что водородные атомы пр углероде, связанном непосредственно с нитрогруппой, под влиянием последней активируются, и в щелочной среде нитросоединения перегруппировываются в аци-нитро-форму (кислотную ):


Таким образом, нитроалканы являются таутомерными веществами, существующими в нитро - и аци-нитро-формах .

Если щелочные растворы нитросоединений обработать минеральной кислотой, то происходит медленный обратный сдвиг равновесия:


2. Образование аминов (восстановление ) - см. Лекцию №32.

3. Реакции с азотистой кислотой .

Активность водородных атомов у углерода, непосредственно связанного с нитрогруппой, проявляется и в ряде других реакций, например, в реакциях с азотистой кислотой. Первичные и вторичные нитросоединения реагируют с азотистой кислотой, а третичные не реагируют:


Щелочные соли нитроловых кислот в растворе имеют красный цвет. Псевдонитролы в растворах и расплавах окрашены в синий или зеленовато-синий цвет.

4. Конденсация с альдегидами .

Первичные и вторичные нитросоединения конденсируются с альдегидами, образуя нитроспирты:


Нитрометан с формальдегидом дает триметилолнитрометан NO 2 - C ( CH 2 OH )3 . При восстановлении последнего получается аминоспирт NH 2 - C ( CH 2 OH )3 , используемый в производстве моющих средств и эмульгаторов. Азотнокислые эфиры нитроспиртов, например, NO 2 - C ( CH 2 ONO 2 )3 , являются ценными взрывчатыми веществами.

5. Образование альдегидов и кетонов .

Аци -формы первичных и вторичных спиртов нитросоединений в водных растворах при действии минеральных кислот образуют альдегиды или кетоны:


6. Образование карбоновых кислот .

Первичные нитросоединения при нагревании 85% -ной серной кислоты переходят в карбоновые кислоты с отщеплением гидроксиламина. Реакция может служить промышленным способом получения гидроксиламина:


Нитропарафины используют в технике как растворители, для производства альдегидов, кислот, взрывчатых веществ, в реактивной технике, резиновой промышленности (вулканизаторы), при изготовлении пластмасс и др.

Ароматические нитросоединения

Получение ароматических нитросоединений

1. Нитросоединения с нитрогруппой в ядре получают нитрованием ароматических углеводородов смесью азотной и серной кислот (нитрующая смесь ):

При нитровании бензола вторая нитрогруппа вступает в м -положение. Введение ее достигается применением более жестких условий нитрования - более высокая температура, концентрированные кислоты. Третья группа вводится с еще большим трудом в м -положение:


При наличии в ядре заместителей электронодонорных заместителей, удается ввести три нитрогруппы в обычных условиях. Так, толуол нитруется по следующей схеме:


При нитровании гомологов бензола, содержащих два заместителя, сказывается стерический эффект. Если эти заместители находятся в п -положении, то нитрогруппа становится рядом с меньшим заместителем:


Скорость реакции нитрования зависит от субстрата и состава нитрующей смеси; для каждого соединения существует оптимальный состав. Так, при нитровании нитробензола оптимальный результат достигается при использовании 90%- ной серной кислоты. Снижение ее концентрации до 80% уменьшает скорость реакции в 3000 раз.

В настоящее время установлено, что в растворе азотной кислоты в серной имеет место равновесие:

Чистая азотная кислота в условиях нитрования диссоциирует по схеме:

2 HONO 2 « NO + 2 + NO - 3 + H 2 O

Сам процесс нитрования с участием нитроний-катиона NO + 2 представляет собой замещение водорода:


2. Нитросоединения с нитрогруппой в боковой цепи получают теми же методами, что и нитросоединения алифатического ряда:

1. Нитрование гомологов бензола разбавленной азотной кислотой (реакция Коновалова ).

Ar - CH 3 + HONO 2 ® Ar - CH 2 NO 2 + H 2 O

Реакция галогенпроизводных с галогеном в боковой цепи с нитритом серебра (реакция Мейра )

Химические свойства нитросоединений ароматического ряда обусловлены присутствием в молекулах нитрогруппы и ароматического ядра и их взаимного влияния.

Впервые нитробензол был восстановлен в анилин с помощью сернистого аммония в 1842 г. Н.Н. Зининым. Это открытие сыграло важнейшую роль в развитии химической технологии, особенно в области химии красителей, медикаментов и фотохимикатов. Ароматические нитросоединения в зависимости от условий восстановления дают различные продукты. Ароматические амины являются конечными продуктами восстановления. Обычно их получают в кислой среде.

В нейтральной, щелочной и слабокислой средах можно получить различные промежуточные продукты восстановления. Ниже приведена схема восстановления нитросоединений:


В нейтральной и кислой средах идут реакции 1-4, причем в кислой среде не удается выделить промежуточные продукты. В нейтральной среде можно выделить нитрозобензол и фенилгидроксиламин. В щелочной среде нитро- и нитрозобензолы конденсируются с фенилгидразином и идут реакции 5-9. Различные продукты восстановления можно получать, пользуясь методом электролитического восстановления. В зависимости от потенциала на электродах можно получать различные вещества.

2. Реакции замещения .

Нитрогруппа в реакциях электрофильного замещения направляет заместитель в мета -положение причем реакционная способность бензольного кольца уменьшается:


В реакциях нуклеофильного замещения нитрогруппа направляет заместители в орто - и пара -положения. Так, при нагревании нитробензола с порошкообразным KOH получается смесь о - и п -нитрофенолятов:


Благодаря сильно выраженному электроноакцепторному характеру нитрогруппа оказывает значительное влияние на атомы и группы, находящиеся по отношению к ней в о - и п -положениях. Так, в случае о - и п -нитрохлорбензолов галоген под влиянием нитрогруппы приобретает высокую подвижность, и легко замещается на гидроксил, алкоксил или аминогруппу:

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

1.1. Способы получения нитросоединений

1.2. Реакции нитросоединений

1.2.1. Таутомерия алифатических нитросоединений

1.2.2. Конденсация алифатических нитросоединений с альдегидами и кетонами

1.2.3. Восстановление нитросоединений

Нитросоедингениями называют производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO2. В зависимости от углеводородного радикала, к которому присоединена нитрогруппа, нитросоединения делятся на ароматические и алифатические. Алифатические соединения различают как первичные 1о, вторичные 2 о и третичные 3о, в зависимости от того к 1 о, 2 о или 3о атому углерода присоединена нитрогруппа.

Нитрогруппу –NO2 не следует путать с нитритной группой -ONO. Нитрогруппа имеет следующее строение:

Наличие полного положительного заряда на атоме азота обусловливает наличие у нее сильного -I-эффекта. Наряду с сильным -I-эффектом нитрогруппа обладает сильным -М-эффектом.

Упр. 1. Рассмотрите строение нитрогруппы и ее влияние на направление, и скорость реакции электрофильного замещения в ароматическом ядре.

1.1. Способы получения нитросоединений

Практически все способы получения нитросоединений были уже рассмотрены в предыдущих главах. Ароматические нитросоединения получают, как правило, прямым нитрованием аренов и ароматических гетероциклических соединений. Нитроциклогексан в промышленных условиях получают нитрованием циклогексана:

Таким же путем получают и нитрометан, однако в лабораторных условиях его получают из хлоруксусной кислоты в результате реакций (2-5). Ключевой стадией из них является реакция (3), проходящая по механизму SN2.

Хлоруксусная кислота Хлорацетат натрия

1.2. Реакции нитросоединений

1.2.1. Таутомерия алифатических нитросоединений

Вследствие сильных электроноакцепторных свойств нитрогруппы, a-атомы водорода обладают повышенной подвижностью и поэтому первичные и вторичные нитросоединения являются С-Н-кислотами. Так, нитрометан является довольно сильной кислотой (pKa 10,2) и в щелочной среде легко превращается в резонансностабилизированный анион:

Нитрометан pKa 10,2 Резонансностабилизированный анион

Упр.2. Напишите реакции (а) нитрометана и (б) нитроциклогексана с водным раствором NaOH.

1.2.2. Конденсация алифатических нитросоединений с альдегидами и кетонами

Нитрогруппа может быть введена в алифатические соединения альдольной реакцией между анионом нитроалкана и альдегидом или кетоном. В нитроалканах a-атомы водорода даже более подвижны, чем в альдегидах и кетонах и поэтому они могут вступать с альдегидами и кетонами в реакции присоединения и конденсации предоставляя свои a-атомы водорода. С алифатическими альдегидами обычно проходят реакции присоединения, а с ароматическими – исключительно конденсации.

Так, нитрометан присоедняется к циклогексанону,

но конденсируется с бензальдегидом,

В реакции присоединения с формальдегидом участвуют все три атома водорода нитрометана и образуется 2-гидроксиметил-2-нитро-1,3-динитропропан или триметилолнитрометан.

Конденсацией нитрометана с гексаметилентетрамином мы получили 7-нитро-1,3,5-триазаадамантан:

Упр. 3. Напишите реакции формальдегида (а) с нитрометаном и (б) с нитроциклогексаном в щелочной среде.

1.2.3. Восстановление нитросоединений

Нитрогруппу восстанавливают в аминогруппу различными восстановителями (11.3.3). Гидрированием нитробензола под давлением в присутствии никеля Ренея в промышленных условиях получают анилин

В лабораторных условиях вместо водорода можно использовать гидразин, разлагающийся в присутствии никеля Ренея с выделением водорода.

Нитросоединения восстанавливают металлами в кислой среде с последующим подщелачиванием

В зависимости от рН среды и используемого восстановителя могут быть получены различные продукты. В нейтральной и щелочной среде активность обычных восстанавливающих агентов по отношению к нитросоединениям меньше, чем в кислой среде. Характерным примером может служить восстановление нитробензола цинком. В избытке соляной кислоты цинк восстанавливает нитробензол в анилин, в то время как в буферном растворе аммонийхлорида - в фенилгидроксиламин:

В кислой среде арилгидроксиламины подвергаются перегруппировке:

п-Аминофенол используется в качестве проявителя в фотографии. Фенилгидроксиламин далее может быть окислен до нитрозобензола:

Восстановлением нитробензола хлоридом олова (II) получают азобензол, а цинком в щелочной среде – гидразобензол.

Обработкой нитробензола раствором щелочи в метаноле получают азоксибензол, при этом метанол окисляется в муравьиную кислоту.

Известны методы неполного восстановления и нитроалканов. На этом основан один из промышленных методов получения капрона. Нитрованием циклогексана получают нитроциклогексан, который восстановлением переводят в оксим циклогексанона и далее с помощью перегруппировки Бекмана - в капролактам и полиамид - исходное вещество для приготовления волокна - капрона:

Восстановление нитрогруппы продуктов альдольного присоединения (7) является удобным способом получения b-аминоспиртов.

Использование в качестве восстановителя сероводорода позволяет восстанавливать одну из нитрогрупп в динитроаренах:

Упр.4. Напишите реакции восстановления (а) м-динитробензола оловом в соляной кислоте, (б) м-динитробензола сероводородом, (в) п-нитротолуола цинком в буферном растворе хлорида аммония.

Упр.5. Завершите реакции:

По систематической номенклатуре амины называют путем добавления приставки амин к названию углеводорода. По рациоальной номенклатуре их рассматривают как алкил или ариламины.

Метанамин Этанамин N-Метилэтанамин N-Этилэтанамин

(метиламин) (этиламин) (метилэтиламин) (диэтиламин)

N,N-Диэтилэтанамин 2-Аминоэтанол 3-Аминопропановая

триэтиламин) (этаноламин) кислота

Циклогексанамин Бензоламин N-Метилбензоламин 2-Метилбензоламин

(циклогексиламин) (анилин) (N-метиланилин) (о-толуидин)

Гетероциклические амиы называют по соответствующему углеводороду вставляя приставку аза-, диаза- или триаза- для обозачения количества атомов азота.

В зависимости от типа углеводородного радикала, связанного с группой NO2, нитросоединения подразделяются на алифатические (жирные) и ароматические.

Простейший представитель алифатических нитросоединений – нитрометан:

Ароматическое нитросоединение – нитробензол С6Н5–NO2:


Восстановление нитросоединений

При восстановлении нитросоединений образуются первичные амины.

  • Нитросоединения восстанавливаются водородом:


  • Восстановление сульфидом аммония (реакция Зинина):


  • Восстановление алюминием и цинком в щелочной среде.

Алюминий и цинк в щелочной среде образуют гидроксокомплексы.


В щелочной и нейтральной среде получаются амины. Восстановлением нитробензола получают анилин.

  • Восстановление металлами в кислой среде.

Железо, олово и цинк в соляной кислоте реагируют с нитросоединениями с образованием солей аминов:


Амины из раствора соли выделяют с помощью щелочи:

Реакции замещения нитробензола

Нитробензол вступает в реакции замещения с образованием мета-замещенных продуктов в бензольном кольце.

Например, при хлорировании нитробензола образуется мета-хлорнитробензол:


Нитрование алканов и ароматических углеводородов

Алканы взаимодействуют с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в алкане замещается на нитрогруппу NO2.

При этом процесс протекает избирательно.

Например, при нитровании пропана образуется преимущественно 2-нитропропан



Ароматические углеводороды нитруются концентрированной азотной кислотой. Реакция катализируется концентрированной серной кислотой:


При нитровании толуола может получиться трёхзамещённая молекула (2,4,6-тринитротолуол, тротил):


Замещение галогена на нитрогруппу

При взаимодействии нитрита серебра с галогеналканами образуются амины:


Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Гост

ГОСТ

Алифатические нитросоединения относятся к азосодержащим (азотсодержащих) соединениям, содержащих в своей структуре связи углерод-азот ($C-N$). Азотсодержащие соединения подразделяют на:

Соединения, содержащие двойные и тройные связи углерод-азот, рассматриваются как производные карбонильных соединений и карбоновых кислот.

Насыщенные мононитросоединения

Нитросоединения - производные углеводородов, для которых один или несколько атомов водорода замещены нитрогруппой -$NO2$. Общая формула насыщенных мононитросполук $C_nH_NO_2$. В зависимости от атома углерода, с которым соединена иитрогрупа, различают первичные, вторичные и третичные нитросоединения:

Первичные Вторичные Третичные

По правилам номенклатуры IUPAC их название получают из названия алкана с добавлением приставки нитро-. Цифрой показывают положение нитрогруппы. Нумерацию начинают с того конца цепи, ближе к которому находится $NO_2$-группа при отсутствии в цепи других (старших) групп, ненасыщенных связей, а также алкилов и второстепенных групп. При существовании рядом с нитрогруппой только алкилов и второстепенных групп их в названии располагают по алфавиту, пользуясь принципом наименьших лигандов, например:

Готовые работы на аналогичную тему

Аналогично другим функциональным производным алканов изомерия соединений данного типа зависит от положения нитрогруппы в цепи и от строения углеводородного скелета, кроме того, нитросоединения разделяют на насыщенные и ненасыщенные.

Алифатические азосоединения

Азосоединениями называются соединения общей формулы $R-N=N-R$, содержащих азогруппу $-N=N-$, соединенную с двумя углеводородными остатками. Название азосоединений образуется от названия соответствующего алкана и приставки азо-:

Для азосоединений характерна геометрическая изомерия с использованием префиксов син- (аналог цис-) и анти- (аналог транс-):

Азоалканы получают мягким окислением алкильных производных гидразина:

В отличие от ароматических, алифатические азосоединения нестабильны и при хранении или нагревании разлагаются по радикальному механизму:

Исходя из этого, соединения типа азоизобутиронитрила используют как радикальные инициаторы полимеризации и Порофоры (поро- угворювачи) для получения газонаполненных пластмасс.

Нитропроизводные аренов

Аналогично другим классам замещенных производных бензола, нитроарены делятся на соединения с нитрогруппами в ароматическом ядре и в боковой цепи. Название нитроаренов образуется путем добавления приставки нитро к названию ароматического соединения. Часто применяют рациональные названия с указанием других функциональных групп:

Читайте также: