Реферат на тему лимонная кислота

Обновлено: 05.07.2024

Ход работы: Навеску лимонной кислоты – 2 г растворили в 6 мл H2O. В полученный раствор добавили навеску калия бромноватокислого - 0,2 г и долили 0,7 мл концентрированной серной кислоты. Затем внесли 0,04 г перманганата калия и довели объем полученного раствора до 10 мл дистиллированной водой. Тщательно перемешали до полного растворения реактивов.

Колебательные окислительно-восстановительные реакции:

1. FeSO4 . 7H2O кристаллический гептагидрат сульфата железа(II) или

2. Ce(NO3)3 . 6H2O гексагидрат нитрата церия(III)

3. KBr водный раствор бромида калия (2 моль/л, или 12 г на 50 мл воды)

4. KBrO3 насыщенный раствор бромата калия (около 10 г на 100 мл воды)

5. H2SO4 концентрированная серная кислота

6. CH2(COOH)2 водный раствор малоновой кислоты (5 моль/л, или 52 г в

8. дистиллированная вода

Посуда и приборы: Полилюкс с экраном, стеклянная пластинка размером 25Χ25 см, чашка Петри, мерная колба емкостью 100 мл, колба Эрленмейера емкостью 250 мл с пришлифованной пробкой, шесть пипеток, бюретка, стеклянная палочка, промывалка, фильтровальная бумага.

Описание опыта: Для демонстрации эксперимента предварительно готовят растворы А и Б.

Раствор А – раствор ферроина – комплекса железа(II) с о-фенантролином (phen). В мерную колбу емкостью 100 мл вносят 0,70 г гептагидрат сульфата железа(II) (или 0,99 г соли Мора) и 1,49 г о-фенантролина, доводят объем раствора водой до метки и перемешивают. Раствор приобретает красный цвет за счет образования фенантролинового комплекса железа(II):

Fe 2+ + 3 phen = [Fe(phen)3] 2+

Раствор Б – раствор броммалоновой кислоты (готовится непосредственно перед демонстрацией). В коническую колбу с пришлифованной пробкой вводят 3,3 мл раствора бромида калия, 5 мл раствора малоновой кислоты и 5 мл концентрированной серной кислоты. Полученный раствор титруют из бюретки насыщенным раствором бромата калия при перемешивании после добавления каждой порции титранта, добиваясь исчезновения коричневой окраски за счет выделения брома в параллельно протекающей реакции конмутации:

Общий объем раствора бромата калия, пошедшего на титрование, должен составлять около 7,5 мл. Образующаяся броммалоновая кислота неустойчива, однако некоторое время ее можно хранить при температуре 510 0 С.

Для непосредственной демонстрации опыта на стеклянную пластинку, закрывающую световое окно полилюкса, ставят чашку Петри, в которую последовательно вносят с помощью пипеток 10 мл насыщенного раствора бромата калия, 4 мл раствора броммалоновой кислоты и 1,5 мл раствора ферроина. В течение нескольких минут на красном фоне появляются голубые пятнышки за счет образование фенантролинового комплекса железа(III) [Fe(phen)3] 3+ в результате окисления соответствующего комплекса железа(II):

Этот процесс является самоускоряющимся. Образующийся комплекс [Fe(phen)3] 3+ окисляет броммалоновую кислоту с образованием бромид-ионов:

Выделяющиеся бромид-ионы являются ингибиторами реакции окисления комплексов железа(II) бромат-ионами. Только когда концентрация комплексных ионов [Fe(phen)3] 2+ становится достаточно высокой, ингибирующая активность бромид-ионов преодолевается, и раствор становится голубым за счет образования комплекса железа(III). Процесс повторяется снова и снова, поэтому и окраска раствора периодически изменяется из голубой в розовую, или наоборот. Изменение окраски начинается с появлением на розовом фоне голубых пятнышек, от которых во все стороны расходятся концентрические волны окраски. С течением времени скорость изменения окраски уменьшается и, в конце концов, процесс затухает. При этом на экране можно наблюдать появление “черных точек”  проекций пузырьков выделяющегося диоксида углерода.

Диапазон окрасок можно расширить, если добавить в чашку Петри несколько кристаллов гексагидрата нитрата церия(III) Ce(NO3)3 . 6H2O. Тогда, помимо голубой и розовой окраски, можно наблюдать желтое (за счет образования соединений церия(IV)) или зеленое окрашивание (вследствие нало наложения желтого и голубого цвета):

= 2CO2↑ + Br – + HCOOH + 4Ce 3+ + 9H2O

При нагревании скорость реакций возрастает, а смена окрасок убыстряется.

Примечание. Фенантролин представляет собой гетероциклическое соединение с двумя атомами азота, обладающими неподелёнными парами электронов и способными к координации. В комплексных соединениях с железом о-фенантролин играет роль бидентатного лиганда и образует прочные комплексы хелатного типа.

Изучение реакции Белоусова-Жаботинского, как я убедилась, имеет огромное значение, ведь она нашла применение в различных областях науки и техники. Эта реакция используется как модель для исследования грозного нарушения работы сердца – аритмии и фибрилляций. А в недавнее время были начаты эксперименты со светочувствительной модификацией этой реакции, когда динамика в этой системе зависит от интенсивности света. Оказалось, что такую реакцию можно использовать как вычислительную машину для хранения и обработки изображения. Светочувствительная модификация реакции Белоусова-Жаботинского может служить прототипом вычислительного комплекса, который возможно, придет на смену ЭВМ.

С другой стороны, колебательные химические реакции являются ярким примером самоорганизации в неживой природе, и в этом смысле имеется не только естественно-научное, но и философское значение. Фундаментальные изменения в естествознании, породившие так называемую теорию самоорганизации, обусловлены в значительной степени начальным импульсом, приданным ей российскими учеными на рубеже 1950–1960-х гг., когда Белоусов открыл окислительно-восстановительную химическую реакцию. При этом были обнаружены поразительные аналогии, оказалось, что многие природные явления, начиная от образования галактик до смерчей, циклонов и игры света на отражающих поверхностях, по сути дела, – процессы самоорганизации. Они могут иметь самую различную природу: химическую, механическую, оптическую, электрическую и др.

Так, все больший удельный вес приобретают исследования прикладной направленности, например, в области моделирования альтернативных средств обработки информации (в частности, анализ сложных мозаик с градацией яркости объектов). Еще одним новым направлением прикладных исследований является изучение особенностей полимеризации в БЖ-системе или сходных с ней.

Сложной пространственно-временной организации, проявляемой БЖ-системой в отсутствие перемешивания, со временем нашлись аналогии в природе, в биологических системах (например: периодические процессы клеточного метаболизма, волны активности в сердечной ткани и в тканях головного мозга, процессы, происходящие на уровне не экологических систем), в новой ее области – синергетики (теории самоорганизации), а также экспериментальные работы инициировали развитие современной теории динамических систем. Хотя в настоящее время многое в таких реакциях уже понятно, однако причины, вызывающие колебательные химические процессы, остаются до конца невыясненными.

В настоящее время кинетика колебательных реакций – бурно развивающаяся отрасль знаний, возникшая на стыке химии, биологии, медицины, физики, математики. Мне было очень интересно познакомиться со столь необычными и на первый взгляд невозможными свойствами живой материи. Но ещё больше меня поразило, что такое невероятное по своей значимости, впечатляющее открытие долгие годы не воспринималось другими, и просто не было понято великими умами того времени. Это открытие прошло свой тернистый путь, и, в конце концов, заняло достойное место в мировой науке. А сама возможность такой реакции ещё раз доказывает, что в нашем мире существует ещё очень много неизведанного и неизученного.

Рецепты некоторых колебательных реакций

Рецепт 1: Необходимо приготовить растворы перечисленных далее веществ из расчета их конечных концентраций: малоновая кислота 0,2 М; бромат натрия 0,3 М; серная кислота 0,3 М; ферроин 0,005 М. Ферроин можно заменить сульфатом двухвалентного марганца или трехвалентного церия, но при этом интенсивность окраски будет существенно слабее. Около 5 мл раствора всех компонентов нужно налить в чашку Петри так, чтобы толщина слоя жидкости была 0,5-1 мм. Через 3-8 мин (переходный период) можно наблюдать колебания и химические волны.

Рецепт 2: В плоскую прозрачную кювету слоями (1 мл) налить следующие растворы:

- малоновую кислоту (0,3 моль/л)

- ферроин (0,003 моль/л)

Кювету поставить на лист белой бумаги. Темп реакции можно изменить, добавляя щелочь или кислоту.

Рецепт 3: Необходимы растворы:

- лимонной кислоты (40 г в 160 мл H2O)

А также навески:

Раствор лимонной кислоты нагреть до 40°-50° С, затем высыпать навеску KВrO3. Стакан поставить на лист белой бумаги и внести навеску Ce2(SO4)3 и несколько мл H2SO4. Сразу начинает происходить чередование цветов: желтый > бесцветный > желтый, с периодом 1-2 мин.

Рецепт 4: Необходимы растворы:

- HСlO4 (30 мл разбавленного раствора)

- малоновая кислота (3 г в 50 мл H2O). И навески:

- MnSO4 (1г) и немного крахмала.

Все слить в один стакан (200-250 мл), добавить навески, размешать стеклянной палочкой. Происходит чередование цвета: бесцветный > жёлтый > голубой.

2. Шноль С. Э. Знание – Сила. 1994. № 3. С. 62-71.

3. Жаботинский А. М. Концентрационные автоколебания. М.: Наука, 1974.

4. Гарел Д., Гарел О. Колебательные химические реакции / Пер. с англ. М.:

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Научно-исследовательская работа

Тема работы

Лимонная кислота

Бушуева Ольга Андреевна,

учащаяся 10 класса

Руководитель:

Сергеева Вера Николаевна,

1. Актуальность работы.

2. Объект исследования.

4. Цель исследования.

5. Задачи исследования.

6. Методы исследования.

7. Теоретическая значимость исследования.

8. Практическая значимость исследования.

II. Основное содержание ……………………………………………………… 4

1. Исторические сведения ………………………………………………. 4

1.1. Происхождение названия вещества. Первые сведения о лимонной кислоте и ее свойствах

2.1. Строение молекулы лимонной кислоты. Формула. Химическое название.

2.2. Физические свойства лимонной кислоты.

2.3. Химические свойства лимонной кислоты

2.4. Получение лимонной кислоты в промышленности.

2.5. Нахождение лимонной кислоты в природе.

2.6. Особенные свойства лимонной кислоты и ее солей.

2.7. Применение лимонной кислоты .

3.2. Учебно-исследовательский эксперимент “Лимонная кислота как разрыхлитель”.

3.4. Учебно-исследовательский эксперимент “Осаждение белков молока лимонной кислотой”.

3.5. Учебно-исследовательский эксперимент “Удаление пятен ржавчины с тканей с помощью лимонной кислоты”.

3.6. Выводы по результатам экспериментов.

III. Заключение и в ыводы по работе ……………………………………… 10

I . Введение

1. Актуальность работы заключается в том, чтобы выяснить: какими свойствами обладает лимонная кислота, ее области применения. Изучить получение лимонной кислоты, как естественным путем, так и в промышленности.

2. Объект исследования: лимонная кислота.

3. Гипотеза: недостаточные знания по отдельным темам могут привести к негативному мнению о данном веществе.

4. Цель исследования: целью моего исследования является: изучение физических свойств лимонной кислоты, способов ее получения и областей применения, особых свойств этого всем знакомого вещества, биологической роли лимонной кислоты.

5. Задачи исследования:

Анализ литературных данных и данных сети интернета.

Проведение лабораторного опыта по ознакомлению с физическими свойствами лимонной кислоты.

Проведение ряда учебно-исследовательских экспериментов.

Анализ полученных экспериментальных данных.

6. Методы исследования:

Библиографический анализ литературы и материалов сети интернета.

Проведение лабораторного опыта.

Проведение учебно-исследовательского эксперимента.

Анализ полученных результатов эксперимента.

7. Теоретическая значимость исследования заключается в том, что результаты исследования могут быть использованы в нашей школе на уроках химии и биологии и во внеурочной деятельности для более глубокого изучения темы “Лимонная кислота”, для применения знаний на практике.

8. Практическая значимость исследовательской работы состоит в том, что она может быть использована для повышения образовательного уровня школьников при изучении предметов химии и биологии, подготовки к экзаменам. Д ля использования лимонной кислоты в быту помогут приобретенные знания в области лимонной кислоты.

II . Основное содержание

1. Исторические сведения

1.1. Происхождение названия вещества. Первые сведения о лимонной кислоте и ее свойствах .

Впервые лимонная кислота была получена из сока недозрелых лимонов шведским аптекарем Шееле (приложение 1) в 1784 г.; он и дал ей название.

Состав химических веществ и их формулы во времена Шееле определять не могли и поэтому называли новые вещества по тем исходным материалам, из которых их получали, а также по вкусу, по запаху, либо по именам химиков, впервые получивших эти вещества.

До 30-х годов ХХ века лимонная кислота вырабатывалась из цитрусовых, в основном в Италии. Позднее эту кислоту стали получать промышленным способом, как путем синтеза, так и из натуральных продуктов. Так в 1933 году в Чехословакии, а в 1935 году в Советском Союзе было создано производство лимонной кислоты методом биохимического синтеза с помощью плесневых грибов Aspergillus niger из сахара.

2.1. Строение молекулы лимонной кислоты. Формула. Химическое название.

hello_html_m22e70dbd.jpg

Формула лимонной кислоты:

2.2. Физические свойства лимонной кислоты.

Твердая, кристалловидная белого цвета

Хорошо растворима в воде, растворима в этиловом спирте, малорастворима в диэтиловом эфире

Температура плавления 153°C

Температура разложения = 175 °C.

Молярная масса составляет 192,1 г/моль. Плотность — 1,665 г/см³

2.3. Химические свойства лимонной кислоты

Под действие серной кислоты лимонная кислота как α-гидроксикислота разлагается с образованием ацетондикарбоновой и муравьиной кислот.

Взаимодействует с металлами

Взаимодействует с основными оксидами

Взаимодействует с основаниями

Взаимодействует с солями

Взаимодействует с аммиаком

Подвергается электролитической диссоциации

Проявляет общие для всех карбоновых кислот свойства. При нагревании выше 175 °C лимонная кислота переходит в аконитовую кислоту

Лимонная кислота переходит в ангидриды итаконовой и цитраконовой кислот (теряется вода и углекислый газ и образование ацетона)

В реакциях с сильными окислителями (перманганат калия, бертолетова соль) переходит в акриловую кислоту и этиленоксид.

В водном растворе образует хелатные комплексы с ионами кальция, магния, меди, железа и др.

2.4. Получение лимонной кислоты в промышленности.

Около 60 лет назад лимонную кислоту выделяли преимущественно из плодов цитрусовых растений. В настоящее время основной путь промышленного производства — биосинтез из сахара или сахаристых веществ ( меласса ) промышленными штаммами плесневого гриба Aspergillus niger . Поскольку основным сырьем для получения лимонной кислоты является меласса, в которой содержится много железа, то на стадии пред-ферментации его осаждают при помощи желтой кровяной соли -K4[Fe(CN)6]. Известны два способа ферментации Aspergillus niger - поверхностный и глубинный. Первый из них реализуют на предприятиях малой и средней мощности в виде жидкофазной ферментации на жидкой среде (например, в ряде стран Европы и Америки) и в виде твердофазной ферментации (например, в Японии). Ныне Е330 получают новыми способами. Среди них самыми популярными являются:

с помощью плесневых грибов;

из продуктов получения сахара;

2.5. Нахождение лимонной кислоты в природе.

Лимонная кислота в определённой концентрации содержится в большинстве прокариотов и почти во всех эукариотах (преимущественно в митохондриях).

В естественном виде лимонную кислоту содержат такие фрукты и ягоды, как: земляника, все цитрусовые, крыжовник, брусника, персики, лимоны в большом количестве (особенно несозревшие), ананасы, барбарис, хвойные, рябина, помидоры, клюква, абрикосы, гранаты, черная смородина, айва, вишня, китайский лимонник, малина, сливы, махорка и другие. (приложения 3, 4, 5)

2.6. Особенные свойства лимонной кислоты и ее солей.

Лимонная кислота всегда есть в человеческом организме. Ее производные — соли, выполняют важную роль при формировании костей, помогая регулировать размер кристаллов кальция. В биохимии соли данной кислоты имеют большое значение в качестве промежуточного звена в цикле трикарбоновых кислот, который имеет место при метаболизме у всех аэробных организмов. Обладает лимонная кислота и ценными лечебными свойствами. Она способствует очищению организма от вредных веществ, лишних солей, шлаков, положительно влияет на работу систем пищеварения, улучшает зрение, сжигает углеводы, проявляет ценные противоопухолевые свойства, повышает иммунитет. Лимонная кислота также способствует выведению токсинов через клетки кожи.

С другой стороны, сухая лимонная кислота и её концентрированные растворы при попадании в глаза вызывают сильное раздражение, при контакте с кожей возможно слабое раздражение. При употреблении внутрь больших количеств лимонной кислоты возможны: раздражение слизистой оболочки желудка, кашель, боль, кровавая рвота. При вдыхании пыли сухой лимонной кислоты — раздражение дыхательных путей. Высокая концентрация данного вещества, применяемая наружу или внутрь, является причиной серьезных ожогов. Также лимонная кислота является разрушителем зубной эмали, вступая с ней в реакцию из-за нейтрализации кальция. Страдающим желудочно-кишечными заболеваниями не рекомендуется (а в некоторых случаях даже запрещено) употреблять продукты, имеющие в своем составе Е330. Также ограничить их употребление или исключить из своего меню следует лицам с повышенной кислотностью, так как поступление в организм лимонной кислоты вызовет ухудшения состояния здоровья, может стать причиной сильных желудочных болей.

2.7. Применение лимонной кислоты.

В кондитерской промышленности лимонная кислота используется как подкислитель и усилитель вкуса.

В алкогольные и прохладительные газированные и негазированные напитки лимонная кислота добавляется для придания им ощущения свежести.

Кроме того, она является синергистом, т. е. веществом, усиливающим действие антиоксидантов, таких, например, как аскорбиновая кислота.

В консервной промышленности лимонная кислота используется как консервант вместо уксуса, который признан канцерогеном и применение которого в большинстве стран в пищевой промышленности резко ограничен.

В масложировой промышленности лимонная кислота предохраняет продукцию от разлагающего действия находящихся в них следов тяжелых металлов, путем образования с ними комплексных соединений. Таким путем значительно снижается вероятность прогоркания жиров, маргаринов и животного масла.

Применяется в медицине, в том числе в составе средств, улучшающих энергетический обмен (в цикле Кребса).

В косметике используется как регулятор кислотности, буфер, хелатирующий агент, для шипучих композиций (ванны).

Применение в домашнем хозяйстве :

Для продления времени стояния роз в воде, ее нужно обогатить сахаром и лимонной кислотой. Для вазы, в которую помещается пять литров воды нужно взять 1 г лимонной кислоты (1/8 чайной ложки) и стакан сахара, растворить в воде и поместить в этот раствор розы.

Раствор для очищения утюга от накипи. Такой способ очистки применим для утюгов с возможностью подачи пара. Чтобы приготовить чистящий раствор, в стакане воды следует растворить столовую ложку лимонной кислоты. Этот раствор залить вместо воды в резервуар для подачи пара, подключить утюг к сети электропитания, установить отметку подачи пара на максимум и нажимая на кнопку подачи пара, постепенно очищать утюг. По окончанию проведения этой процедуры в резервуар для воды наливают чистую воду и повторяют процедуру несколько раз, с целью очистки парообразующих путей от следов лимонной кислоты.

Раствор для очищения налет или потемнений на посуде из серебра, а также ювелирных украшениях, любые монеты, кулоны, перстни, браслеты и так далее.

Раствор для очищения накипи на дне и стенках чайника. Очистить сантехнику и даже стены ванной комнаты можно при помощи порошка, полученного из Е 330. Желательно, чтобы фракции порошка были мелкими, а достигнуть этого можно, размолов средство в кофемолке (используя средства защиты дыхательных путей) или хотя бы измельчив скалкой на столе. Использовать так само, как и все чистящие порошки — нанеся небольшое количество на губку, постепенно очищать поверхность.

Обладая легкими дезинфицирующими свойствами, Е 330 прекрасно подходит для очищения кухонных столов. Протирать стол слабым раствором этого вещества достаточно раз в неделю. Учитывая его свойство устранять неприятные запахи, им можно протирать также внутренние поверхности холодильника и кухонных шкафчиков.

Цель выполнения лабораторного опыта: изучить физические свойства лимонной кислоты и определение ph среды.

Этапы лабораторного опыта:

Убедилась в том, что лимонная кислота имеет белый, кристаллический вид

Приготовила раствор лимонной кислоты, убедившись, что она растворима в воде. (приложение 6)

С помощью индикаторов определяю р h среду. Индикатор Лакмус изменил цвет на бледно-розовый цвет. Индикатор Метиловый оранжевый изменил цвет на красный. Индикатор Универсальный изменил цвет на оранжевый, и с его помощью определила, что среда раствора кислая, слабая. Ph = 3. 0 (приложение 7)

Температура плавления 153°C

Температура разложения = 175 °C.

Молярная масса составляет 192,1 г/моль. Плотность — 1,665 г/см³

3.2. Учебно-исследовательский эксперимент “Лимонная кислота как разрыхлитель”.

Цель эксперимента: доказать, что лимонную кислоту можно использовать в качестве разрыхлителя.

Приготовила раствор лимонной кислоты и соды.

С6Н8О7 + 3NaHCO3 --> Na3C6H5O7 + 3CO2 + 3H2O (приложение 8)

Наблюдала выделение углекислого газа. (приложение 9)

Раствор лимонной кислоты и пищевой соды можно использовать в качестве разрыхлителя теста в кулинарии. Разрыхлитель используется для того, чтобы тесто было нежным и приятным. Сода помогает тесту подняться.

Название эксперимента и есть цель моей исследовательской работы.

Этапы эксперимента и выводы:

Приготовила раствор лимонной кислоты.

Наношу на две половинки заранее разрезанных яблок этот раствор, а две половинки оставляю непропитанными. (приложение 10)

Наблюдаю, что через некоторое время те половинки, которые не были смазаны раствором, темнеют. Потемнение происходит из-за окисления железа, содержащегося в яблоке, кислородом воздуха. (приложение 10)

Лимонная кислота замедляет процессы окисления, являясь природным антиоксидантом. Поэтому она играет большую биологическую роль в жизни человека.

3.4. Учебно-исследовательский эксперимент “Осаждение белков молока лимонной кислотой”.

Цель эксперимента: проследить процесс осаждения белков молока с помощью лимонной кислоты.

В стакан с молоком насыпаю лимонной кислоты. Перемешивая, наблюдаю на трубочке творожистовидный осадок. (приложение 11)

Пропускаю через фильтр получившийся раствор.

Наблюдаю, что через некоторое время на фильтре остается масса, содержащая казеин и жиры. (приложение 12)

На долю глобулина приходится 6-15% от общего содержания белков. В молоке глобулин находится в растворенном состоянии. Глобулин молока укрепляет иммунитет, защищает организм от инфекций. На долю альбумина приходится 2-3% от общего содержания белков в молоке.

3.5. Учебно-исследовательский эксперимент “Удаление пятен ржавчины с тканей с помощью лимонной кислоты”.

Название эксперимента и есть цель моей исследовательской работы.

Приготовила концентрированный раствор лимонной кислоты.

Готовым раствором смочила ткань со ржавчиной. Через небольшой промежуток времени наблюдала исчезновение пятна. (приложение 13)

Проведя этот эксперимент, я рассмотрела лимонную кислоту как пятновыводитель. Это свойство лимонной кислоты можно применить в быту.

3.6. Выводы по результатам экспериментов.

Выполняя эксперименты, я изучила некоторые свойства лимонной кислоты, о которых я и не догадывалась. Я узнала, какую биологическую роль в жизни человека играет лимонная кислота. Узнала и наглядно продемонстрировала осаждение белка молока лимонной кислотой. Лимонная кислота – интересное органическое вещество!

III. Заключение и выводы по работе

Выполнив такую обширную работу, я выяснила значение лимонной кислоты в жизни человека, изучила физические и химические свойства данной кислоты, изучила способы получения и области применения лимонной кислоты, выяснила влияние лимонной кислоты на здоровье человека – это естественный антиоксидант. Узнала, что лимонная кислота может осаждать белки молока, может использоваться как средство для очищения поверхностей, для приготовления газированных напитков, как разрыхлитель теста совместно с пищевой содой.

IV. Источники

Химия. 10 класс. Углубленый уровень: учебник / О.С.Габриелян, И.Г.Остроумов, С.Ю. Пономарев, - 6-е изд., стереотип. - М.: Дрофа, 2018. - 368: ил.

Применение находят и побочные продукты ферментации: мицелий грибов и культуральная жидкость. Мицелий высушивают и используют как сырье или добавляют к удобрениям. Хитозан — глюкановый комплекс, полученный из мицелия, обладает лучшими хелатирующими свойствами, чем хитозан животных. В культуральной жидкости обнаружены гидролитические ферменты пектиназа, протеаза, целлюлоза и в-глюкозидаза. Впервые… Читать ещё >

Введение. Получение лимонной кислоты ( реферат , курсовая , диплом , контрольная )

Лимонная кислота является важным соединением, как в метаболизме живых организмов, так и в промышленности.

Сама кислота, как и ее соли, широко используется как вкусовая добавка, регулятор кислотности и консервант в пищевой промышленности, для производства напитков, сухих шипучих напитков. Она содержится, по крайней мере, в половине всех пищевых продуктов. Применяется в медицине, в том числе в составе средств, улучшающих энергетический обмен. В косметике используется, как регулятор кислотности, буфер, агент, для шипучих композиций.

Лимонная кислота, являясь главным промежуточным продуктом метаболического цикла трикарбоновых кислот, играет важную роль в системе биохимических реакций клеточного дыхания множества организмов.

По объему производства лимонная кислота является одним из главных продуктов микробного синтеза, и мировой объем ее производства достигает 400 тыс. тонн в год, что в денежном выражении составляет около 325 млн евро.

Рис. 1. — Структурная формула лимонной кислоты:

Общая информация

Лимонная кислота (2-гидрокси-1,2,3-пропантрикарбоновая кислота, 3-гидрокси-3-карбоксипентандиовая) (C6H8O7) — кристаллическое вещество белого цвета, температура плавления 153 °C, хорошо растворима в воде, растворима в этиловом спирте, плохо растворима в диэтиловом эфире. Слабая трёх основная кислота. Соли и эфиры лимонной кислоты называются цитратами.

Вещество чрезвычайно распространено в природе: содержится в ягодах, плодах цитрусовых, хвое, стеблях махорки, особенно много её в китайском лимоннике и недозрелых лимонах.

В настоящее время сырьём для получения лимонной кислоты является меласса свекловичная.

В кондитерской промышленности лимонная кислота используется как окислитель и усилитель вкуса.

В алкогольные и прохладительные газированные и негазированные напитки лимонная кислота добавляется для придания им ощущения свежести.

Кроме того, она является синергистом, т. е. , веществом, усиливающим действие антиоксидантов, таких, например, как аскорбиновая кислота. В консервной промышленности лимонная кислота используется как консервант вместо уксуса, который признан канцерогеном и применение которого в большинстве стран в пищевой промышленности резко ограничено. В масложировой промышленности лимонная кислота предохраняет продукцию от разлагающего действия находящихся в них следов тяжелых металлов, путем образования с ними комплексных соединений. Таким путем значительно снижается вероятность прогоркания жиров, маргаринов и животного масла.

В косметической промышленности лимонная кислота является частью многих косметических препаратов: эликсиров, лосьонов, кремов, шампуней, фиксаторов волос и т. д.

Используется, в основном, как регулятор рН.

При умеренном употреблении лимонная кислота стимулирует деятельность поджелудочной железы, возбуждает аппетит, способствует усвоению пищи.

Применение находят и побочные продукты ферментации: мицелий грибов и культуральная жидкость. Мицелий высушивают и используют как сырье или добавляют к удобрениям. Хитозан — глюкановый комплекс, полученный из мицелия, обладает лучшими хелатирующими свойствами, чем хитозан животных. В культуральной жидкости обнаружены гидролитические ферменты пектиназа, протеаза, целлюлоза и в-глюкозидаза.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Лимонная кислота является основным подкислителем. Ее доля составляет около 75% объема всех производимых подкислителей. Особенно широко она используется в производстве безалкоголь­ных напитков, которым придает фруктовые и ягодные запахи и вкус.

Расширяется сфера применения лимонной кислоты в техничес­ких целях — в химической, текстильной, кожевенной, металлурги­ческой и других отраслях промышленности. Спрос на лимонную кислоту непрерывно растет, но в бывших социалистических стра­нах он удовлетворяется крайне слабо, поэтому в настоящее время организуются новые производственные мощности по выпуску этого ценного продукта.

Лимонную кислоту производят главным образом путем мик­робного синтеза, который является важной отраслью биотехно­логии. Настоящий отчет посвящен микроорганизмам — продуцен­там лимонной кислоты и современным достижениям биотехнологии в области биосинтеза органических кислот. Описаны теоретичес­кие основы микробного синтеза и механизмы регуляции метабо­лизма органических кислот, их связь с общей физиологией мик­робных клеток. В работе отражен многолетний опыт авторов в промышленном биосинтезе органических кислот. Описываются способы утилизации отходов производства лимонной кислоты с целью получения ценных кормовых продуктов.

Лимонная кислота НООС-СН2С(ОН) -СООН-СН2-СООН яв­ляется моноокситрикарбоновой кислотой, кристаллизующейся из водных растворов с одной молекулой воды (моногидрат лимонной кислоты) в виде бесцветных прозрачных ромбообразных кристал­лов .Моногидратная лимонная кислота имеет молекуляр­ную массу 210, плотность 1,540 г/см 3 и температуру плавления 70—75 С С. Кристаллизационная вода теряется при хранении и ин­тенсивно выделяется при температурах, превышающих 40—50 °С. При 100 °С вода теряется полностью.

При температуре кристаллизации 36,6 °С и выше выделяется безводная лимонная кислота с молекулярной массой 192 и темпе­ратурой плавления 153 °С. При нагревании до 175 °С лимонная кислота разлагается.

Лимонная кислота хорошо растворяется в воде (1460 г/л при 20 °С) и умеренно — в этаноле (620 г/л при 25 °С).

Соли лимонной кислоты — цитраты — имеют низкую водораство-римость.

Лимонная кислота широко распространена в природе. Особенно много ее в незрелых фруктах и ягодах (лимоны, клюква, яблоки, виноград, брусника и др.),

где лимонная кислота является естест­венным консервирующим агентом.

Продуценты лимонной кислоты

После первых публикаций К.Вемера о способностях микромицетов синтезировать органические кислоты, в том числе лимонную, многие микробиологи стали тщательно изучать физиологию грибов и их биосинтетические способности. Многочисленные проверки по­казали явно выраженный потенциал сверхсинтеза лимонной кис­лоты у целого ряда микромицетов, дрожжевых грибов и бактерий. В зависимости от химической природы окисляемого субстрата (свекловичная, тростниковая, цитрусовая или финиковая меласса, сок сахарного тростника, гидрол, гидролизаты крахмала, багасса, сахароза, глюкоза, парафины и много других субстратов) в ка­честве продуцентов лимонной кислоты в более или менее широких масштабах используют микромицеты, принадлежащие к родам Aspergillus
,
Penicillium
,
Trichoderma
и Botrytis
,
дрожжевые грибы родов Candida
,
Delaromyces
и Torulopsis
,
а также бактерии родов Arthrobacterium
,
Pseudomonas
и Micrococcus
.

Детально изучены многочисленные представители аспергиллов, особенно Aspergillus

awamori
,
A
.
aureus
,
A
.
clavatus
,
A
.
glaucus
,
A
.
ni
­
ger
.

Самым широко распространенным продуцентом лимонной кис­лоты является микромицет Aspergillus

niger
,
физиология и меха­низм биосинтеза лимонной кислоты которого наиболее изучены.

В настоящее время для биосинтеза лимонной кислоты в ка­честве основного сырья широко используют мелассу — отходы сахароперерабатывающей промышленности. В зависимости от исход­ного материала различают свекловичную, тростниковую, цитрусо­вую и другие виды мелассы. На международном рынке ежегодна продается 30—35 млн. т этого сырья. В России ежегодный объем производства мелассы составляет 3 млн. т. Хотя меласса в основ­ном используется для кормовых целей, ее широко применяют также в микробиологической промышленности.

Свекловичная меласса характеризуется высоким содержанием 'Сахаров (46—55%), из которых преобладает сахароза. Меласса имеет сложный и непостоянный химический состав. Она содержит коллоиды, органические кислоты, витамины, белки и свободные .аминокислоты, сложный спектр минеральных веществ (табл. 4.8— 4.10). Из нелетучих органических кислот в мелассе могут при­сутствовать, %: лимонная — 0,01—0,5; глюконовая — 0,5—1,0; яблочная — 0,1—0,5; янтарная — 0,1—0,7.

Хорошо сбраживаемая меласса должна содержать не более 1% инвертного сахара и не более 1% СаО и 0,06,% сернистого газа (добавляемого в мелассу в качестве консервирующего агента) при общем содержании сухих веществ не менее 75% и Сахаров не менее 46,% при невысоком содержании живых микроорганизмов.

В золе свекловичной мелассы много калия, магния, железа, но относительно мало фосфора.

Химический состав мелассы зависит от климатических и поч­венных условий

выращивания сахарной свеклы, применяемых ми­неральных удобрений, времени уборки урожая (поздние сроки уборки отрицательно влияют на качество мелассы), технологичес­ких нюансов переработки сахарной свеклы, условий транспорти­ровки и хранения мелассы.

Производство мелассы связано с сезонными доставками сырья. В производстве лимонной кислоты наилучшие результаты дает зрелая, выдержанная меласса. Важное значение имеют длитель­ность хранения мелассы и наличие герметически закрытых ем­костей — мелассохранилищ с пневматическим перемешиванием (для предотвращения расслоения), насосами, устройствами для подачи и забора мелассы из разных горизонтальных хранилищ.

В последнее десятилетие качество мелассы ухудшается под влиянием ряда дополнительных факторов, связанных с техничес­ким прогрессом . Широко применяемые в сельском хозяйстве ядохимикаты и минеральные удобрения могут оставлять опреде­ленные отрицательные следы в сельскохозяйственной продукции, в частности в мелассе, где обнаружены инсектициды, например фосфорорганический инсектицид малатилон (до 90 мг в 1 кг ме­лассы), оказывающий ингибирующее влияние на биосинтез лимон­ной кислоты .

В мелассе установлено присутствие некоторых фунгицидов (трилон, мертрилан и др.). Данные о влиянии фунгицидов на биосинтез лимонной кислоты неоднозначны. Некоторые авторы ут­верждают, что ряд фунгицидов подавляет активность ферментов изоцитрат- и сукцинатдегидрогеназы и тем самым способствует биосинтезу лимонной кислоты, во всяком случае у дикорастующих культур Aspergillus

niger
. По данным других авторов, фунги­циды отрицательно влияют на ацидогенез.

Обнаружено угнетение синтеза белка в клетках Aspergillus

niger
под действием ртутьорганического фунгицида мертрилана. В результате его воздействия на ферменты ЦТК (в частности на малат-, изоцитрат- и сукцинатдегидрогеназы) резко понижаются интенсивность дыхания клеток и активность терминальных оксидо-редуктаз, особенно цитохромоксидазы. Фунгицид трилан (4,5,6-трихлорбензоксазолидон) также отрицательно влияет на метабо­лизм микромицета Aspergillus

niger
,
по механизм его воздействия другой .

Все исследованные фунгициды подавляют интенсивность дыхания, тормозят синтез белка, нарушают проницаемость цитоплазматических мембран .

В мелассе нередко обнаруживается присутствие детергентов.Их влияние на микроорганизмы изучено слабо. Установлено изменение проницаемости клеточной мембраны Aspergillus

niger
и как следствие — повышенная гидроксилазная активность культуры.

Способ культивирования

Успехи глубинной ферментации в производстве антибиотиков побудили производителей лимонной кислоты искать пути глубин­ного культивирования ее продуцентов. В СССР первой глубинное культивирование продуцентов лимонной кислоты освоила группа исследователей под руководством Г. И. Журавского в 50-е гг., при­меняя синтетические сахарозные среды и специально

Технология глубинного культивирования продуцентов лимонной кислоты представляет собой явно выраженный двухступенчатый процесс. Первая ступень включает выращивание посевного мате­риала из конидиоспор в посевной среде (на качалке и в посевном аппарате) при 32—33 °С в условиях хорошей аэрации (0,8—1,0 объ­ема воздуха на 1 объем среды в минуту) и при непрерывном пе­ремешивании среды. Продолжительность культивирования на ста­дии выращивания посевного материала — 2 сут (1 сут — на ка­чалке, 1 — на посевном аппарате).

Сказанное принципиально не исключает непосредственного применения конидиоспор в качестве посевного материала для ос-

новной ферментации, однако это существенно удлиняет цикл фер­ментации: с 7—8 до 12—13 сут .

Основную ферментацию в глубинных условиях осуществляют в производственном биореакторе при коэффициенте его заполнения 0,75—0,80 и количестве посевного материала 5—8% от объема ферментируемой среды. Начальная концентрация Сахаров — 10— 14%, часто применяют подкормку свежей средой, особенно в слу­чаях применения мелассных сред . Регуляции рН среды не требуется, но поскольку лимонная кислота очень коррозионна и для ферментационного оборудования необходима устойчивая к кор­розии сталь, то для смягчения коррозионное практикуют подщелачивание ферментируемого субстрата до рН 3,8—4,2.

Процесс ферментации имеет черты двух фаз, или стадий: фор­мирования биомассы и кислотообразования.

Для фазы роста биомассы характерно объединение молодого мицелия в шарообразные агломераты, формирование которых про­должается до 70—80 ч ферментации. Некоторая часть гиф остается в свободном виде.

Во время интенсивного роста потребность продуцента в моле­кулярном кислороде составляет до 1 кг па каждый кубометр фер­ментируемого субстрата в час. В фазе биосинтеза лимонной кислоты потребность в кислороде в некоторой степени снижается и состав­ляет 0,5—0,6 кг 02/м 3 -ч. Для обеспечения массопередачи кисло­рода в ферментируемый субстрат вводится стерильный воздух в количестве 0,8—1,0 объема на 1 объем среды в минуту, одновре­менно с помощью мешалки создается циркуляция среды со ско­ростью, соответствующей 1,2—1,5 м/с вдоль стенки ферментатора. Насыщение среды кислородом в начальной фазе ферментации должно составлять 20—25,% от полного насыщения, в фазе био­синтеза лимонной кислоты — 10—15,%. Для обеспечения массооб-меиа молекулярного кислорода необходим расход электроэнергии в количестве 1,8—2,2 кВт на 1 м 3 среды.

Температурные режимы в ферментируемом субстрате дифферен­цированы: в фазе роста биомассы — 32—33 °С, в фазе кислотообра­зования — 30—31 °С.

В зависимости от особенностей используемого мутанта Asper
­
gillus

niger
применяют разные варианты технологических режимов глубинной технологии.

1. ХАРАКТЕРИСТИКА КОНЕЧНОЙ ПРОДУКЦИИ ПРОЕКТИРУЕМОГО ПРОИЗВОДСТВА
1.Техническое наименование продукта – лимонная кислота (чистота 99,9%).

2. Лимонная кислота будет выпускаться в соответствии с требованиями ГОСТ 908—79 .

3.Лимонную кислоту получают из культуральной жидкости при глубинном культивировании микроскопического гриба Aspergillus niger с последующим отделением биомассы.

За рубежом лимонную кислоту классифицируют по величине кристаллов на ситовых аппаратах. Большое внимание обращают на легкообугливающиеся вещества, дающие окраску при нагрева­нии в течение определенного времени с концентрированной серной кислотой при температуре 90 °С. Они вызываются следами орга­нических соединений — сахара, оксиметилфурфурола, других аль­дегидов и спиртов, за исключением цис- и трансаконитовой, изолимонной, щавелевой, янтарной и олеиновой кислот, эритрита, ксилита и сорбита [93].

Для удаления легкообугливающихся веществ предложено много способов: выделение цитрата кальция в присутствии 10 % пероксида водорода к коли­честву лимонной кислоты; нагревание до кипения растворов лимонной кислоты после отделения гипса в сочетании с обработкой пероксидом водорода; добавле­ние к раствору лимонной кислоты перед кристаллизацией борной кислоты в количестве 0,1—0,3 % по массе раствора, экстракция фреоном и др.

^Наиболее эффективным способом очистки кристаллов лимон­ной кислоты от'всех примесей является перекристаллизация. Ли­монная кислота сорта экстра по всем показателям и нормам соответствует данным Британской фармакопеи 1968 г.

Лимонная кислота выпускается только в упакованном виде: реализуемая через розничную сеть —в мелкой фасовке массой нетто 10—100 г; предназначенная для предприятий пищевой и других отраслей промышленности — в крупной фасовке массой нетто 10—40 кг. При фасовке допускаются отклонения по массе нетто, не превышающие при массе до 50 г ±4 %, от 50 до ПО г +3 %. При упаковке кислоты в ящики и мешки допускаются отклонения, не превышающие ±0,5 %.

Крупная фасовка проводится в льно-джуто-кенафные тканевые мешки или льняные продуктовые массой нетто не более 40 кг, в ящики из гофриро­ванного картона. Внутрь мешков или ящиков должны вставляться мешки-вкла­дыши из полиэтиленовой пленки, которые после заполнения кислотой гермети­чески закрывают путем сварки. Допускается завязка увязочным шпагатом из лубяных волокон. Верхние швы тканевых наружных мешков зашивают машин­ным способом льняными нитками или вручную — увязочным шпагатом из лубя­ных волокон.

При внутригородских перевозках допускается упаковка кислоты в бумаж­ные непропитанные открытые трехслойные мешки с внутренним мешком-вкла­дышем из полиэтиленовой пленки массой нетто не более 25 кг; в ящики из гоф­рированного картона, выстланные подпергаментом марки П-3, полностью по­крывающим всю внутреннюю поверхность тары.

На ряде заводов крупная фасовка лимонной кислоты механизирована: ус­тановлены полуавтоматические весы, зашивочные машины и транспортное обо­рудование.

Фирма American Association of Cereal Chemist Inc . выпускает лимонную кислоту в капсулах, которые защищают другие ингредиенты пищи от кислоты. Капсулы изготовляют трех типов: из частично гидрогенизированного раститель­ного масла, мальтодекстрина и эмульгатора. Первый тип разрушается пои тем­пературе плавления оболочки, второй — при растворении в воде, третий — при нагревании в воде.

Преимуществом такой формы упаковки лимонной (и Других пищевых кис­лот) является контролируемая скорость освобождения кислоты из капсулы, равномерное распределение кислоты по всему объему без образования комков Пищевые кислоты в капсулах применяют в кулинарии — для увеличения срока хранения пудингов и начинок для пирогов, предотвращая реакцию между кис­лотой и крахмалом во время хранения, для увеличения срока хранения теста и т. д.

Лимонная кислота в крупной фасовке должна храниться в за­крытом помещении на деревянных стеллажах или поддонах при относительной влажности воздуха не выше 70 %. Гарантийный срок хранения лимонной кислоты — 6 мес со дня изготовления; при упаковке в ящики из гофрированного картона с внутренним вкладышем из подпергамента — 3 мес.

Для хранения кристаллической кислоты большое значение имеет гигроскопичность. Под гигроскопичностью понимают свой­ство веществ поглощать водяные пары из воздуха независимо от характера связывания ими влаги.

Читайте также: