Реферат на тему материаловедение в машиностроении

Обновлено: 05.07.2024

На сегодняшний день стали являются основным конструкционным материалом для изготовления нагруженных деталей машин, сооружений, элементов подвижного состава.

Сталями называют сплавы железа с углеродом и некоторыми другими химическими элементами.

По химическому составу различают стали углеродистые и легированные.

Если сталь имеет в своем составе только Fe, C и некоторое количество постоянной примеси, то такую сталь называют углеродистой. Если в углеродистую сталь специально введены один или несколько так называемых легирующих элементов (Cr, Ni, W и др.) с целью улучшения ее служебных и технических свойств, то такую сталь называют легированной.

Углеродистая сталь

Углеродистая сталь – наиболее распространенный продукт металлургической промышленности и широко применяется для всевозможных сооружений (железных дорог, мостов, зданий и др.), деталей машин, приспособлений и т.д.

Углеродистую сталь классифицируют по различным ее признакам. Например, по химическому составу, в зависимости от степени раскисления, по структуре, качеству и назначению.

В зависимости от степени раскисления стали делят на спокойную, полуспокойную и кипящую.

Полуспокойную сталь раскисляют в меньшей степени, чем спокойную. По свойствам они занимают промежуточное положение между кипящей и спокойной.

Спокойная сталь полностью раскислена ферромарганцем, ферросилицием и алюминием (путем их последовательного введения): в изложнице застывает спокойно; имеет более однородный состав. Из нее изготавливают рельсы, колеса, оси, листовые рессоры, пружины, а также другие детали подвижного состава, испытывающие большие нагрузки. Используют также для изготовления металлических пролетов мостов.

(Ст3сп2 - сталь углеродистая обыкновенного качества, спокойная, категория поставки-2)

По назначению углеродистые стали делятся на конструкционные и инструментальные.

Конструкционные углеродистые стали используют в машиностроении и строительном деле. В зависимости от величины и характера нагрузки, прикладываемой к изделиям, выполненным из них, они делятся на стали обыкновенного качества и стали качественные.

В сталях обыкновенного качества допускается большее содержание S, P, HMB, газов и других примесей, чем в сталях качественных. Они выплавляются мартеновским, бессемеровским или томасовским способами и применяется для сортового и листового проката, гвоздей, заклепок, болтов, труб и т.д. Особых требований к составу шихты, процессу плавки и разливки обычно не предъявляется.

По ГОСТу сталь обыкновенного качества в зависимости от качества разделяется на две группы:

Группа А – сталь, у которой гарантируются только механические свойства.

Химический состав не гарантируется. Поэтому стали этой группы можно подвергать только механической обработке; нагревать и сваривать их нельзя. Маркируются они следующим образом: Ст0, Ст1…Ст6. Чем выше номер, тем выше содержание углерода в стали, тем она более твердая и менее пластичная. Номер марки характеризует механические свойства. Из этих сталей изготавливают детали для подвижного состава без термической обработки.

Группа Б (БСт0,БСт1…БСт6) - выпускаются с гарантируемым химическим составом, поэтому их можно нагревать (например, для ковки), а затем с помощью термообработки исправлять нарушенную структуру и придавать необходимые свойства.

Группа В (ВСт0,ВСт1…ВСт6) – идущие на изготовление сварных конструкций, различаются по механическим свойствам и химическому составу.

Качественные углеродистые стали выплавляется в мартеновских и электрических печах и применяется для изготовления более ответственных деталей машин и механизмов. Ее получают при более строгом соблюдении технологии выплавки. Она превосходит сталь обыкновенного качества по однородности, а также содержит меньше вредных примесей (серы и фосфора). Маркировка этой стали производится двумя цифрами, указывающими среднее содержание углерода в сотых долях процента. Из-за высокой хрупкости конструкционные углеродистые стали содержат углерода не более 0.85%.Так, марка 25 содержит углерода в среднем 0.25%. Для маркировки кипящей стали используют буквы кп (например. 08 кп). Буква А, стоящая в конце марки, свидетельствует об улучшенном металлургическом качестве.

Инструментальные углеродистые стали являются сталями высокоуглеродистыми (содержание углерода 0.7-1.3%), что гарантирует им высокую твердость, необходимую для придания инструменту режущих свойств и износостойкости. Инструментальная сталь выплавляется в мартеновских и электрических печах; применяется для изготовления различных инструментов (режущих, измерительных, ударных и пр.). Инструментальная сталь делится на качественную и высококачественную. Сталь качественная обозначается буквой У и цифрой, указывающей количество углерода в десятых долях процента, например, У7, У8 и далее до У13.

Сталь высококачественная инструментальная содержит меньше примесей(серы, фосфора), чем качественная; при ее маркировке добавляют букву А, например, У8А. Эти стали используют для изготовления мерительного, режущего и ударно-штампового инструмента. Существенным недостатком углеродистой стали является то, что эта сталь не обладает нужным сочетанием механических свойств. С увеличением содержания углерода увеличиваются прочность и твердость, но одновременно уменьшаются пластичность и вязкость, растет хрупкость.

Выбор марки стали и термическая обработка определяются назначением и характером эксплуатации инструмента.

Материаловедение играет важную роль в решении задач, связанных с улучшением качества выпускаемых изделий, снижением материалоемкости продукции – одних из главных экономических задач.

ВложениеРазмер
rol_distsipliny_materialovedenie_v_podgotovke_spetsialistov.doc 54.5 КБ

Предварительный просмотр:

Объем современного материаловедения чрезвычайно велик и охватывает все области техники и производства. Любая технология начинается с решения ряда материаловедческих задач: установления критериев выбора материалов с учетом назначения изделия и реальных условий его производства, определения допустимых параметров и режимов обработки материалов. Только на основе глубоких и всесторонних знаний строения и свойств материалов можно разработать современную технологию, изготавливать изделия высокого качества.

Успехи в развитии химии, физики, математики и других фундаментальных наук, создание современных и высокоточных средств измерительной техники существенно обогащают материаловедение и создают условия для постоянного развития этой прикладной науки. Используя современные средства анализа структуры и измерения свойств, материаловеды расширяют свои познания о материалах, открывают новые их качественные стороны, выдают обоснованные рекомендации по рациональному использованию существующих материалов и разрабатывают новые материалы с улучшенными свойствами.

Материаловедение играет важную роль в решении задач, связанных с улучшением качества выпускаемых изделий, снижением материалоемкости продукции – одних из главных экономических задач.

1 ТРЕБОВАНИЯ ПРИ ПОДГОТОВКЕ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ МАТЕРИАЛОВЕДЕНИЕ

Область профессиональной деятельности выпускников специальности Технология машиностроения очень объемна и широка: это разработка и внедрение технологических процессов производства продукции машиностроения; организация работы структурного подразделения

Объектами профессиональной деятельности выпускников являются:

-материалы, технологические процессы, средства технологического оснащения (технологическое оборудование, инструменты, технологическая оснастка);

-конструкторская и технологическая документация;

-первичные трудовые коллективы. [1]

Во всех направлениях этой деятельности основной проблемой является обеспечение надежности создаваемых изделий (деталей, узлов, механизмов, и оборудования) при эксплуатации. При этом одной из актуальнейших задач, в обеспечении надежности изделий на всех уровнях их создания и эксплуатации, является повышение долговечности и надежности именно материалов.

В последние годы в машиностроении значительно расширилась номенклатура материалов с повышенными требованиями к прочности, жаростойкости, коррозионной и химической стойкости. При эксплуатации, выбранные конструкторами и технологами материалы подвергаются разнообразным эксплуатационным нагрузкам, поэтому при изучении материаловедения должны более детально раскрываться современные, дислокационно-структурные механизмы разрушения материалов.

Научно-методическая основа изучения курса материаловедения , кроме, изучаемых ранее, номенклатуры и свойств материалов, должна быть построена на изучении следующих понятий:

1) микроструктуры металлов и сплавов - основного фактора надежности и долговечности деталей машин;

2) пространственной атомно-кристаллической (а.-к.) структуры материалов;

3) аллотропических превращений компонентов сплавов, происходящих при определенных условиях на различных стадиях термической, упрочняющей др. видов обработки материалов;

4) возникновения дефектов (а.-к.) строения и их влияния на механические и др. свойства материалов, а значит, на долговечность и надежность деталей и машин;

5) дислокационно-структурного механизма разрушения;

6) механизма структурных превращений при деформациях;

7) значения и влияния микроструктуры деталей при эксплуатации на долговечность и надежность деталей машин;

8) выбора материалов в зависимости от условий эксплуатации.

В результате освоения дисциплины Материаловедение студент должен

- распознавать и классифицировать конструкционные и сырьевые материалы по внешнему виду, происхождению, свойствам;

- определять виды конструкционных материалов;

- выбирать материалы для конструкций по их назначению и условиям эксплуатации;

- проводить исследования и испытания материалов;

- закономерности процессов кристаллизации и структурообразования металлов и сплавов, основы их термообработки, способы защиты металлов от коррозии;

- классификацию и способы получения композиционных материалов;

-принципы выбора конструкционных материалов для применения в производстве;

-строение и свойства металлов, методы их исследования;

-классификацию материалов, металлов и сплавов, их области применения; [1]

2 ВЗАИМОСВЯЗЬ СОДЕРЖАНИЯ МАТЕРИАЛОВЕДЕНИЯ С ЕСТЕСТВЕННОНАУЧНЫМИ И ОБЩЕПРОФЕССИОНАЛЬНЫМИ ДИСЦИПЛИНАМИ ПРИ ПОДГОТОВКЕ СПЕЦИАЛИСТОВ

Процесс обучения должен осуществляться на основе межпредметных взаимосвязей, способствующих успешному овладению профессиональными знаниями и умениями. Формирование познавательной и творческой активности будущих техников и специалистов должно осуществляться на основе комплексного подхода, объединяющего фундаментальное (естественнонаучное) и общетехническое образование, что с ориентацией на выявление сущностных основ и связей производственных процессов приводит к целостности образования.

Изучение дисциплины материаловедение базируются на знаниях таких предметов, как математика, химия и физика.

В свою очередь знания и навыки, полученные при освоении дисциплины материаловедение необходимы для большинства предметов профессионального цикла.

В таблице 1 представлена взаимосвязь содержания материаловедения с общепрофессиональными дисциплинами и профессиональными модулями

Дисциплина профессионального цикла

(освоенные профессиональные компетенции)

ОП.01. Инженерная графика

Знать способы графического представления материалов, обозначение сортамента на чертежах

ОП.03. Техническая механика

Знать механические свойства материалов и методику расчета элементов конструкций на прочность, жесткость и устойчивость при различных видах деформации;

ОП.05. Метрология, стандартизация и сертификация

МДК.03.02. Контроль соответствия качества деталей требованиям технической документации

основные методы контроля качества детали

проведения контроля соответствия качества деталей требованиям технической документации;

определять (выявлять) несоответствие геометрических параметров заготовки требованиям технологической документации

ОП.06. Процессы формообразования и инструменты

Знать материалы, применяемые для изготовления лезвийного инструмента;

Уметь выбирать конструкцию лезвийного инструмента в зависимости от конкретных условий обработки; производить расчет режимов резания при различных видах обработки

ОП.08. Технология машиностроения

Технологические процессы изготовления деталей машин

способы обеспечения заданной точности изготовления деталей

физико-механические свойства конструкционных и инструментальных материалов;

определять виды и способы получения заготовок;

рассчитывать и проверять величину припусков и размеров заготовок;

рассчитывать коэффициент использования материала;

разрабатывать технологический роцесс изготовления детали

ОП.12. Основы экономики организации и правового обеспечения профессиональной деятельности

МДК.02.01. Планирование и организация работы структурного подразделения

Знать материально-технические, трудовые и финансовые ресурсы отрасли и организации, показатели их эффективного использования

ОП.13. Охрана труда

ОП.14. Безопасность жизнедеятельности

Знать правила и нормы охраны труда, личной и производственной санитарии и пожарной защиты; правила безопасной эксплуатации механического оборудования

Теоретическая значимость дисциплины материаловедение состоит в том, что она вносит вклад в развитие теории и методики обучения общепрофессиональным дисциплинам, в частности:

- в развитие теории учебного предмета, дидактических и частнометодических принципов обучения (научности, межпредметных связей, генерализации и др.);

- в развитие системного подхода применительно к построению методической системы преподавания материаловедения во взаимосвязи с общепрофессиональными дисциплинами.

Практическая значимость изучения дисциплины заключается :

-в создании методической системы обучения материаловедению, разработке и внедрении учебно-методического комплекса по материаловедению с учетом требований стандарта к профессиональной деятельности специалистов в области технологии машиностроения;

- в разработке планов занятий по общепрофессиональным дисциплинам с учетом межпредметных связей

- создании контрольно- измерительных материалов (практических занятий, контрольных работ, тестов)

- проведение семинаров по разделам и модулям общепрофессиональным дисциплинам с учетом межпредметных связей

1 ФГО СПО по специальности 151901 Технология машиностроения

2 Родионов С.Ф Методическая система обучения студентов технических вузов материаловедению и технологии конструкционных материалов (На примере подготовки инженеров железнодорожного транспорта) : Дис. . канд. пед. наук : 13.00.02 Саранск, 2010 255 с. РГБ ОД, 61:06-13/800

Не все материалы пригодны ля изготовления машиностроительных изделий. Например, гранит характеризуется высокой твёрдостью, но чрезвычайно сложен в обработке, а керамика обладает повышенной хрупкостью. Материалы в машиностроении – это вещества искусственного или естественного происхождения, которые способны обрабатываться любыми способами без нарушения своей целостности.

Металлы и сплавы, используемые в машиностроении

Материалы, которые находят применение в качестве сырья для любого вида строительства или производства организованным способом инженерного применения, известны как инженерные материалы. Например, компьютер, соковыжималка, станок или ручка, которые мы используем, производятся с помощью контролируемых инженерных процессов. При этом используются такие материалы, как разнообразные пластмассы, медь, алюминий, олово и т. д.

Всё, что мы используем в повседневной жизни, может быть адаптировано для использования в конкретных случаях. Это можно сделать эффективно, если нам заранее известны свойства каждого материала. Таким образом, любое вещество тщательно тестируется на предмет характерных ему свойств, после чего может быть отнесено к одной из следующих групп:

  • металлы;
  • неметаллы;
  • полимеры;
  • нановещества;
  • композиты.

По совокупным свойствам представителей этих групп можно узнать о сферах их целесообразной применимости. Преобладающее положение в этой структуре занимают металлы – чёрные и цветные, а также их сплавы.

Металлы обычно характеризуются чётко выраженной кристаллической структурой и связаны между собой характерными связями, устойчивость которых поддерживается электронным облаком. Оно, в частности, определяет высокую электро- и теплопроводность, блеск, твёрдость и, в большинстве случаев – высокую пластичность.

Чугун

Чугун - это сплав железа с углеродом, при содержании последнего в металлической матрице свыше 2,14 %. Кроме углерода, в чугуне содержится также 1…3% кремния и ряд второстепенных элементов. Чугун также можно модифицировать путём легирования небольшими количествами марганца, молибдена, церия, никеля, меди, ванадия и титана, которые добавляются в исходное сырьё перед литьём.

технология машиностроения материалы

В зависимости от содержания кремния в чугуне он подразделяется на белый или серый чугун, а также ковкий чугун, который отличается повышенной механической обрабатываемостью.

Широкое применение чугуна обусловлено его отличными литейными характеристиками и дешевизной. Кроме того, свойства чугуна можно легко изменить, регулируя состав и скорость охлаждения без значительных изменений в технологии производства.

Чугун имеет ряд преимуществ перед обычной сталью, среди которых:

  • простота обработки;
  • виброустойчивость;
  • стойкость против коррозии;
  • прочность на сжатие.

Для увеличения коррозионной стойкости чугун легируют кремнием, никелем, хромом, молибденом и медью.

Машиностроительные материалы на основе серого чугуна используются при изготовлении блоков цилиндров двигателей внутреннего сгорания, массивных маховиков, картеров коробок передач, трубопроводов, роторов дисковых тормозов, кухонной посуды.

Из белого чугуна производят шламовые насосы, шаровые мельницы, подъемные штанги, экструзионные форсунки, миксеры для цемента, фитинги, фланцы, дробилки и пр. Благодаря хорошему пределу прочности на разрыв, вязкости и пластичности ковкий чугун используется для изготовления электрической арматуры и оборудования, ручных инструментов, шайб, кронштейнов, сельскохозяйственного оборудования, оборудования для горнодобывающей промышленности и т.п.

Сталь

Сталь - общий термин для большого семейства железоуглеродистых сплавов, которые являются пластичными в определённом температурном диапазоне сразу после затвердевания из расплавленного состояния.

Сталеплавильное производство - это процесс рафинирования передельного чугуна, а также чугунного лома путём удаления нежелательных элементов из расплава.

Первичной реакцией в большинстве сталеплавильных производств является соединение углерода с кислородом с образованием газа. Если растворённый кислород не удалить из расплава, то газообразные продукты продолжат выделяться во время затвердевания. Чтобы избежать этого, сталь раскисляют добавляя необходимые раскисляющие элементы. Тогда газ не выделяется, и такую сталь называют спокойной. Соответственно при неполном раскислении стали называют полуспокойными. Степень раскисления влияет на некоторые свойства стали.

Помимо кислорода жидкая сталь содержит соизмеримые количества растворённого водорода и азота. Для некоторых марок сталей могут использоваться специальные методы раскисления, а также вакуумная обработка, уменьшающие количество и состав растворённых газов.

Стали также содержат различные количества других элементов, в основном марганец (который действует как раскислитель и облегчает обработку), кремний, фосфор и серу. Последние два химических элемента считаются примесями, и их количество при выплавке ограничивают.

Все марки сталей отличаются отличными литейными характеристиками и деформируемостью. Поэтому технология машиностроения, материалы в которой изучаются наиболее тщательно, считает сталь наиболее универсальным продуктом.

Твердые сплавы

Твёрдые сплавы - это металлические композиции на основе Fe, Ni или Co, которые содержат до 50 % твёрдой фазы. Это делает их идеальными для изготовления изделий, которые подвергаются значительным эксплуатационным нагрузкам, например, рабочих деталей металлорежущего и штампового инструмента.

Твёрдые сплавы получают методами порошковой металлургии, что позволяет в широких пределах изменять гранулометрический состав и фракционирование конечного продукта.

Алюминий и алюминиевые сплавы

Уникальное сочетание свойств делает алюминий и его сплавы одним из самых универсальных инженерных и строительных материалов. Простое перечисление эксплуатационных характеристик впечатляют: лёгкость, прочность, коррозионная стойкость, нетоксичность.

Алюминий и его сплавы обладают хорошей электро- и теплопроводностью, а также высокой отражательной способностью для тепла и света. Данные металлы пластичны и легко принимают широкий спектр отделки поверхности.

Прочность чистого алюминия относительно невысока, поэтому для отвественных применений используют сплавы алюминия с марганцем, цинком, медью и кремнием, а также упрочняют полуфабрикат в процессе его пластической деформации или термообработки.

Другие металлы

Из остальных металлов применение в машиностроении находят:

  1. Медь и её сплавы (электротехническое и электронное машиностроение).
  2. Свинец (атомная энергетика).
  3. Олово (точное приборостроение).
  4. Хром, никель, молибден (производство нержавеющих сталей, энергетическое машиностроение).
  5. Титан (аэрокосмическая промышленность).
  6. Вольфрам (оборонная промышленность).

В качестве легирующих добавок используют также ванадий, ниобий, кобальт и ряд других металлов.

Неметаллические материалы в машиностроении

В основном, используются искусственно созданные композиции, например, полимеры. Они аморфны по природе, поэтому не имеют кристаллической структуры, отличаются низкой теплопроводностью, являются диэлектриками.

Полимеры термостойки и эластичны, при высокой молекулярной массе имеют низкую плотность. Находят применение в электротехнике, машиностроительных узлах, действующих в условиях повышенного трения, при производстве приборов.

Из материалов естественного происхождения необходимо выделить слюду, которая широко используется в радиоприборостроении.

Важно: все материалы, применяемые в машиностроении, должны отвечать экологическим нормам.

Нажмите, чтобы узнать подробности

Материаловедение относится к числу основополагающих дисциплин для машиностроительных специальностей. Это связано с тем, что получение, разработка новых материалов, способы их обработки являются основой современного.

Государственное бюджетное профессиональное

образовательное учреждение




Реферат

«Материаловедение:




Общие сведения о предмете.

Материаловедение относится к числу основополагающих дисциплин для машиностроительных специальностей. Это связано с тем, что получение, разработка новых материалов, способы их обработки являются основой современного производства и во многом определяют уровнем своего развития научно-технический и экономический потенциал страны. Проектирование рациональных, конкурентоспособных изделий, организация их производства невозможны без достаточного уровня знаний в области материаловедения.

Материаловедение является основой для изучения многих специальных дисциплин.

Разнообразие свойств материалов является главным фактором, предопределяющим их широкое применение в технике. Материалы обладают отличающимися друг от друга свойствами, причем каждое зависит от особенностей внутреннего строения материала. В связи с этим материаловедение как наука занимается изучением строения материала в тесной связи с их свойствами. Основные свойства материалов можно подразделить на физические, механические, технологические и эксплуатационные.

От физических и механических свойств зависят технологические и эксплуатационные свойства материалов.

Среди механических свойств прочность занимает особое место, так как, прежде всего от нее зависит неразрушаемость изделий под воздействием эксплуатационных нагрузок. Учение о прочности и разрушении является одной из важнейших составных частей материаловедения. Оно является теоретической основой для выбора подходящих конструкционных материалов для деталей различного целевого назначения и поиска рациональных способов формирования в них требуемых прочностных свойств для обеспечения надежности и долговечности изделий.

Основными материалами, используемыми в машиностроении, являются и еще долго будут оставаться металлы и их сплавы. Поэтому основной частью материаловедения является металловедение, в развитии которого, ведущую роль сыграли российские ученые: Аносов П.П., Чернов Д.К., Курнаков Н.С., Гуляев А.П. и другие.

Краткие исторические сведения о развитии материаловедения.

Материаловедение - прикладная наука, изучающая взаимосвязи между составом, строением и свойствами металлов и сплавов в различных условиях. Изучение этой

дисциплины позволяет осуществить рациональный выбор материалов для конкретного применения.

Металловедение - постоянно развивающаяся наука, непрерывно обогащающаяся за счёт разработки новых сталей и сплавов, в свою очередь стимулирующих прогресс во всех областях науки и техники.

Как наука материаловедение насчитывает около 200 лет, несмотря на то, что человек начал использовать металлы и сплавы ещё за несколько тысячелетий до нашей эры. Только в 18 веке появились отдельные научные результаты, позволяющие говорить о начале осмысленного изучения всего того, что накопило человечество за всё время использования металлов.

Заметную роль в изучении природы металлов сыграли исследования французского учёного Реомюра (1683-1757). Ещё в 1722 году он провёл исследование строения зёрен в металлах. Англичанин Григнон ещё в 1775 году обратил внимание на то, что при затвердевании железа образуется столбчатая структура. Ему принадлежит известный рисунок дендрита, полученного при медленном затвердевании литого железа.

Значительных успехов металловедение достигло лишь в 19 веке, что связано в первую очередь с использованием новых методов исследования структуры металла. В 1831 году П.П. Аносов (1799-1851) провёл исследование металла на полированных и протравленных шлифах, впервые применив микроскоп для исследования стали.

Весомый вклад в развитие металловедения внесли работы русского учёного-металлурга П. П. Аносова (1799-1851), английских ученых Сорби и Роберта Аустена (1843-1902), немца А. Мартенса (1850-1914), Трооста и американца Э. Бейна (1891-1974), которые, каждый в своё время, рассматривая под микроскопом и фотографируя структуры, установили существование структурных превращений в сталях при их непрерывном охлаждении.

В 1873-1876 годах Гиббс изложил основные законы фазового равновесия и, в частности, правило фаз, основываясь на законах термодинамики. Для решения практических задач знание фазового равновесия в той или иной системе необходимо, но не достаточно для определения состава и относительного количества фаз. Обязательно знать структуру сплавов, то есть атомное строение фаз, составляющих сплав, а также распределение, размер и форму кристаллов каждой фазы.

Создание научных основ металловедения по праву принадлежит Чернову Д.К. (1839 – 1903), который установил критические температуры фазовых превращений в сталях и их связь с количеством углерода в сталях. Этим были заложены основы для важнейшей в металловедении диаграммы состояния железоуглеродистых сплавов.

Открытием аллотропических превращений в стали, Чернов заложил фундамент термической обработки стали. Критические точки в стали, позволили рационально выбирать температуру ее закалки, отпуска и пластической деформации в производственных условиях.

В своих работах по кристаллизации стали, и строению слитка Чернов изложил основные положения теории литья, не утратившие своего научного и практического значения в настоящее время.

Разработка в 1902 году американскими учёными Ф. Тейлором и М. Уайтом быстрорежущей стали произвела переворот в машиностроении. Резко возросла производительность механической обработки, появились новые быстроходные станки и автоматы.

В 1906 году немецкий исследователь А. Вильм создал высокопрочный сплав

алюминия с медью – дуралюмин, прочность которого в результате старения в несколько раз превышала прочность технического алюминия и других алюминиевых сплавов при сохранении достаточного запаса пластичности. Использование дуралюмина в самолётостроении на многие годы определило прогресс в этой области техники.

Немецким инженером заводов Круппа Мауэром и профессором Штраусом в 1912 году была получена хромоникелевая аустенитная нержавеющая сталь, а в 1912году Бренли – ферритная нержавеющая сталь.

20 век ознаменовался крупными достижениями в теории и практике материаловедения: были созданы высокопрочные материалы для деталей и инструментов, разработаны композиционные материалы, открыты сверхпроводники, применяющиеся в энергетике и других отраслях техники, открыты и использованы свойства полупроводников. Одновременно совершенствовались способы упрочнения деталей термической и химикотермической обработкой. Огромное значение для развития отечественного материаловедения в наше время имели работы А.А. Бочарова, Г.В. Курдюмова, В. Д. Садовского и В. А. Каргина.

Определение атомного строения фаз стало возможным после открытия Лауэ (1912 г),

показавшего, что атомы в кристалле регулярно заполняют пространство, образуя пространственную дифракционную решетку, и что рентгеновские лучи имеют волновую природу.

Дифракция рентгеновских лучей на такой решетке дает возможность исследовать строение кристаллов.

В последнее время для структурного анализа, кроме рентгеновских лучей, используют электроны и нейтроны. Соответствующие методы исследования называются электронографией и нейтронографией. Электронная оптика позволила усовершенствовать микроскопию. В настоящее время на электронных микроскопах полезное максимальное увеличение доведено до 100 000 раз.

В пятидесятых годах, когда началось исследование природы свойств металлических материалов, было показано, что большинство наиболее важных свойств, в том числе сопротивление пластической деформации и разрушению в различных условиях нагружения, зависит от особенностей тонкого кристаллического строения. Этот вывод способствовал привлечению физических теорий о строении реальных металлов для объяснения многих непонятных явлений и для конструирования сплавов с заданными механическими свойствами. Благодаря теории дислокаций, удалось получить достоверные сведения об изменениях в металлах при их пластической деформации.

Современное развитие материаловедения как науки.

Металловедение особенно интенсивно развивается в последние десятилетия. Это объясняется потребностью в новых материалах для исследования космоса, развития электроники, атомной энергетики.

Основными направлениями в развитии металловедения является разработка способов производства чистых и сверхчистых металлов, свойства которых сильно отличаются от свойств металлов технической чистоты, с которыми преимущественно работают. Генеральной задачей материаловедения является создание материалов с заранее рассчитанными свойствами применительно к заданным параметрам и условиям работы. Большое внимание уделяется изучению металлов в экстремальных условиях (низкие и высокие температуры и давление).

До настоящего времени основной материальной базой машиностроения служит черная металлургия, производящая стали и чугуны. Эти материалы имеют много положительных качеств и в первую очередь обеспечивают высокую конструкционную прочность деталей машин. Однако эти классические материалы имеют такие недостатки как большая плотность, низкая коррозионная стойкость. Потери от коррозии составляют 20% годового производства стали и чугуна. Поэтому, по данным научных исследований, через 20…40 лет все развитые страны перестроятся на массовое использование металлических сплавов на базе титана, магния, алюминия. Эти легкие и прочные сплавы позволяют в 2-3раза облегчить станки и машины, в 10 раз уменьшить расходы на ремонт.

По данным института имени Байкова А.Н. в нашей стране есть все условия чтобы в течении 10…15 лет машиностроение могло перейти на выпуск алюминиево-титановой подвижной техники, которая отличается легкостью, коррозионной стойкостью и большим безремонтным ресурсом.

Важное значение имеет устранение отставания нашей страны в области использования новых материалов взамен традиционных (металлических) – пластмасс, керамики, материалов порошковой металлургии, особенно композиционных материалов, что экономит дефицитные металлы, снижает затраты энергии на производство материалов, уменьшает массу изделий.

Расчетами установлено, что замена ряда металлических деталей легкового автомобиля на углепластики из эпоксидной смолы, армированной углеродными волокнами, позволит уменьшить массу машины на 40%; она станет более прочной; уменьшится расход топлива, резко возрастет стойкость против коррозии.

Читайте также: