Реферат на тему линза глаза

Обновлено: 01.05.2024

В современном понятии оптика - это раздел физики, в котором исследуются процессы излучения света, его распространения в различных средах и взаимодействия света с веществом.

Оптика состоит из трех разделов: 1) физическая оптика; 2) геометрическая оптика; 3) физиологическая оптика.

Физическая оптика занимается выяснением природы света и закономерностей его испускания, распространения, рассеяния и поглощения в веществе.

Геометрическая оптика рассматривает законы распространения световых лучей, построение изображений в различных оптических системах, способы расчета и проектирования оптических приборов.

Физиологическая оптика изучает восприятие света человеческим глазом и оптические свойства глаза.

На мой выбор именно данной темы повлияла профессия родителей (врач). А именно профессия матери - офтальмолог. От них я часто слышал о возможностях современной медицины, в частности о современных диагностических, терапевтических и оперативных возможностях современной медицинской науки позволяющих не только сохранить, но и вернуть утраченные зрительные функции.

Удивительно, что пациент, который не мог ориентироваться в окружающей обстановке, нуждался в постоянной опеке и сопровождении, после операции смог самостоятельно покинуть глазную клинику.

Целью моей работы явилось: подробное изучение строения глаза, его оптической системы, а также современные способы коррекции рефракционных нарушений.

Глава 1. Строение глаза

Человеческий глаз представляет из себя сложную систему, главной целью которой является наиболее точное восприятие, первоначальная обработка и передача информации, содержащейся в электромагнитном излучении видимого света. Все отдельные части глаза, а также клетки, их составляющие, служат максимально полному выполнению этой цели.

Глаз - это сложная оптическая система. Световые лучи попадают от окружающих предметов в глаз через роговицу. Роговица в оптическом смысле - это сильная собирающая линза, которая фокусирует расходящиеся в разные стороны световые лучи. Причем оптическая сила роговицы в норме не меняется и дает всегда постоянную степень преломления. Склера является непрозрачной наружной оболочкой глаза, соответственно, она не принимает участия в проведении света внутрь глаза.

Преломившись на передней и задней поверхности роговицы, световые лучи проходят беспрепятственно через прозрачную жидкость, заполняющую переднюю камеру, вплоть до радужки. Зрачок, круглое отверстие в радужке, позволяет центрально расположенным лучам продолжить свое путешествие внутрь глаза. Более периферийно оказавшиеся лучи задерживаются пигментным слоем радужной оболочки. Таким образом, зрачок не только регулирует величину светового потока на сетчатку, что важно для приспособления к разным уровням освещенности, но и отсеивает боковые, случайные, вызывающие искажения лучи. Далее свет преломляется хрусталиком. Хрусталик тоже линза, как и роговица. Его принципиальное отличие в том, что у людей до 40 лет хрусталик способен менять свою оптическую силу - феномен, называемый аккомодацией. Таким образом, хрусталик производит более точную дофокусировку. За хрусталиком расположено стекловидное тело, которое распространяется вплоть до сетчатки и заполняет собой большой объем глазного яблока.

Лучи света, сфокусированные оптической системой глаза, попадают в конечном итоге на сетчатку. Сетчатка служит своего рода шарообразным экраном, на который проецируется окружающий мир. Из школьного курса физики мы знаем, что собирательная линза дает перевернутое изображение предмета. Роговица и хрусталик - это две собирательные линзы, и изображение, проецируемое на сетчатку, также перевернутое. Другими словами, небо проецируется на нижнюю половину сетчатки, море - на верхнюю, а корабль, на который мы смотрим, отображается на макуле. Макула, центральная часть сетчатки, отвечает за высокую остроту зрения. Другие части сетчатки не позволят нам ни читать, ни наслаждаться работой на компьютере. Только в макуле созданы все условия для восприятия мелких деталей предметов.

В сетчатке оптическая информация воспринимается светочувствительными нервными клетками, кодируется в последовательность электрических импульсов и передается по зрительному нерву в головной мозг для окончательной обработки и сознательного восприятия.

Глава 1.1. Вспомогательный аппарат

Вспомогательный аппарат включает: веки, коньюнктиву, слезные железы и слезоотводящие пути.

Веки. Основная функция век - защита глазного яблока. При мигательных движениях век слезная жидкость равномерно распределяется по поверхности глаза. (12, с.16.)

Конъюнктива - это тонкая прозрачная ткань, которая покрывает глаз снаружи. Она начинается с лимба, наружного края роговицы, покрывает видимую часть склеры, а также внутреннюю поверхность век. В толще конъюнктивы проходят сосуды, которую ее питают. Эти сосуды могут быть рассмотрены невооруженным глазом. При воспалении конъюнктивы, конъюнктивите, сосуды расширяются и дают картину красного раздраженного глаза, которую большинство имело возможность лицезреть у себя в зеркале. Основная функция конъюнктивы заключается в секреции слизистой и жидкой части слезной жидкости, которая смачивает и смазывает глаз. (12, с.22.)

Глава 1.2. Глазное яблоко

В фиброзной оболочке глаза выделяют два отдела: роговицу и склеру. Роговица - занимает 1/5 часть фиброзной оболочки, склера соответственно занимает остальную часть. (12, с.37.) Место перехода роговицы в склеру называется лимбом и имеет вид полукольца шириной до 1 мм.

Роговица - прозрачное выпуклое окно в передней части глаза - это и есть роговица. Роговица является сильной преломляющей поверхностью, обеспечивая две трети оптической силы глаза. (12, с.37.) Напоминая по форме дверной глазок, она позволяет хорошо видеть окружающий нас мир.

Поскольку в роговице нет кровеносных сосудов, она идеально прозрачная. Отсутствие сосудов в роговице определяет особенности ее кровоснабжения. Большую роль в обеспечении роговицы питательными веществами играет сосудистая сеть лимба.

Роговица в норме имеет блестящую и зеркальную поверхность. Что во многом объясняется работой слезной пленки, постоянно смачивающей роговичную поверхность. Постоянное смачивание поверхности достигается моргательными движениями век, которые осуществляются бессознательно. Существует так называемый моргательный рефлекс, который включается при появлении микроскопических зон сухой поверхности роговицы при продолжительном отсутствии моргательных движений.

Лимб - разделительная полоса между роговицей и склерой шириной в 1,0-1,5 мм. В лимбе располагается много сосудов, которые принимают участие в питании роговицы.

Склера - это прочный наружный остов глазного яблока. Ее передняя часть видна через прозрачную конъюнктиву как "белок глаза". К склере прикрепляются шесть мышц, которые управляют направлением взора и синхронно поворачивают оба глаза в любую сторону. (12, с.42.)

Прочность склеры зависит от возраста. Наиболее тонка склера у детей. Визуально это проявляется голубоватым оттенком склеры детских глаз, что объясняется просвечиванием темного пигмента глазного дна через тонкую склеру. С возрастом склера становится толще и прочнее. Истончение склеры наиболее часто встречается при близорукости.

Можно выделить 3 основных отдела: радужная оболочка, цилиарное тело и собственно сосудистая оболочка. (12, с.45.)

Радужка представляет собой переднюю часть сосудистой оболочки глаза. Имеет форму диска с отверстием в центре (зрачок) Основная функция - регулировка поступления света в глаз.

Цилиарное тело начинается в 2 мм от лимба имеет ширину 5-6 мм и заканчивается у зубчатой линии. Функции: вырабатывает внутриглазную жидкость (цилиарные отростки и эпителий) и участвует в аккомодации (мышечная часть со связкой и хрусталиком).

Собственно сосудистая оболочка начинается у зубчатой линии и выстилает весь задний отдел склеры. Образуется цилиарными артериями и служат для питания нейроэпителия сетчатки.

Внутренняя сетчатая оболочка

Сетчатка - тончайшая внутренняя оболочка глаза, которая обладает чувствительностью к свету. Эту светочувствительность обеспечивают так называемые фоторецепторы - миллионы нервных клеток, которые переводят световой сигнал в электрический. Далее другие нервные клетки сетчатки первоначально обрабатывают полученную информацию и передают ее в виде электрических импульсов по своим волокнам в головной мозг, где происходит окончательный анализ и синтез зрительной информации и восприятие последней на уровне сознания. Пучок нервных волокон, идущих от глаза к мозгу, называется зрительным нервом. (12, с.57.)

Зрительный нерв передает информацию, поступившую в световых лучах и воспринятую сетчаткой, в виде электрических импульсов в головной мозг. Зрительный нерв служит связующим звеном между глазом и центральной нервной системой.

Содержимое глазного яблока

Полость глаза содержит светопроводящие и светопреломляющие среды: хрусталик, стекловидное тело и водянистую влагу, заполняющую его камеры - переднюю, заднюю и стекловидную. (12, с.66.)

Зрачок - это отверстие в центре радужки, которое позволяет лучам света проникать внутрь глаза для их восприятия сетчаткой. Меняя размер зрачка путем сокращения специальных мышечных волокон в радужке, глаз контролирует степень освещенности сетчатки. Это является важным приспособительным механизмом, потому что разброс освещенности в физических величинах между облачной осенней ночью в лесу и ярким солнечным полуднем в заснеженном поле измеряется миллионами раз.

Хрусталик находится непосредственно за радужкой и в силу своей прозрачности невооруженным глазом уже не виден. Основная функция хрусталика - это динамичная фокусировка изображения на сетчатку. Хрусталик представляет из себя вторую (после роговицы) по оптической силе линзу глаза, меняющую свою преломляющую способность в зависимости от степени удаленности рассматриваемого предмета от глаза. (12, с.76.) При близком расстоянии до предмета хрусталик усиливает свою силу, при дальнем - ослабляет.

Стекловидное тело - гелеподобное студнеобразное прозрачное вещество, которое заполняет обширное, по глазным меркам, пространство между хрусталиком и сетчаткой. Оно занимает около 2/3 объема глазного яблока и дает ему форму, тургор (эластичность) и несжимаемость. На 99 процентов стекловидное тело состоит из воды, особо связанной со специальными молекулами, представляющими собой длинные цепочки повторяющихся звеньев - молекул сахара. (4, с.71.)

Стекловидное тело несет массу полезных функций, важнейшей из которых является поддержание сетчатки в своем нормальном положении.

Глава 1.3. Оптическая система глаза

С позиций физической оптики, глаз человека следует относить к так называемым центрированным оптическим системам. Для них характерно наличие двух и более линз, имеющих общую главную оптическую ось.

Оптическая система глаза включает в себе живые линзы (роговица и хрусталик с диафрагмой между ними), водянистую влагу и стекловидное тело. Строго говоря, к ней следует отнести и слезную жидкость, которая обеспечивает прозрачность роговицы. (4, с.76.) Основными преломляющими поверхностями в этой системе являются: передняя поверхность роговицы и обе поверхности хрусталика. Роль остальных сред, в основном, заключается в проведении света.

Глава 2.Виды аметропий глаза

К аметропиям можно отнести следующие виды клинической рефракции: близорукость, дальнозоркость, астигматизм.

Глава 2.1. Близорукость (миопия)

Близорукостью, или миопией, страдает каждый третий человек на Земле. Близоруким людям тяжело дается видеть номера маршрутов общественного транспорта, прочитать дорожные знаки, а также различать другие предметы на расстоянии. Но близорукие могут хорошо видеть во время занятий, связанных со зрением на близком расстоянии, таких как письмо и чтение.

Близорукость в подавляющем числе случаев связана с небольшим удлинением глазного яблока в переднезадней оси. Это приводит к тому, что параллельные лучи света, попадающие в глаз, собираются в одну точку (фокусируются) перед сетчаткой, а не прямо на ее поверхности.

Глава 2.2. Дальнозоркость (гиперметропия)

Дальнозоркость, или гиперметропия, характеризуется недостаточной оптической силой глаза. Лучи света, эти проводники зрительной информации из окружающего нас мира, редко бывают сходящимися, когда подходят к поверхности глаза. Как правило, они расходятся от своего источника в разные стороны, а в лучшем случае идут как пучок параллельных лучей. И чтобы получить четкое изображение предмета на сетчатке, что является основой основ нормального зрения, оптике глаза - роговице и хрусталику - требуется сильно преломить лучи света, чтобы все они стали сходящимися. Причем сходящимися настолько, что через 23 миллиметра своего путешествия внутри глаза они сошлись в одной точке на сетчатке. Дальнозоркость чаще возникает, когда длина глаза меньше 23 миллиметров, и лучи света просто "не успевают" сфокусироваться на сетчатке. Вместо одной четкой точки на сетчатку проецируется размытое световое пятно. Часто бывает сочетание недостаточной оптической силы роговицы и хрусталика с короткой длиной глаза. Гораздо реже дальнозоркость бывает по причине только слабости оптики при нормальной длине глазного яблока.

Дальнозоркие обычно плохо видят вблизи, но зрение может быть нечетким и при взгляде на отдаленные объекты.

Аккомодация глаза - приспособление глаза к ясному видению путем изменения преломляющей силы его оптических сред, в первую очередь хрусталика.

Глава 2.3. Астигматизм

Астигматизм получил свое название от латинского слова стигма, или точка. Различают роговичный и хрусталиковый астигматизм, но влияние роговицы на преломление глаза сказывается сильнее, т.к. она обладает большей преломляющей способностью. Разница в силе преломления самого сильного и самого слабого меридианов характеризует величину астигматизма в диоптриях. Направление меридианов будет характеризовать ось астигматизма, выражаемую в градусах. Как правило, астигматизм - состояние врожденное или полученное после травм или операций на роговице, но при некоторых заболеваниях, например, при кератоконусе , то есть носит приобретенный характер.

Корригируется астигматизм при помощи специальных цилиндрических линз (плюсовые линзы представляют собой продольный срез цилиндра, минусовые - слепок наружной поверхности цилиндра). Эти линзы позволяют изменить преломление только в одном меридиане, исправляя недостатки оптической системы глаза. Коррекция астигматизма возможна жесткими контактными и мягкими торическими линзами.

Пресбиопия (или возрастная дальнозоркость) - это физиологический возрастной процесс, связанный с уплотнением хрусталика и потерей им эластичности, а также ослаблением аккомодации.

Глава 3. Физическая оптика. Природа света

Впервые объяснить природу света пытались философы древнего мира Пифагор, Демокрит, Платон, Евклид, Аристотель. Их учение строилось на предположениях, догадках, умозаключениях и не имело подлинно научной базы. Однако они способствовали формированию научных взглядов и положили начало дальнейшему развитию теории света.

В конце XVII столетия английский ученый Исаак Ньютон выдвинул так называемую корпускулярную теорию, согласно которой считалось, что свет - это поток быстронесущихся частиц - корпускул, распространяющихся от источника во все стороны. От формы и размеров частиц зависит различное цветовое зрительное восприятие света.

Современник Ньютона нидерландский ученый Христиан Гюйгенс создал волновую теорию света. Согласно этой теории, свет является результатом механического колебания светящегося тела и поперечные световые волны распространяются от него в особой упругой среде - эфире, заполняющем все пространство.

В 1865 г. английский физик Джеймс Клерк Максвелл разработал теорию, согласно которой свет представляет собой электромагнитные волны определенной длины, возникающие в результате колебаний электрических зарядов. От длины этих волн зависят свойства светового излучения. Но и электромагнитная теория света не смогла полностью объяснить всех оптических явлений.

Данные исследований световых явлений указывали, что в некоторых случаях свет проявляет свойства материальной частицы, а в других - свойства волны.

Ни одна из теорий, объясняющих природу света, не давала исчерпывающего ответа. Это означало, что для объяснения природы света необходима такая теория, которая бы объединила его корпускулярные и волновые свойства. Новая теория света была названа квантовой. Она возникла и получила свое дальнейшее развитие благодаря трудам М. Планка, А. Эйнштейна, Н. Бора, Э. Ферма, Л. Д. Ландау и других ученых и была окончательно сформулирована в начале XX в. Максом Планком и Альбертом Эйнштейном. Согласно квантовой теории, природа света является корпускулярно-волновой. Излучение, поглощение и распространение света осуществляется не непрерывно, а в виде определенных и неделимых порций энергии - квантов.

Впоследствии кванты света были названы фотонами. Обладая свойствами частицы, фотон имеет массу, энергию и импульс движения. Чем больше частота колебаний излучения, тем больше энергия и импульс движения фотона, тем отчетливее проявляются его корпускулярные свойства.

Фотон существует только в движении и не имеет массы покоя. При встрече с веществом он может быть поглощен частицей вещества, и тогда сам фотон исчезает, а его энергия и импульс передаются поглотившей его частице. Эйнштейн определил свет как поток фотонов. (11, с.22.)

Глава 3.1. Оптическое излучение

Оптическим излучением называется электромагнитное излучение, которое эффективно исследуется оптическими методами.

В электра и радиотехнике электромагнитные колебания характеризуются частотой  и реже длиной волны  , в оптике - длиной волны. Зависимость между длиной волны и частотой колебаний определяется выражением  = v /  n

где v — скорость света в данной оптической среде;  n — длина волны излучения в данной оптической среде.

Частота колебаний излучения остается постоянной в любой оптической среде, тогда как скорость света и длина волны изменяют свою величину. Длина волны оптического излучения измеряется в микрометрах (мкм), нанометрах (нм) и ангстремах (А), имеющих соотношение

1 м = 10 6 мкм=10 9 нм=10 10 А.

Диапазон оптического излучения на шкале электромагнитных волн занимает незначительный участок и находится в пределах от 10 3 нм до 750 мкм

Шкала длин волн.

Оптическое излучение, подразделяется на четыре области:

- рентгеновскую - =10 3 - 10 нм;

ультрафиолетовую -  =10 - 380 нм;

видимую - =380 - 770 нм;

инфракрасную -  = 770 нм -750 мкм.

Указанные границы областей и диапазоны длин волн условны и даны для вакуума.

Видимая область оптического излучения воспринимается человеческим глазом и вызывает зрительные ощущения. Рентгеновская, ультрафиолетовая и инфракрасная области человеческим глазом не воспринимаются и являются невидимыми.

Глаз человека имеет приблизительно шарообразную форму; диаметр его (в среднем) 2,5 см (рис. 1); глаз ок­ружен снаружи тремя оболоч­ками.

Внешняя твердая и прочная оболочка /, называемая скле­рой или белковой оболочкой, за­щищает внутренность глаза от механических повреждений. Склера на передней части гла­за прозрачна и называется рого­вой оболочкой или роговицей 2; на всей остальной части глаза она непрозрачна, имеет белый цвет и называется белком.

С внутренней стороны к скле­ре прилегает сосудистая оболочка 3, состоящая из сложного сплете­ния кровеносных сосудов, пита­ющих глаз. Эта вторая оболочка в передней части глаза переходит в радужную оболочку, окрашен­ную у разных людей в различный цвет. Радужная оболоч­ка имеет в середине отверстие, называющееся зрачком 4. Радужная оболочка способна деформироваться и таким образом менять диаметр зрачка. Изменение это происходит рефлекторно (без участия сознания) в зависимости от ко­личества света, попадающего в глаз; при ярком освещении диаметр зрачка равен 2 мм, при слабом освещении доходит до 8 мм.

На внутренней поверхности сосудистой оболочки распо­ложена сетчатая оболочка, или сетчатка 6. Она покрывает все дно глаза, кроме его передней части. Сзади через обо­лочку входит зрительный нерв 7, соединяющий глаз с мозгом. Сетчатка состоит в основном из разветвлений воло­кон зрительного нерва и их окончаний и образует свето­чувствительную поверхность глаза.



Рисунок 1. Схематический раз­рез глаза человека. 1 — бел­ковая оболочка, 2 —роговая оболочка, 3 — сосудистая обо­лочка, 4 — зрачок, 5 — хру­сталик, 6 — сетчатая оболоч­ка, 7 — нерв, 8 — стекловид­ное тело, 9 — передняя ка­мера

Промежуток между роговой и радужной оболочками на­зывается передней камерой 9; он заполнен камерной влагой . Внутри глаза, непосредственно за зрачком, рас­положен хрусталик 5, представляющий собой прозрачное упругое тело, имеющее форму двояковыпуклой линзы. Кри­визна поверхностей хрусталика может меняться в резуль­тате действия облегающей его со всех сторон мышцы. По­средством изменения кривизны поверхностей хрусталика достигается приведение изображения предметов, лежащих на различных расстояниях, точно на поверхность чувстви­тельного слоя сетчатки; этот процесс называется аккомода­цией. Вся полость глаза за хрусталиком заполнена прозрач­ной студенистой жидкостью, образующей стекловидное тело 8.

По своему устройству глаз как оптическая система схо­ден с фотоаппаратом. Роль объектива выполняет хрусталик совместно с преломляющей средой передней камеры и сте­кловидного тела. Изображение получается на светочувст­вительной поверхности сетчатки. Наводка на резкость изображения осуществляется путем аккомодации. Наконец, зрачок играет роль изменяющейся по диаметру диафрагмы. Способность глаза к аккомодации обеспечивает возмож­ность получения на сетчатке резких изображений предме­тов, находящихся на различных расстояниях. Нормальный глаз в спокойном состоянии, т. е. без какого-либо усилия аккомодации, дает на сетчатке отчетливое изображение уда­ленных предметов (например, звезд). С помощью мышечного усилия, увеличивающего кривизну хрусталика и, следова­тельно, уменьшающего его фокусное расстояние, глаз осу­ществляет наводку на нужное расстояние. Наимень­шее расстояние , на котором нормальный глаз мо­жет отчетливо видеть предметы, меняется в зависимости от возраста от 10 см (возраст до 20 лет) до 22 см (возраст около 40 лет). В более пожилом возрасте способность глаза к аккомодации еще уменьшается: наименьшее расстояние доходит до 30 см и более — возрастная дальнозоркость.

Далеко не у всех людей глаз является нормальным . Нередко задний фокус глаза в спокойном состоянии находит­ся не на самой сетчатке (как у нормального глаза), а с той или другой стороны от нее. Если фокус глаза в спокойном состоянии лежит внутри глаза перед сетчаткой (рис. 2, а ), то глаз называется близоруким. Такой глаз не может отчетливо видеть отдаленные предметы, так как на­пряжение мышц при аккомодации еще сильнее отдаляет фокус от сетчатки. Для исправления близорукости глаза должны быть снабжены очками с рассеивающими линзами (рис. 2, б).



Рис. 2. Близорукость глаза (а) исправляется с помощью рассеиваю­щей линзы (б); дальнозоркость (в) — с помощью собирающей лин­зы (г)

В дальнозорком глазе фокус при спокойном состоянии глаза находится за сетчаткой (рис. 2, в). Дально­зоркий глаз преломляет слабее нормального. Для того что­бы видеть даже весьма удаленные предметы, дальнозоркий глаз должен делать усилие; для видения близко лежащих предметов аккомодационная способность глаза уже недо­статочна. Поэтому для исправления дальнозоркости упо­требляются очки с собирающими линзами (рис. 2, г ), приводящие фокус глаза в спокойном состоянии на сетчатку.

Оптические приборы, вооружающие глаз.

Хотя глаз и не представляет собой тонкую линзу, в нем можно все же найти точку, через которую лучи проходят практически без преломления, т. е. точку, играющую роль оптиче­ского центра . Оптический центр глаза находится внутри хрусталика вблизи задней поверх­ности его. Расстояние h от оптического центра до сетчатой оболочки, называемое глубиной глаза, составляет для нор­мального глаза 15 мм.

Зная положение оптического центра, можно легко пост­роить изображение какого-либо предмета на сетчатой обо­лочке глаза. Изображение всегда действительное, уменьшенное и обратное (рис. 3, а). Угол φ, под которым виден предмет S 1 S 2 из оптического центра глаза О, называется углом зрения.

Сетчатая оболочка имеет сложное строение и состоит из отдельных светочувствительных элементов. Поэтому две точки объекта, расположенные настолько близко друг к другу, что их изображения на сетчатке попадают на один и тот же элемент, воспринимаются глазом как одна точка. Минимальный угол зрения, под которым две светящиеся точки или две черные точки на белом фоне воспринимаются глазом еще раздельно, составляет приблизительно одну ми­нуту.


Рис. 3. а) Угол зрения (φ= S '1 S '2 / h = S 1 S 2 ,/ D ; б) при увеличении угла зрения увеличивается изображение рассматриваемого предмета на сет­чатке; N=b'/b=φ'/φ

Глаз плохо распознает детали предмета, которые он видит под углом менее 1'. Это — угол, под которым виден отрезок, длина которого 1 см на расстоянии 34 м от глаза. При плохом освещении (в сумерках) минимальный угол раз­решения повышается и может дойти до 1°.

Приближая предмет к глазу, мы увеличиваем угол зре­ния и, следовательно, получаем возможность лучше разли­чать мелкие детали. Однако очень близко к глазу прибли­зить предмет мы не можем, так как способность глаза к ак­комодации ограничена. Для нормального глаза наиболее благоприятным для рассматривания предмета оказывается расстояние около 25 см, при котором глаз достаточно хорошо различает детали без чрезмерного утомления. Это расстояние называется расстоянием наилучшего зрения. Для близору­кого глаза это расстояние несколько меньше. Поэтому близо­рукие люди, помещая рассматриваемый предмет ближе к глазу, чем люди с нормальным зрением или дальнозоркие, видят его под большим углом зрения и могут лучше раз­личать мелкие детали.

Значительное увеличение угла зрения до­стигается с помощью оптических приборов. По своему наз­начению оптические приборы, вооружающие глаз, можно разбить на следующие две большие группы.

Благодаря увеличению угла зрения при использовании оптического прибора размер изображения предмета на сетчатке увеличивается по сравнению с изображением в не­вооруженном глазе и, следовательно, возрастает способ­ность распознавания деталей. Отношение длины изображе­ния на сетчатке в случае вооруженного глаза b ' к длине изображения для невооруженного глаза b (рис. 3, б) называется увеличением оптического прибора.

Контактные линзы, по мнению специалистов, носят около 125 миллионов человек в мире. А мягкие контактные линзы носят около 90% пользователей по всему миру. Метод коррекции зрения с помощью контактных линз называется контактной коррекцией зрения. Мягкие контактные линзы, в свою очередь, подразделяются на 2 класса: гидрогелиевые линзы и силикон-гидрогелиевые линзы.
Почти 50 % тех, кто носит контактные линзы, — это молодые люди в возрасте от 18 до 25 лет. А среди тех, кто надевает контактные линзы впервые, доля молодых людей в возрасте до 35 лет почти 90 %.
В целом, контактные линзы подразделяют на две большие группы: мягкие и жесткие. Существуют различные классификации контактных линз: по материалу, по частоте замены, режиму ношения , дизайну, степени прозрачности.

Содержание
Вложенные файлы: 1 файл

курсовая работа. иновац. менедж.docx

1.1 История контактных линз……………………………………………………3

1.3 Основные характеристики………………… ………………………………. 9

1.4 Достоинства и недостатки мягких и жёстких линз……………………… .13

Список используемой литературы……………………………………………. 21

Контактные линзы - это небольшие изготавливаемые из прозрачных материалов линзы, надеваемые непосредственно на глаза для коррекции зрения (то есть для повышения остроты зрения).

Контактные линзы, по мнению специалистов, носят около 125 миллионов человек в мире. А мягкие контактные линзы носят около 90% пользователей по всему миру. Метод коррекции зрения с помощью контактных линз называется контактной коррекцией зрения. Мягкие контактные линзы, в свою очередь, подразделяются на 2 класса: гидрогелиевые линзы и силикон-гидрогелиевые линзы.

Почти 50 % тех, кто носит контактные линзы, — это молодые люди в возрасте от 18 до 25 лет. А среди тех, кто надевает контактные линзы впервые, доля молодых людей в возрасте до 35 лет почти 90 %.

В целом, контактные линзы подразделяют на две большие группы: мягкие и жесткие. Существуют различные классификации контактных линз: по материалу, по частоте замены, режиму ношения , дизайну, степени прозрачности.

Цель данной работы изучить виды линз и их применение.

1.1 История контактных линз.

В 1801 г. Т. Юнг применил в эксперименте короткую трубку, заполненную водой с биконвексной линзой. При приставлении к глазу она компенсировала недостатки рефракции глаза.

В 1845 году английский физик Дж. Гершель опубликовал теоретические исследования, обосновавшие коррекцию роговичного астигматизма с помощью оптической системы, контактирующей с глазом.

После экспериментов на животных Фик отважился перейти к человеческому глазу. Сначала им были изготовлены гипсовые отливки, и по этим отливкам он выдувал свои первые пробные линзы. Линзы подобной конструкции Кальт применил у пациентов с кератоконусом.

Первые контактные линзы были склеральными, большого диаметра (от 21 до 16 мм), состоящей из гаптической части, опирающейся на склеру, и центральной оптической части, преломляющей лучи. Под линзовое пространство заполнялось жидкостью с глюкозой или физиологическим раствором.

Первое производство контактных линз было осуществлено известным стеклодувом Мюллером из Висбадена (Германия). Линзы представляли собой обыкновенные глазные протезы.

Время с 1929 по 1948 гг. охватывает второй период, в который происходило усовершенствование уже имеющихся моделей в отношении адаптации и включало попытки поиска более точной формы гаптической линзы.

Первые склеральные линзы изготавливались из стекла. Позднее, в 1937 г, американский офтальмолог В. Файнблум стал изготавливать линзы, у которых склеральная часть была из пластмассы, а роговичная – из стекла. В том же году И. Дьерфи и Т. Обриг изготовили контактные линзы целиком из пластмассы- полиметилметакрилата (ПММА). Усовершенствовались и методы подбора, начав применять раствор флюоресцеина для определения толщины подлинзового пространства

Практика контактной коррекции показала несовершенство склеральных контактных линз – они были тяжелые, имели большие размеры, в силу чего были неподвижны на глазу, что значительно затрудняло обмен слезы в подлинзовом пространстве и ограничивало доступ кислорода к роговице. Все это сказывалось на переносимости линз и приводило к ограничению времени их ношения.

В 1948 г К. Туохи предложил твердые роговичные контактные линзы, которые изготавливались из ПММА. Размеры их были значительно меньше склеральных. В отличие от склеральных, которые удерживались на глазу веками, роговичные линзы удерживаются на роговице силами капиллярного притяжения. Небольшие размеры роговичных линз, облегчение доступа кислорода к роговице позволило значительно улучшить их переносимость срок ношения (до 10-12 часов). С появлением роговичных контактных линз началось бурное развитие контактной коррекции зрения, совершенствовались конструкции и методы подбора твердых роговичных контактных линз.

В 1960 году чехословацкие ученые – академик О. Вихтерле и инженер Д. Лим синтезировали новый полимерный материал НЕМА, разработали метод ротационной полимеризации и осуществили производство мягких контактных линз. Одновременно в США разрабатывались подобные гидрогелевые системы на основе гидрогелевые системы на основе акриламида. Мягкие линзы, благодаря гидрофильности, эластичности, проницаемости для кислорода, хорошо переносятся пациентами. Расширились показания к назначению контактных линз: мягкие линзы используются не только для оптической коррекции аномалий рефракции, но и с лечебной целью при некоторых глазных заболеваниях. Кроме того, стало возможным производить косметические, цветные линзы и даже карнавальные.

Примерно 10 лет назад появилось новое поколение мягких контактных линз — силикон-гидрогелиевые контактные линзы, обеспечивающие пользователям контактными линзами еще более комфортное и безопасное использование этого вида коррекции зрения.

В настоящее время различают следующие виды контактных линз:

Твердые газопроницаемые линзы;

Мягкие газопроницаемые гидрогелиевые линзы;

Мягкие силикон гидрогелиевые линзы.

Остановимся более подробно на мягких контактных линзах, применяемых для контактной коррекции зрения.

Гидрогелевые контактные линзы.
Современные мягкие контактные линзы изготавливают из полимеров, которые характеризуются высокой гидрофильностью. Гидрофильные полимеры легко поглощают воду до определенной концентрации. Полимерный каркас с включенной в него водой и есть гидрогель (так называемые гидрогелевые линзы). Гидрогелевые линзы, всасывая воду, образуют водные каналы, которые собственно и передают кислород. Таким образом, ткани глаза частично получают необходимый им кислород.
Первые гидрогелевые линзы в недостаточной степени пропускали кислород, не обеспечивали им полностью клетки роговицы. Позднее, с разработкой новых материалов для линз, стало возможно создавать тонкие дышащие контактные линзы с высокой кислородопроницаемостью.

Силикон гидрогелевые контактные линзы.
Силикон гидрогелевые линзы совмещают в себе гидрогелевый полимер и полимер силоксан, который обладает высокой гидрофобностью. Поэтому, в материал, из которого изготавливают силикон-гидрогелевые линзы, специально включают увлажняющий агент для придания гидрофильных свойств. Первые силикон гидрогелевые контактные линзы были выпущены в 1999 году. Именно силикон гидрогелевые контактные линзы можно носить непрерывно, не снимая до 30 суток (линзы с пролонгированным сроком ношения).

Для безопасного дневного ношения коэффициент пропускания кислорда (Dk) должен быть 24 – 26 единиц, а для безопасного сна в линзах и того больше – не менее 87 единиц. В настоящее время существует большое разнообразие силикон-гидрогелевых материалов, которые имеют большой показатель пропускания кислорода. Современные силикон гидрогелевые линзы последнего поколения имеют показатель пропускания кислорода (Dk) в среднем от 100 ед. до 140 ед.

Особенности силикон-гидрогелевых линз.
Наличие в составе материала линзы силикона приводит к увеличению модуля упругости. Чем больше линзы содержат силикона, тем жестче они становятся, что оказывает влияние на комфорт пребывания в них. Например, силиконовые линзы Air Optix Night & Day имеют коэффициент пропускания кислорода 175 ед. и модуль упругости 1,4 МПа, а Acuvue Advance, при коэффициенте пропускания 8 ед. – 0,4 МПа.
Кроме того, силикон-гидрогелевые контактные линзы с высоким содержанием силикона имеют самое низкое влагосодержание, что также не увеличивает комфорт пребывания в них. Поэтому пользователям, которые носили просто гидрогелевые линзы, очень часто бывает тяжело привыкнуть к силикон-гидрогелевым линзам, если же силикон-гидрогели были назначены как первичные линзы, то привыкание не вызывает значительного затруднения.

Необходимость понизить модуль упругости и повысить влагосодержание, сохраняя при этом высокую кислородопроницаемость – вот цель, на которую ориентируются производители, разрабатывая новые мягкие контактные линзы. Оптика предлагает вашему вниманию силикон-гидрогелевые линзы Air Optix (CIBA Vision) с Dk – 110 ед. и влагосодержанием 33% или линзы Biofinity (Cooper Vision) Dk – 128 ед., и влагосодержанием 48%. Интернет оптика реализует силикон гидрогелевые линзы, имеющие высокий уровень пропускания кислорода и влагосодержание, а также низкий модуль упругости. Разнообразие контактных линз на сегодняшний день обусловлено тем, что различным людям подходят разные виды линз, и практически каждый клиент сможет найти наиболее комфортный для него вариант.

Надеюсь, данный раздел поможет Вам эффективно и интересно изучать физику.

Учите физику!

Как сказал.

Вопросы к экзамену

Для всех групп технического профиля

Законы и формулы

Учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 49. Линзы. Оптические приборы.

Оптические приборы - устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете.

При первичной оценке качества прибора рассматриваются лишь основные его характеристики:

  • светосила - способность концентрировать излучение;
  • разрешающая сила - способность различать соседние детали изображения;
  • увеличение - соотношение размеров предмета и его изображения.
  • Для многих приборов определяющей характеристикой оказывается поле зрения - угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила (способность) - характеризует способность оптических приборов давать раздельные изображения двух близких друг к другу точек объекта.

Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения.

Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения h, то увеличение m определяется по формуле:

Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.

Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga , где a - угол, под которым наблюдатель видит предмет невооруженным глазом, а b - угол, под которым глаз наблюдателя видит предмет через прибор.

Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.

Линза – оптически прозрачное тело, ограниченное двумя сферическими поверхностями.


Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

Линзы бывают собирающими и рассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.



    • выпуклые:
      • двояковыпуклые (1)
      • плосковыпуклые (2)
      • вогнуто-выпуклые (3)
      • вогнутые:
        • двояковогнутые (4)
        • плосковогнутые (5)
        • выпукло-вогнутые (6)

        Основные обозначения в линзе:


        Прямая, проходящая через центры кривизны O1 и O2 сферических поверхностей, называется главной оптической осью линзы.

        В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления.

        Оптический центр линзы – точка, сквозь которую световые лучи проходят не преломляясь в линзе.

        Главная оптическая ось – прямая, проходящая через оптический центр линзы, перпендикулярно линзе.

        Все прямые, проходящие через оптический центр, называются побочными оптическими осями.

        Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F', которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.

        Фокальная плоскость – прямая, перпендикулярная главной оптической оси линзы и проходящая через фокус линзы.

        Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F.

        Преломление параллельного пучка лучей в собирающей линзе.


        Преломление параллельного пучка лучей в рассеивающей линзе.


        Точки O1 и O2 – центры сферических поверхностей, O1O2 – главная оптическая ось, O – оптический центр, F – главный фокус, F' – побочный фокус, OF' – побочная оптическая ось, Ф – фокальная плоскость.

        На чертежах тонкие линзы изображают в виде отрезка со стрелками:

        собирающая: рассеивающая:

        Основное свойство линз – способность давать изображения предметов . Изображения бывают прямыми и перевернутыми, действительными и мнимыми, увеличенными и уменьшенными.

        Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:


        Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

        Величину D, обратную фокусному расстоянию называют оптической силой линзы.

        Единицей измерения оптической силы является диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = м –1

        Если Вы являетесь автором материалов или обладателем авторских прав, и Вы возражаете против его использования на моем интернет-ресурсе - пожалуйста, свяжитесь со мной. Информация будет удалена в максимально короткие сроки.

        Спасибо тем авторам и правообладателям, которые согласны на размещение своих материалов на моем сайте! Вы вносите неоценимый вклад в обучение, воспитание и развитие подрастающего поколения.

        • Для учеников 1-11 классов и дошкольников
        • Бесплатные сертификаты учителям и участникам

        Муниципальное бюджетное общеобразовательное учреждение

        средняя общеобразовательная школа с. Варварино Тамалинского

        района Пензенской области имени Героя Советского Союза А.И.Дёмина

        Научно – исследовательская работа по физике

        Зрение человека

        Енеди Юлия, ученица 9 класса

        МБОУ СОШ с. Варварино

        Научный руководитель:

        Енеди Т. Г., учитель физики

        Глава 2: Глазные заболевания………….…….……………………………7-9

        Глава 3: Линзы и их применение…………………………..…..………. 10-11

        Среди раздражителей внешней среды для человека особенно большое значение имеют зрительные. Большая часть наших сведений о внешнем мире связана со зрением. 90 % всей информации человек получает при помощи органов зрения. Благодаря зрению мы различаем окружающие нас предметы, движение живых и неживых тел, графические и цветовые сигналы (буквы, цифры, портреты и т.п.). Зрение важно для всех видов трудовой деятельности. Известно, какая долгая, упорная работа нужна для того, чтобы дать слепому приобщиться к труду. В течение многих тысячелетий человечество накапливает опыт, развиваются наука, искусство. Весь этот опыт передаётся последующим поколениям через книги, через письменную речь, воспринимаемую с помощью зрения.

        Актуальность выбранной темы: В современном мире гораздо больше комфорта и удобств, что облегчает значительную часть нашего каждодневного труда, людей освободили от многих жизненных забот, но сильно увеличилась нагрузка на глаза. Экспериментальные данные показывают, что примерно 95% младенцев рождается без дефектов глаз с нормальным зрением. Однако очень малый процент в пожилом возрасте остается с хорошим зрением. На зрение людей возлагается тяжёлая нагрузка. В результате этого мы быстро превращаемся в людей, обязательно носящих очки. Несоответствие человеческого зрения в целом – один из самых серьёзных проблем современности. Перегрузка глаз заключается в том, что мы “используем глаза не по назначению”, то есть не в тех целях, для которых они первоначально предназначались. Первобытный человек пользовался своими глазами только для того, чтобы смотреть вдаль при ярком солнечном свете – для охоты, рыбной ловли и для сражений. Когда солнце заходило, обязанности глаз кончались. Он не работал целый день с предметами, расположенными вблизи глаз и не ходил потом в панорамное кино, не смотрел телевизионные передачи в течение нескольких часов и не читал книгу далеко за полночь. В основном многие недостатки зрения возникают в результате нагрузки на глаза и условий, при которых глаза выполняют работу. Можно значительно корректировать недостатки зрения. Но это требует научного подхода со стороны медицины и каждого человека в отдельности.

        Цель данной работы : узнать, как устроен глаз человека, изучить дефекты зрения, зрительные иллюзии, способы сохранения хорошего зрения на долгие годы, рассмотреть устройство линз, узнать о применении линз для устранения дефектов зрения.

        Задачи, поставленные для достижения этих целей: изучить и структурировать теоретический материал по данной теме, составить указания для сохранения хорошего зрения, провести опрос.

        Методы исследования:

        1.Теоретические методы: знакомство с литературными источниками, анализ литературных источников.

        2.Эмпирические методы: проводились наблюдения над учащимися, анкетирование, сравнение.

        3. Статистические методы: таблицы, графики, диаграммы.

        Глава 1. Строение глаза.

        Глаз человека имеет шарообразную форму . Диаметр глазного яблока около 2,5 см. Снаружи глаз покрыт плотной непрозрачной оболочкой — склерой. Передняя часть склеры переходит в прозрачную роговую оболочку — роговицу, которая действует как собирающая линза и обеспечивает 75 % способности глаза преломлять свет. С внутренней стороны склера покрыта сосудистой оболочкой, состоящей из кровеносных сосудов, питающих глаз. В передней части глаза сосудистая оболочка переходит в радужную оболочку, которая неодинаково окрашена у разных людей. В радужной оболочке есть круглое отверстие — зрачок. Зрачок сужается в случае усиления интенсивности света и расширяется в случае ослабления. Способность глаза приспосабливаться к различной яркости наблюдаемых предметов называют адаптацией . За зрачком расположен хрусталик, который представляет собой двояко­выпуклую линзу. Хрусталик благодаря скрепленным с ним мышцам может изменять свою кривизну, а следовательно, и оптическую силу. Сосудистая оболочка с внутренней стороны глаза покрыта сетчаткой — разветвлениями светочувствительного нерва. Самая чувствительная часть сетчатки расположена прямо напротив зрачка и называется желтым пятном. Место, где зрительный нерв входит в глаз, невосприимчиво к свету, поэтому получило название слепого пятна. В получении изображения так­же принимает участие стекловидное тело — прозрачная студенистая масса, которая заполняет пространство между хрусталиком и сетчаткой. Свет, попадающий на поверхность глаза, преломляется в роговице, хрусталике и стекловидном теле. В результате на сетчатке получается действительное, перевернутое, уменьшенное изображение предмета.

        hello_html_m123962ce.jpg

        Если человек имеет хорошее зрение, он видит четкими как далеко, так и близко рас­положенные предметы. Это происходит потому, что в случае изменения расстояния до предмета хрусталик глаза изменяет свою кривизну. Способность хрусталика изменять свою кривизну в случае изменения расстояния до рассматриваемого предмета, называют аккомодацией. Если человек смотрит на довольно удаленные предметы, в глаз попадают параллельные лучи — в этом случае глаз наиболее расслаблен. (Заметьте, что, задумавшись, человек смотрит как будто вдаль!) Чем ближе расположен предмет, тем сильнее напрягается глаз. Наименьшее расстояние, на котором глаз видит предмет, практически не напрягаясь, называют расстоянием наилучшего зрения. Для людей с нормальным зрением это расстояние равно приблизительно 25 см. Именно на таком расстоянии человек с хорошим зрением читает книгу.

        Глаз как зрительный прибор состоит из двух основных частей:

        1.Преломляющей или оптической (роговица, радужка со зрачком, хрусталик ), суммарная оптическая сила может меняться от 58,6 до 70,6 дптр.

        2.Воспринимающей или нервной ( сетчатка ).

        Глава 2. Глазные заболевания.

        1)Близорукость.

        Близору́кость (миопи́я)— это дефект (аномалия рефракции) зрения, при котором изображение формируется не на сетчатке глаза, а перед ней. Наиболее распространённая причина — увеличенное в длину глазное яблоко, вследствие чего сетчатка располагается за фокальной плоскостью. Более редкий вариант — когда преломляющая система глаза фокусирует лучи сильнее, чем нужно (и, как следствие, они сходятся не на сетчатке, а перед ней). В любом из вариантов, при рассматривании удаленных предметов, на сетчатке возникает нечёткое, размытое изображение. Человек хорошо видит вблизи, но плохо видит вдали и для решения этой проблемы может пользоваться очками или контактными линзами с отрицательными значениями оптической силы.

        hello_html_6d42a917.jpg

        Причины близорукости.

        В подавляющем большинстве случаев миопия сопровождается увеличением передне-заднего размера глазного яблока. Данная проблема решается с помощью очков или контактных линз (только на время ношения), ортокератологических линз (на несколько часов после снятия) или рефракционной хирургии. Национальный Институт Здоровья США утверждает, что не существует способов предотвратить миопию, а использование очков и контактных линз не оказывают влияния на прогрессирование данного заболевания.

        hello_html_m517388a.jpg
        hello_html_3345eae7.jpg

        Дальняя точка Коррекция

        2)Дальнозоркость.

        Дальнозоркость (гиперметропия) — особенность рефракции глаза, состоящая в том, что изображения далёких предметов в покое аккомодации фокусируются за сетчаткой. В молодом возрасте при не слишком высокой дальнозоркости с помощью напряжения аккомодации можно сфокусировать изображение на сетчатке. Для получения отчётливого изображения на сетчатке приходится усилить рефракцию. Это аномалия зрения, которую имеют около четверти населения Земли. Существует ошибочное мнение, что дальнозоркие хорошо видят вдаль, однако это не всегда так. Часто дальнозоркие видят плохо и вблизи, и вдали. Однако люди, страдающие лишь возрастной дальнозоркостью (пресбиопией), хорошо видят вдаль, так как у них нет аномалий рефракции и хрусталик всегда находится в расслабленном состоянии. Дальнозоркие люди часто испытывают головные боли при выполнении работы вблизи.

        hello_html_615de632.jpg

        Причины дальнозоркости.

        Одной из причин дальнозоркости может быть уменьшенный размер глазного яблока на передне-задней оси. Практически все младенцы — дальнозоркие. Но с возрастом у большинства этот дефект пропадает в связи с ростом глазного яблока.

        Причина возрастной (старческой) дальнозоркости (пресбиопии) — уменьшение способности хрусталика изменять кривизну. Этот процесс начинается в возрасте около 25 лет, но лишь к 40—50 годам приводит к снижению остроты зрения при чтении на обычном расстоянии от глаз (25—30 см). Примерно к 65 годам глаз уже практически полностью теряет способность к аккомодации.

        Дальнозоркость может быть исправлена при помощи как очков, так и контактных линз, чтобы изменить направление лучей света в глазу. Больные зачастую вынуждены носить очки или контактные линзы или всё время, или только для близи (читая, работая на компьютере, или выполняя другую близкую работу).

        hello_html_5843e5db.jpg
        hello_html_660a0b2b.jpg

        Дальняя точка Коррекция

        3) Астигматизм

        Причина астигматизма лежит либо в неправильной, несферичной форме роговицы (в разных сечениях глаза, проходящих через ось, радиусы кривизны неодинаковы), либо в нецентричном по отношению к оптической оси глаза положении хрусталика. Обе причины приводят к тому, что для различных сечений глаза фокусные расстояния оказываются неодинаковыми.

        При астигматизме в одном глазу сочетаются эффекты близорукости, дальнозоркости и нормального зрения. Может, например, случиться, что для вертикального сечения фокусное расстояние равно нормальному, а для горизонтального – больше нормального. Тогда глаз окажется в горизонтальном сечении близоруким и не сможет видеть ясно горизонтальных линий на бесконечности, а вертикальные будет четко различать. На близком расстоянии благодаря аккомодации глаз прекрасно различит вертикальные линии, а горизонтальные будут расплывчатыми.

        Астигматизм чаще всего является врожденным, но может стать следствием операции или глазной травмы. Кроме дефектов зрительного восприятия, астигматизм обычно сопровождается быстрой утомляемостью глаз, понижением зрения и головными болями. Исправление астигматизма возможно при помощи цилиндрических (собирательных или рассеивающих) линз. Астигматизм обычно сочетается с другими дефектами зрения – близорукостью или дальнозоркостью, поэтому астигматические очки содержат чаще всего и сферические, и цилиндрические элементы.

        Глава 3. Линзы.

        Характеристики простых линз.

        В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирающих линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих — линзы, края которых толще середины.

        Линзы со специальными свойствами.

        1)Линзы из органических полимеров.

        Полимеры дают возможность создавать недорогие асферические линзы с помощью литья. В области офтальмологии созданы мягкие контактные линзы. Их производство основано на применении материалов, имеющих бифазную природу, сочетающих фрагменты кремний-органического или кремний-фторорганического полимера силикона и гидрофильного полимера гидрогеля. Работа в течение более 20 лет привела к созданию в конце 90-х годов силикон-гидрогелевых линз, которые благодаря сочетанию гидрофильных свойств и высокой кислородопроницаемости могут непрерывно использоваться в течение 30 дней круглосуточно.

        2) Линзы из кварца.

        Кварцевое стекло — переплавленный чистый кремнезём с незначительными (около 0,01 %) добавками Al2О3, СаО и MgO. Оно отличается высокой термостойкостью и инертностью ко многим химическим реактивам за исключением плавиковой кислоты.

        Прозрачное кварцевое стекло хорошо пропускает ультрафиолетовые и видимые лучи света.

        3) Линзы из кремния.

        Кремний сочетает сверхвысокую дисперсию с самым большим абсолютным значением коэффициента преломления n=3,4 в диапазоне ИК-излучения и полной непрозрачностью в видимом диапазоне спектра. Кроме того, именно свойства кремния и новейшие технологии его обработки позволили создать линзы для рентгеновского диапазона электромагнитных волн.

        Применение линз.

        Линзы являются универсальным оптическим элементом большинства оптических систем.

        Традиционное применение линз — бинокли, телескопы, оптические прицелы, теодолиты, микроскопы и фотовидеотехника. Одиночные собирающие линзы используются как увеличительные стёкла. Другая важная сфера применения линз офтальмология, где без них невозможно исправление недостатков зрения — близорукости, дальнозоркости, неправильной аккомодации, астигматизма и других заболеваний. Линзы используют в таких приспособлениях, как очки и контактные линзы. В радиоастрономии и радарах часто используются диэлектрические линзы, собирающие поток радиоволн в приёмную антенну, либо фокусирующие на цели. В конструкции плутониевых ядерных бомб для преобразования сферической расходящейся ударной волны от точечного источника (детонатора) в сферическую сходящуюся применялись линзовые системы, изготовленные из взрывчатки с разной скоростью детонации (то есть с разным коэффициентом преломления).

        Читайте также: