Реферат на тему круговорот железа

Обновлено: 02.07.2024

C тех пор, как человек существует на Земле, он непрерывно взаимодействует с окружающей его природой. Взаимодействие это носит как непосредственный характер, так и опосредованный. Основу непосредственного взаимодействия человека с окружающей его природной средой составляет общий для всех организмов биологический обмен веществ в процессе питания, дыхания и отравления различных выделительных функций. Однако наиболее специфическим и значимым для людей как социальных существ является опосредованный способ взаимодействия с природой благодаря применению различных технических приспособлений, начиная с едва отесанного каменного зубила и кончая современным атомным реактором. При таком взаимодействии также происходит обмен веществ между человеком и природой, но темпы его развития и наращивание масштабов существенно отличаются от непосредственного обмена, поскольку нарастание его не ограничивается естественными размерами тел организмов, а обусловлено развитием знаний и соответственным совершенствованием технических приспособлений, применяемых людьми. Таким образом, взаимодействие в этом случае развивается по принципу положительной обратной связи. Чём более совершенствуются техника и технологии, тем большие массы природного вещества приводятся ими в движение, и этот процесс может идти с непрерывным нарастанием, пока не возникнет какое-либо внешнее непреодолимое препятствие.

Оно возникло лишь недавно, и им стали ограниченные естественные возможности биосферы, в которой существуют человек и вся порожденная им техническая инфраструктура. Человек никогда не находился в полной гармонии с природой и не довольствовался только лишь приспособлением к ней. Это всего-навсего религиозный миф о первобытном рае, в котором жили Адам и Ева. Почему-то миф этот перекочевал даже в научную литературу по экологическим проблемам. Если бы наши предки ограничивали свою деятельность только приспособлением к природе и присвоением ее готовых продуктов, то они никогда не вышли бы из животного состояния, в котором находились изначально.

В этой курсовой работе рассмотрены структура и основные типы биохимических круговоротов, а также влияние различных факторов на состояние этих круговоротов.

1. Структура биохимических кругооборотов

1.1 Биохимические кругообороты

В отличие от энергии, которая используется организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, это и называется биохимическими круговоротами. Из 90 с лишним элементов, которые встречаются в природе, только 40 нужны живым организмам. Наиболее важные для них и нужные в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и используется организмами при дыхании. Азот вытягивается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в нее другими бактериями.

Кругооборот элементов и веществ осуществляется за счет саморегулирующихся процессов, в которых принимают участие все составные экосистем. Эти процессы являются безвыходными. В природе нет ничего напрасного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот. Существует закон глобального замыкания биохимического кругооборота в биосфере, действующий на всех этапах ее развития, как и правило увеличения замкнутости биохимического кругооборота в походке сукцессии. В процессе эволюции биосферы увеличивается роль биологических компонентов в замыкании биохимического кругооборота. Еще большую роль в биохимическом кругообороте проявляет человек. Но ее роль осуществляется в противоположном направлении. Человек усиливает кругооборот веществ, который уже сложился, и в этом сказывается его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Таким образом, следует говорить не об изменении человеком того, что не должно изменяться, а скорее о влиянии человека на скорость и направление изменений и на распространение их границ, которая поднимает правило меры преобразования природы. Последнее формулируется таким образом: в процессе эксплуатации естественных систем нельзя превышать некоторые границы, которые разрешают этим системам сохранять равновесие.

1.2 Кругооборот веществ в биосфере

Процессы фотосинтеза органического вещества из неорганических компонентов длятся миллионы лет и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их кругообороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают почти 350 млрд. тонн углекислого газа , выделяют в атмосферу около 250 млрд. тонн кислорода и расщепляют 140 млрд. тонн воды, образовывая свыше 230 млрд. тонн органического вещества (в перерасчете на сухой вес).

Огромные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и выпаривания. Это приводит к тому, что вода поверхностного пласта океана фильтруется планктоном за 40 суток, а вся другая вода океана — приблизительно, чем год. Весь углекислый газ атмосферы возобновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в кругооборот включается 6 млрд. тонн азота, 210 млрд. тонн фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). Существование этих кругооборотов придает экосистемам определенную продолжительность.

Различают два основных кругооборота: большой (геологический) и маленький (биологический).

Большой кругооборот, длится миллионы лет и состоит в том, что горные породы подлежат разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов на протяжении продолжительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается снова.

Маленький кругооборот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самых этих растений, так и других организмов (как правило животных), которые съедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) снова разлагаются к минеральным компонентам, доступных растениям и что втягиваются ими в потоки вещества. Кругооборот химических веществ из неорганической среды через растительные и животные организмы назад в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биохимическим циклом. В такие циклы втянуты практически все химические элементы и прежде всего те, что принимают участие в построении живой клетки. Так, тело человека состоит из кислорода (62.8%), углерода (19.37%), водорода (9.31%), азота (5.14%), кальция (1.38%), фосфора (0.64%) и еще приблизительно 30 элементов.

2. Основные типы биохимических кругооборотов

2.1 Круговорот воды

Вода находится в постоянном движении. Испаряясь с поверхности водоемов, почвы, растений, вода накапливается в атмосфере и, рано или поздно, выпадает в виде осадков, пополняя запасы в океанах, реках, озерах и т.п. Таким образом, количество воды на Земле не изменяется, она только меняет свои формы — это и есть круговорот воды в природе. Из всех выпадающих осадков 80% попадает непосредственно в океан. Для нас же наибольший интерес представляют оставшиеся 20%, выпадающие на суше, так как большинство используемых человеком источников воды пополняется именно за счет этого вида осадков. Упрощенно говоря, у воды, выпавшей на суше, есть два пути. Либо она, собираясь в ручейки, речушки и реки, попадает в результате в озера и водохранилища — так называемые открытые (или поверхностные) источники водозабора. Либо вода, просачиваясь через почву и подпочвенные слои, пополняет запасы грунтовых вод. Поверхностные и грунтовые воды и составляют два основных источника водоснабжения. Оба этих водных ресурса взаимосвязаны и имеют как свои преимущества, так и недостатки в качестве источника питьевой воды.

Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее.

В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая — питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода — важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.

Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре.

2.2 Круговорот углерода

Углерод в биосфере часто представлен наиболее подвижной формой — углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры.

Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далекие геологические эпохи сотни миллионов лет назад значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления (процесс метаморфизации) превращался в нефть, природный газ и уголь, во что именно — зависело от исходного материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода. Если бы ни этот процесс в истории планеты, вероятно, человечество имело бы сейчас совсем другие источники энергии, а может быть и совсем другое направление развития цивилизации.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане.

В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

2.3 Круговорот кислорода

Кислород — наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели.

В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров.

Свободный кислород современной земной атмосферы является побочным продуктом процесса фотосинтеза зеленых растений и его общее количество отражает баланс между продуцированием кислорода и процессами окисления и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

2.4 Круговорот азота

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты:

2HN0з + СаСОз = Са(NОз)2 + СОС + Н0Н

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих нитрифицирующих бактерий приводит к тому , что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

2.5.Круговорот фосфора

Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах фосфор содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме так называемого органического фосфата. По пищевым цепям фосфор переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащего фосфор соединения в процессе клеточного дыхания для получения организмом энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл.

2.6 Круговорот серы

Сера является важным составным элементом живого вещества. Большая часть ее в живых организмах находится в виде органических соединений. Кроме того, сера входит в состав некоторых биологически активных веществ: витаминов, а также ряда веществ, выступающих в качестве катализаторов окислительно-восстановительных процессов в организме и активизирующих некоторые ферменты.

Сера представляет собой исключительно активный химический элемент биосферы и мигрирует в разных валентных состояниях в зависимости от окислительно-восстановительных условий среды. Среднее содержание серы в земной коре оценивается в 0,047 %. В природе этот элемент образует свыше 420 минералов.

В изверженных породах сера находится преимущественно в виде сульфидных минералов: пирита, пирронита, халькопирита, в осадочных породах содержится в глинах в виде гипсов, в ископаемых углях — в виде примесей серного колчедана и реже в виде сульфатов. Сера в почве находится преимущественно в форме сульфатов; в нефти встречаются ее органические соединения.

В связи с окислением сульфидных минералов в процессе выветривания сера в виде сульфатиона переносится природными водами в Мировой океан. Сера поглощается морскими организмами, которые богаче ее неорганическими соединениями, чем пресноводные и наземные.

3. Антропогенное влияние на окружающую среду

Проблемы народонаселения и ресурсов биосферы тесно связаны с реакциями окружающей естественной среды на антропогенное влияние. Естественное экологически сбалансированное состояние окружающей среды часто называют нормальным. Это состояние, при котором отдельные группы организмов биосферы взаимодействуют один с другим и с абиотичной средой без нарушения равновесия кругооборота веществ и потоков энергии в границах определенного геологического периода, обусловленное нормальным протеканием естественных процессов во всей геосфере. Естественные процессы могут иметь катастрофический характер, например извержения вулканов, землетрясение, наводнение, которое, однако, также составляет “норму” природы. Эти и прочие естественные процессы постепенно, с геологической скоростью, эволюционируют и в то же время на протяжении тысячелетий (на протяжении одного геологического периода) остаются в сбалансированном состоянии. При этом протекают маленький (биологический) и большой (геологический) кругооборот веществ и устанавливаются энергетические балансы между разнообразными геосферами и космосом, который объединяет природу в единое целое. Кругооборот веществ и энергии в биосфере характеризуются определенными количественными параметрами, которые специфичны для данного геологического периода и для каждого элемента земной поверхности в соответствии с их географией. Зачастую в качестве основных параметров, которые характеризуют состояние окружающей естественной среды, выделяют следующие:

Нажмите, чтобы узнать подробности

Железо необходимо всем живым организмам. В природе оно существует в органических и неорганических соединениях. Оно входит в состав гемоглобина и многих окислительных ферментов, таких, например, как каталаза, пероксидаза, цитохром- оксидаза, всегда обнаруживается в зеленых растениях.

На почвах, лишенных соединений железа, растения очень скудны, наблюдается их хлороз. Для многих микробов присутствие солей железа в питательной среде - необходимое условие для нормальной жизнедеятельности.

Главную роль в круговороте железа в природе играют микробы (в данном случае железобактерии). К группе железобактерий относятся организмы, принадлежащие к различным систематическим единицам: нитчатые бактерии, флексибактерии, одноклеточные бактерии из разных таксономических групп, микоплазмы, цианобактерии.

На наличие их в природе впервые указал X. Эренберг в 1836 г. Позже, в 1888 г. С. Н. Виноградский подтвердил существование этой физиологической группы бактерий. Установлено, что она получает энергию путем окисления закисных соединений железа. Окисление железа рассматривается как дыхательный акт железобактерий, при котором клетки получают энергию, необходимую для хемотрофного восстановления углекислого газа.

Морфология и биология железобактерий.

Железобактерии — бактерии, способные окислять двухвалентное железо (Fe 2+ ) до трёхвалентного (Fe 3+ ) и использовать освобождающуюся при этом энергию на усвоение углерода из углекислого газа или карбонатов.

Они чрезвычайно широко распространены как в пресных, так и в морских водоемах, играют большую роль в круговороте железа в природе. Благодаря их жизнедеятельности на дне болот и морей образуется огромное количество отложенных руд железа и марганца.

Сами железобактерии обычной формы для рода Bacterium, это — короткие палочки с округлыми концами, совершенно бесцветные; влагалища их, т. е. стенки трубочек, довольно массивные, вначале также бесцветны, и лишь постепенно окрашиваются благодаря накоплению в их толще гидрата окиси железа. Железобактерии - аэробы, автотрофы. Углерод они усваивают из углекислоты. Энергию для усвоения углекислоты и для всей своей жизнедеятельности получают путем окисления закисного железа по уравнению:

2FeCО 3+3Н 2О+1/2О 2=2Fe(ОН)3+2СО 2+29 ккал.

На построение 1 г своего тела им надо окислить 279 г закисного железа с образованием 534 г гидрата окиси железа. Отсюда видно, какое большое количество окиси железа они должны производить.

Виноградский в 1888 г. впервые высказал мнение, что окисление железа этими бактериями есть несомненный жизненный акт, соответствующий дыханию; как и всякий экзотермический процесс, он является источником свободной энергии. Работы Р. Лиске в 1911 и 1920 гг. подтвердили это точными опытами. Бактерии поглощают из воды растворенные в ней соли закиси железа и окисляют их в соли окиси. Последние постепенно пропитывают стенки трубочек, и уже в их толще переходят в менее растворимые основные соли, чтобы еще позднее выпасть в осадок гидрата окиси железа. Когда стенки трубочек уже сильно пропитаны железом, бактерии бросают их, и пустые влагалища ржавого или даже бурого цвета падают на дно водоема, где и накопляются массами.

В природных условиях железобактерии живут в застоявшейся и проточной воде при рН=4-10 и температурах от 5 до 400С, оптимальная температура для их жизнедеятельности 240С. Одни из железобактерий нуждаются для своего роста в органических веществах, для других они не требуются.

Многие из них ассимилируют углерод из растворенной в воде двуокиси углерода. Имеются микроорганизмы, способные окислять железо в кислой среде при рН = 4,5 и менее, к ним относится Thiobacillus ferrooxidans.

В среде, близкой к нейтральной, существуют железобактерии, обладающие мощным ферментативным аппаратом, позволяющим им конкурировать с процессом химического окисления. Такие железобактерии часто встречаются в хорошо аэрируемых ручьях при выходе подземных вод на поверхность. Из этих бактерий наиболее известны Leptothrix и Gallionella. Железобактерии способны разрушать органические комплексы железа, трудно разрушаемые в химических окислительных процессах. Внутри клеток железобактерий образуется окись железа. Количество выделяемой железобактериями гидроокиси во много раз превышает внутриклеточное содержание железа.

Способность железобактерий выделять железосодержащий шлам создает проблемы при транспортировании по трубопроводам воды, содержащей растворенное железо и кислород. Железобактерии создают на стенках труб корки и бугорки. К этой части стенок труб доступ кислорода затруднен. Поверхность металла без отложений, превращается благодаря свободному доступу кислорода в оксидную пленку, защищающую металл от коррозийного воздействия. Неоднородности на поверхности труб приводят к возникновению локальных электрохимических элементов. Оксидная пленка здесь играет роль катода, а металл под корками и бугорками шлама - анода.

В результате происходит анодное растворение металла и обогащение воды ионами железа, столь необходимыми в свою очередь для жизнедеятельности железобактерий, а под бугорком образуется язва.

Группа железобактерий по С.Н. Виноградскому.

Этот термин был введен С. Н. Виноградским (1888) для микроорганизмов аноргоксидантов, которые способны использовать для жизненных процессов энергию окисления закисного железа в окисное. Физиологию их хорошо изучил С.Н. Виноградский (1888).

Микроорганизмы, окисляющие Fe, можно разделить на четыре группы.

1. В первую группу входят облигатно-ацидофильные автотрофные бактерии, окисляющие железо в кислой среде: Thiobacillus ferrooxidans, строгий хемолитотроф, ассимилирует двуокись углерода из атмосферы за счет энергии, получаемой при окислении Fe 2 +: 4FeSO4 + 2H2SO4+ O2 = 2Fe2 (SO4)3 + 2Н2O. Энергетическая эффективность этого процесса очень низка и для связывания 16 г С02 требуется окислить 120 г FeSO4.

Th. ferrooxidans может окислять также двухвалентное железо карбоната до трехвалентного и получать около 40 ккал энергии: 4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2. В природе Th. ferrooxidans обычно развивается в условиях: наличия закисного железа в виде солей или сульфидных минералов; присутствия углекислоты и кислорода; достаточного количества N, Р и минеральных солей; оптимума температуры 30—35°. Способен окислять Fe в кислой среде и осуществлять хемолитотрофный обмен Leptospirillum ferrooxidans, относящийся к небольшим спириллам, обитающим в водоемах.

Термофильный организм Brierly, выделенный в 1973 г., paстущий в кислой среде, окисляет не только Fe, но и S. Он очень сходен с микоплазмами, развивается в температурный границах 45—70° и при оптимуме pH 2.

К гетеротрофным микроорганизмам, окисляющим преимущественно Fe, относят нитчатые железобактерии из родов Leptothrix и Sphaerotilus, образующие цепочки клеток, заключенные в общий чехол, где происходит отложение окислов Fe и Mn. Это единственные железобактерии, чистые культуры которых удалось получить, но все же слабо изучены их морфология, физиология и систематика.

Нитчатые железобактерии — аэробы, оптимальные условия для их роста создаются в микроаэрофильных зонах. Оптимум pH 5,8—6,8, а пределы развития лежат в интервале 5—10.

Sphaerotilus natans — обычно обитает в загрязненных водоемах; в незагрязненных, где есть закисное железо, он растет с отложением окислов железа в чехлах (окислы марганца никогда в этом организме не накапливаются).

Leptothrix ochracea — одна из наиболее распространенных нитчатых железобактерий, свободно плавающая в воде, образует скопления ржавых окислов в ручьях, болотах, на выходе железистых источников. Участвует и в формировании железистых руд. Продуцируемые этим организмом тонкие железистые трубочки одинакового диаметра покрывают дно рек, озер и болот как бы тонким пушистым осадком от желтого до оранжевого цвета.

Цилиндрический чехол этих бактерий, содержащий цепочки клеток, по мере отложения гидроокиси железа ограничивает доступ к ним закисного железа и кислорода, поэтому клетки оставляют старые чехлы и, выползая наружу, образуют новые. Таким образом появляются охристые осадки в водоемах. Вес накопленного железа превышает вес самих клеток в сотни раз.

К этой же группе железобактерий относятся мелкие, не имеющие клеточной стенки организмы родов Siderococcus к Gallionella, принадлежащие к микоплазмам. Значительно участие Siderococcus в образовании железистых отложений в озерах. В больших количествах они были обнаружены в илах озер Карелии. Один из представителей этого рода — Siderococcus limoniticus — строгий микроаэрофил, чаще обитает в илах на границе окислительно-восстановительной зоны и крайне редко — в водной толще. Зона роста в виде охристой тонкой прослойки обычно располагается в самом нижнем слое окислительного горизонта. Мелкие клетки этого организма обладают нитевидным придатком, объединяются по 8—10 штук в плавающие колонии, хотя жгутиков не имеют. Нередко клетки Siderococcus сосредоточены на поверхности других микроорганизмов и, по-видимому, паразитируют на них. Все представители этого рода могут окислять только Fe+ 2 , но не Mn+ 2 .

К необычным по форме организмам относится Gallionella, населяющая водоемы и встречающаяся в больших количествах в переувлажненных горизонтах подзолистых почв тяжелого механического состава. Для нее характерны винтообразно закрученные ленты, или нити, состоящие из волокон, накапливающих окисное железо. На концах нитей (стебелька) обычно присутствуют бактериальные клетки.

3. Третью группу образуют гетеротрофы, которые не растут на свойственных сапрофитам средах. Они развиваются лишь в присутствии такого энергетического материала, как органоминеральные комплексы железа и марганца с ульминовыми и фульвокислотами. На основании детальных исследований микрофлоры подзолистых почв они выделены в особый род — Pedomicrobium, отнесенный к семейству Hyphomicrobiaceae. Все представители этого рода — одноклеточные, крупные, палочковидные или овальные, почкующиеся организмы, развиваются в нейтральной или слабощелочной среде, тип питания — гетеротрофный, микроаэрофилы, откладывают либо бесформенные, либо сконцентрированные на гифах окислы железа или марганца. Обитают в относительно хорошо аэрируемых подзолистых почвах и песчаных подзолах, обнаружены в буроземах, серых лесных почвах и в красноземах Кавказа.

Наиболее распространен P. ferrugineum Arist.; его ожелезненные колонии состоят из клеток, соединенных сильно ветвящимися тонкими нитями. Реже встречается P. podsolicum Arist., похожий по форме колоний на предыдущий вид, но отличается тем, что аккумулирует не только Fe, но и Mn. Р. manganicum Arist. — новый вид, выделенный из подзолистых почв, образует мелкие, до 0,5 мм в диаметре, темноокрашенные, покрытые гидроокислами марганца, колонии; клетки диаметром около 0,4 мкм, обычно круглые, реже овальные; колонии имеют причудливую форму, похожую на колонии P. ferrugineum встречается реже, чем другие виды. В результате деятельности видов Pedomicrobium в почвах образуются железистые и железомарганцевые конкреции.

4. Четвертую группу железобактерий представляют органогетеротрофы, способные разрушать комплексные органические соединения Fe, но без изменения его валентности. Гумусовые вещества подзолистых почв содержат железо как в закисной, так и в окисной формах. Под воздействием микроорганизмов рода Seliberia - эти органоминеральные комплексы разрушаются, валентность железа, входящего в их состав, не изменяется. Seliberia stellata — звездообразующая бактерия, клетки ее соединены в звездные комплексы подвижные благодаря жгутикам. Накопление Fe начинается всегда в центре звезды, а затем уже оно откладывается на радиально расположенных клетках. В природе встречаются звездообразующие бактерии и покрытые отложениями гидроокиси железа, и свободные от нее. Аккумуляцию железа этими микроорганизмами нужно рассматривать как побочный результат использования органоминерального соединения при гетеротрофном типе обмена. Несмотря на значительно меньшее участие таких бактерий в биологической аккумуляции железа, чем различных видов Pedomicrobium, все же их доля в накоплении этого элемента в почве достаточно существенна; в иллювиальных горизонтах гумусово-иллювиальных подзолов звездообразующие бактерии преобладают в микробных пейзажах.

Разлагают органические соединения Fe и Mn также и Arthrobacter и Naumanniella, откладывающие их окислы в капсуле. Представителей рода Arthrobacter — Siderocapsa впервые выделил из водных растений Молиш (1910); обнаружены они и в различных водоемах, озерах, почве. Это мелкие палочки и кокки погружены в капсулу, развиваются обычно при pH 6,7—7, при температуре 4—16°. В процессе жизнедеятельности используют гуматы железа, окисляя органический радикал и отлагая остающееся железо.

Накопление железа происходит не только при разложении сложных железогумусовых комплексов, но и низкомолекулярных железоорганических соединений. В опытах с культурами Pseudomonas fluorescens и Acinetobacter лимоннокислое железо разлагалось с образованием осадка, содержащего 40% железа и 12% углерода.

Железобактерии окисляют гидрат закиси железа и карбонаты железа, обладая ферментом, ускоряющим превращение Fe" в Fe"'; окисляя огромное количество закиси железа, выносимой на поверхность земли подземными водами, железобактерии превращают ее в нерастворимую гидроокись этого металла, активно участвуя в круговороте железа в биосфере. Миграция железа в земной коре по направлению от центра Земли к ее поверхности и переход этого элемента из рассеянного состояния в более концентрированное осуществляется при помощи железобактерий, которые играют огромную роль в хозяйственной деятельности человека. Наибольшее влияние на распространение и рост железобактерий оказывает концентрация растворенных в воде закисных соединений железа, особенно двуокисей закисного железа.

Хотя в природных водах могут встречаться и другие соединения железа - соли органических кислот, гуматы, гидрозоли Fe2(OH)6 и т. д., однако для роста и размножения железобактерий наибольшее значение имеют бикарбонаты закиси железа. Железобактерии, кроме того, участвуют в образовании залежей многих металлических руд: алюминия, марганца, меди, ванадия и др. Содержание бикарбоната закиси железа в воде различных железистых источников Днепровской биологической станции с. Гористое и ближайших окраин Киева, по данным Н.Г. Холодного, колебалось в пределах 10-30 мг в 1 л. Однако железобактерии могут довольствоваться и более низким содержанием закиси железа, особенно в проточной воде, которая непрерывно добавляет их клеткам все новое количество дыхательного материала.

В горных породах земной коры (до глубины приблизительно 15 км) закись железа содержится в значительном количестве в гранитах, диоритах, габбро, а также в песчаниках, шифере и других осадочных породах. В кристаллических породах она входит в состав силикатов, а в осадочных - кроме силикатов всегда встречаются карбонаты железа (сидерит, железный шпат). Постоянным компонентом кристаллических и осадочных пород является и окись железа в форме свободных окислов и силикатов. Широко распространены также сульфиды железа (пирит, мирказит). Поверхностные слои земной коры (до 15 км) содержат 3,39 % FeO и 2,69 % Fe2O3; следовательно, закиси железа в земной коре больше, чем окиси.

Железобактерии

В естественных водах, среднее содержание железа (в интервале 0,01-26 мг/л). Кроме того, животные особи, бактерии и растения содержат его в своих организмах. Даже в тканях и внутренних органах людей есть железо, поступающее в организм вместе с едой. Потребность в нем для взрослого человека составляет 11-30мг. Избыток железа приводит к гемохроматозу и серьезным нарушениям внутренних органов.

Так как месторождения железных руд возникают в разных геологических условиях, то и состав руд и условия их расположения разнообразны.

Железо содержится во многих рудах:

• гематит (железный блеск, красный железняк),

• пирит (серный колчедан) и гетит,

• магнетит (магнитный железняк),

• сидерит и гидрогенит.

Круговорот железа в природе

Железобактерии

(На примере круговорота серы и других соединений в природе)

За счет жизнедеятельности железобактерий (нитевидные бактерии и одиночные железобактерии) происходит круговорот железа в природе. Они окисляют железо до гидроксида железа, а углерод получают из углекислоты. Таким образом, железобактерии получают энергию для своей жизнедеятельности, а после смерти осаждаются в почве в виде болотной руды.

Области применения железа

Железобактерии

В чистом виде железо непрочно, поэтому практически не применяется. Его используют для выработки электромагнитов, как катализатор химических реакций и др.

Основное применение этот металл находит в виде сплавов. На их долю приходится 95% всей металлопродукции. Железо основной компонент стали и чугуна. В стали меньше углерода, чем в чугуне, и поэтому она более пластична и устойчива к резким ударным нагрузкам железа.

Так же железо входит в состав никелевых и других сплавов, использующихся в электротехнике, железо-воздушных аккумуляторах и железо — никелевых аккумуляторах.

На основе железа производятся материалы, которые могут выдерживать действие низкой и повышенной температуры, агрессивной среды, ядерных излучений, вакуума и высоких давлений и т. п.

Железо относится к группе тех металлов, которые очень широко применяются во всех областях народного и бытового хозяйства. Чугун и сталь стали основой современной техники. С их участием произошло развитие тяжелой промышленности, разнообразного наземного транспорта и др.

Железобактерия

Железобактерии или сульфатовосстанавливающие бактерии могут разрушать железо в металлических трубах, в результате чего содержание железа в воде повышается, особенно в условиях застоя воды в трубопроводах.

Железобактерии , в частности Gallionella, развиваются в виде яалета на стенке пробирки там, где для них создается оптималь-лая концентрация закисного железа и кислорода.

Железобактерии поглощают из окружающей среды растворенные в воде закисные соли железа и превращают их в гидрат окиси железа.

Железобактерии поглощают из окружающей средь: растворенные в воде закисные соли железа и превращают их в гидрат окиси железа.

Железобактерии относятся к автотрофной группе организмов и могут развиваться в среде, не содержащей органических веществ. Соотношение между окисленным железом и ассимилированным из углекислоты углеродом ( 500: 1) показывает, какое большое количество Ре ( ОН) з образуется при автотрофном росте. Гидроокись железа ( III) после отмирания бактерий служит материалом для образования болотных и озерных руд. Вода, содержащая железо ( II), способна давать железистые отложения в трубах и теплообменниках при малых скоростях движения воды и небольших температурных перепадах.

Железобактерии этой группы — облигатные аэробы, но могут удовлетворительно расти при низком содержании 02 в среде. Единственно возможный способ существования — хемоорганогетеротрофия, при этом представители рода Sphaerotilus предпочитают условия с относительно высоким содержанием органических веществ, а многие штаммы Leptothrix — среды с низким уровнем органики.

Железобактерии поглощают железо в ионном состоянии и выделяют в виде нерастворимых соединений, благодаря чему ускоряется процесс анодного растворения железа. На отдельных участках поверхности металла могут осаждаться продукты разложения микроорганизмов в виде пленок, обладающих более высоким потенциалом, чем железо. Одновременно с этим ранее образованные пассивные защитные пленки могут разрушаться бактериями.

Железобактерии широко используют в промышленности для бактериального выщелачивания меди из отходов и бедных руд.

Железобактерии широко распространены в природе: установлено их наличие в морской и пресной водах, почве, средах, содержащих неорганические и органические соединения железа. Эти бактерии не объединены общностью происхождения, поэтому термин железобактерии является скорее физиологическим и экологическим понятием.

Железобактерии представляют серьезную опасность для конструкционных материалов водоохлаждаемых теплообменников и оборудования систем промышленного и бытового водоснабжения, в первую очередь углеродистых сталей. Так, в воде, используемой в системах охлаждения ряда химических заводов, обнаружены представителижелезобактерий родов Leptothrix, Sidero-capse, Ochrobium, образующие отложения на внутренних поверхностях теплообменников.

Железобактерии могут вызвать коррозионное разрушение нержавеющих сталей. Через месяц были замечены сквозные разрушения стенок бака ( толщиной 3 мм) и сплошные коррозионные разрушения труб. В результате жизнедеятельности этих микроорганизмов в слое у поверхности металла создавались очень высокие концентрации хлоридов железа и марганца, вызывающие интенсивное питтингообразование.

Железобактерии широко используются в промышленности для бактериального выщелачивания меди из отходов и бедных руд.

Наиболее распространенная железобактерия — Clado-thrix dichotoma, образующая длинные ветвящиеся нити, покрытые слизистым влагалищем. В этих влагалищах откладывается гидрат окиси железа.

Некоторые железобактерии являются строгими прототро-фами, другие же могут существовать, питаясь органическими веществами.

Поскольку железобактерии поглощают железо только в ионном состоянии, непосредственно металл они разрушать не могут. Действие этих бактерий сводится к образованию на поверхности металла, в первую очередь углеродистых сталей, концентрационных гальванических элементов и микропар дифференциальной аэрации.

Удаление бактериального железа

При наличии в исходной воде большого количества железа пользователь может столкнуться еще с одной проблемой — появлением бактериальных загрязнений — активным развитием железобактерий.Если проблема железобактерий выявлена на ранней стадии, регулярное хлорирование или обработка хелатными агентами (органические вещества, образующие растворимые комплексы с железными отложениями), а также постоянное наблюдение за состоянием оборудования помогут минимизировать её последствия.

На ранней стадии появления железобактерий может помочь ударное хлорирование — необходимо создать избыточную концентрацию хлора 50 мг/л. Перед применением хлорирования нужно выяснить, насколько устойчиво к хлору установленное водоочистное оборудование.

Проблему с бактериальным железом может решить среда redox, однако, в подводящих трубопроводах при этом железобактерии будут продолжать развиваться и образовывать слизистые отложения.

Определение типа железа в воде

Прежде чем приступить к выбору оборудования для очистки воды от железа, следует понять, какой тип железа присутствует в воде.

  • Двухвалентное железо (Fe+2) содержится в воде в растворенном состоянии и невидимо невооруженным глазом. Как правило, растворенное железо присутствует в воде из подземных источников (скважин). В присутствии двухвалентного железа вода выглядит прозрачной, но когда некоторое время находится в контакте с воздухом, приобретает рыжий цвет, и выпадает осадок. Это явление происходит вследствие окисления железа кислородом воздуха до трехвалентного состояния.
  • Трехвалентное железо (Fe+3), окисленное — присутствует в воде в коллоидной форме (образует очень мелкие частицы рыжего цвета). Осаждение коллоидного железа может сопровождаться образованием и ростом железобактерий. Присутствие окисленного железа характерно для воды из поверхностных источников (колодцы, водоемы) и для воды из централизованного водопровода.
  • Бактериальное железо (железобактерии) часто сопутствует минеральным отложениям Fe3+ и состоит из живых и мертвых бактерий, их оболочек и продуктов жизнедеятельности. Бактериальное железо достаточно легко отличить от минерального железа — это мягкие вязкие слизистые отложения. В некоторых случаях они безвредны, в других — наносят огромный ущерб. В трубопроводе и водоочистном оборудовании железобактерии часто становятся причиной язвенной коррозии железа и стали и сильно ускоряют образование железистых отложений.

Характеристика железа

Физические свойства

Железобактерии

Железо – это серебристо-белый металл с сероватым оттенком. В чистом виде пластичен, но непрочен. При добавлении в него различных добавок (например, углерода) твердость и хрупкость сплава повышается. Железо хорошо проводит электричество, тепло и обладает мощными магнитными свойствами, то есть под действием магнитного поля оно намагничивается и потом само становится магнитом.

Железо особенно важно для живых организмов. Оно способствует дыхательным процессам и входит в состав гемоглобина крови (477 мг/л)

Это значит, что железо участвует в процессе доставки кислорода от органов дыхания к тканям.

Находясь в воде и на влажном воздухе железо меркнет и ржавеет, а при температуре 1539°С легко плавится и поддается ковке. При высоких температурах железо реагирует с паром воды.

Железо образует 300 разнообразных минералов (карбонаты, сульфиды и т.д.) и энергично мигрирует в земной коре. Его называют металлом земных недр, так как он копится в кристаллизации магмы.

Химические свойства

Железобактерии

Железо — металл со средней степенью химической активности. На воздухе, на нем образуется защитная пленка, которая препятствует коррозии и ржавлению. Если воздух влажный, железо окисляется и покрывается ржавчиной.

Растворяется в разведенной соляной или серной кислотах, с выделением водорода. Вытесняет из растворов солей металлы. Во время нагревания взаимодействует с неметаллами.



Железо - один из важнейших элементов органической жизни. Оно входит в состав гемоглобина и многих окислительных
ферментов, таких, например, как каталаза, пероксидаза, цитохром- оксидаза, всегда обнаруживается в зеленых растениях. На почвах, лишенных соединений железа, растения очень скудны, наблюдается их хлороз. Для многих микробов присутствие солей железа в питательной среде - необходимое условие для нормальной жизнедеятельности.
В превращении соединений железа принимают участие специализированные и неспециализированные микроорганизмы. Минерализация органических железосодержащих соединений осуществляется гетеротрофными бактериями. При этом освобождается минеральное окисное или закисное железо. Превращение минерального железа осуществляется железобактериями. На наличие их в природе впервые указал X. Эренберг в 1836 г. Позже, в 1888 г. С. Н. Виноградский подтвердил существование этой физиологической группы бактерий. Установлено, что она получает энергию путем окисления закисных соединений железа. Окисление железа рассматривается как дыхательный акт железобактерий, при котором клетки получают энергию, необходимую для хемотрофного восстановления углекислого газа.
К типичным железобактериям относятся роды Crenothrix и Leptothrix, Gallionella и некоторые представители почкующихся бактерий.
Наиболее широко распространены в природе нитчатые бактерии Leptothrix ochraceae. Палочковидные клетки этой бактерии образуют нити длиной 0,5 см, покрытые чехлом из гидроокиси железа. В железистых источниках - ручьях, болотах - они образуют скопления охряного цвета.
Образование в природных условиях огромных количеств гидрата окиси железа, так называемой болотной руды, является результатом деятельности железобактерий.
Полагают, что большинство железобактерий миксотрофны, т. е. наряду с автотрофностью они могут питаться органическим веществом. Физиология железобактерий изучена недостаточно, хотя для некоторых из них установлена возможность хемосинтеза за счет окисления железа. Такой способностью обладает Thiobaciilus ferroxidans. Он относится к тионовым бактериям. Эти палочковидные, неспорообразующие бактерии - облигатные автотрофы.
Углерод для своего развития они получают из углекислоты атмосферы, а энергию - при окислении закисного железа, элементарной серы и сульфидов различных металлов. Th. ferroxidans окисляет практически все известные сульфидные минералы. Окисление закисного железа идет по схеме:

Важной физиологической особенностью этих бактерий является то, что они развиваюггся при очень низких pH (оптимум
1,7-3,5).
Литотрофные микроорганизмы Thiobacillus ferroxidans и Th. thioxidans играют большую роль в выщелачивании цветных и редких металлов в месторождениях сульфидных руд.

Читайте также: