Реферат на тему коллоидные системы

Обновлено: 02.07.2024

Дисперсные системы - гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или несколько дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков.

Работа содержит 1 файл

Коллоидно-Дисперсные системы.doc

Дисперсные системы.

Дисперсные системы - гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или несколько дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Дисперсные системы могут иметь и более сложное строение, например, представлять собой двухфазное образование, каждая из фаз которого, будучи непрерывной, проникает в объем другой фазы. К таким системам относятся твердые тела, пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью, некоторые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда "вырождается" до тончайших слоев (пленок), разделяющих частицы дисперсной фазы.

Коллоидные системы.

(от греч. kolla - клей и eidos - вид), коллоидно-дисперсные системы, коллоиды, - микрогетерогенные системы, представляющие собой совокупность множества мелких частиц дисперсной фазы, распределённых в объёме непрерывной дисперсионной среды. Величина частиц дисперсной фазы в коллоидной системе от 10 -4 -10 -5 до 10 -7 см. B отличие от частиц грубодисперсных систем (суспензий, эмульсий, пен, различных сыпучих материалов), размер которых обычно превышает 10 -4 см, коллоидные частицы в легкоподвижной среде участвуют в интенсивном броуновском движении и противостоят седиментации в поле сил земного притяжения. Коллоидные системы c газовой дисперсионной средой - высокодисперсные аэрозоли (дымы, туманы), c жидкой - золи, латексы, мицеллярные растворы, микроэмульсии, c твёрдой - системы типа рубиновых стёкол.

В соответствии с составом и строением коллоидные дисперсии классифицируются следующим образом:

ТИПЫ КОЛЛОИДНЫХ СИСТЕМ
Дисперсная фаза Дисперсионная среда Наименование Примеры
Жидкость Газ Жидкие аэрозоли Туман, кучевые облака
Твердое тело Газ Твердые аэрозоли Дым, пыль, перистые облака
Газ Жидкость Пены Мыльные пены
Жидкость Жидкость Эмульсии Молоко (М/В), масло (В/М), нефть
Твердое тело Жидкость Золи Жидкая глина, зубная паста
Газ Твердое тело Твердые пены Пенополистирол, пенопласт, пенобетон
Жидкость Твердое тело Твердые эмульсии Опал, жемчуг, почва
Твердое тело Твердое тело Твердые суспензии Окрашенные пластмассы

Большинство препаративных методов приводит к образованию полидисперсных золей (в которых частицы имеют распределение по размерам). Можно приготовить (например, с помощью методов зародышеобразования при условиях, которые приводят к спонтанной кристаллизации) почти монодисперсные золи, в которых размеры частиц примерно равны. Эти золи очень полезны в качестве калибровочных стандартов, а также в экспериментах для проверки новых гипотез. Они имеют и специальные применения в множительной технике, при получении антиотражательных покрытий линз и т.д.

Вероятно, наиболее важным физическим свойством коллоидных дисперсных систем является тенденция частиц к агрегации. Коагуляция – это сильная агрегация, флокуляция – слабая, легко обратимая. Пептизация –процесс, в котором дисперсия восстанавливается (при слабом перемешивании или без него) при изменении состава дисперсионной среды, например при добавлении разбавленного раствора электролита.

Устойчивость коллоидных систем – сложный вопрос. В простейшем случае она определяется балансом сил между вандерваальсовым притяжением и кулоновским отталкиванием частиц двойных слоев. (Эффекты ПАВ и полимерных добавок рассмотрены ниже.)

Вандерваальсовы силы обычно проявляются как силы межмолекулярного притяжения, которые обусловливают переход газов в жидкое состояние. Энергия вандерваальсова взаимодействия двух атомов чрезвычайно мала и быстро уменьшается с увеличением расстояния между ними (примерно обратно пропорционально шестой степени расстояния). Если силы притяжения между всеми атомными парами в двух коллоидных частицах суммируются, значительно возрастает не только общее взаимодействие, но и дальнодействующие кулоновские силы отталкивания (обратно пропорционально, в степени 1–2, расстоянию между частицами).

Общая энергия взаимодействия является суммой вандерваальсова притяжения и кулоновского отталкивания двойных слоев. Рассмотрим два крайних случая. При низких концентрациях электролита отталкивательное взаимодействие двойных слоев является дальнодействующим и (при условии, что дзета-потенциал является достаточно большим – обычно выше 25–30 мВ) определяет энергетический барьер коагуляции (подобно энергии активации в химической реакции). Скорость коагуляции соответственно будет замедляться и может сделаться такой малой, что золь можно считать практически стабильным. При высокой концентрации электролита отталкивание двойных слоев действует на малом расстоянии и на всех расстояниях между частицами превалирует вандерваальсово притяжение, так что энергетический барьер отсутствует и коагуляция происходит быстро. Переход между этими двумя крайними случаями можно осуществить путем добавления электролита; избыток электролита, необходимый для такого уменьшения потенциального барьера, при котором время коагуляции сократилось бы, например, от месяцев до минут, относительно мал. Отсюда можно измерить критическую концентрацию коагуляции; она зависит в основном от валентности противоионов.

Лиофильные коллоиды. К лиофильным коллоидам относятся растворы макромолекул, например желатин или крахмал в воде. Растворимости этих веществ зависят от их сродства к молекулам растворителя и собственным молекулам. Макромолекулы с высоким сродством к растворителю имеют достаточно открытую конфигурацию и обладают высокой растворимостью, в то время как молекулы с б льшим сродством друг к другу, чем к растворителю, имеют тенденцию к свертыванию (в клубок) и показывают более ограниченную растворимость. Баланс подобных свойств зависит от таких факторов, как рН, концентрация соли и температура. Вследствие больших размеров и способности к свертыванию растворимые макромолекулы имеют тенденцию к связыванию относительно большого числа молекул растворителя и их растворы в общем случае обладают большей вязкостью по сравнению с обычными растворами. Если все молекулы растворителя механически связаны и захвачены макромолекулярной цепью клубка, система в целом приближается к твердому состоянию и называется гелем.

Устойчивость лиофобных золей можно часто повысить добавлением макромолекулярного материала, который адсорбируется на поверхности частиц. Такое адсорбирующееся вещество называется протектором или стабилизирующим агентом. Лучшими протекторами являются блок-сополимеры, которые имеют лиофобную часть (якорную группу), которая прочно связывает макромолекулу с поверхностью частицы, и лиофильный хвост, который свободно размещается в дисперсионной среде. Адсорбированная макромолекула может определять устойчивость золя благодаря своему влиянию на вандерваальсовы взаимодействия и взаимодействия двойных электрических слоев, но наиболее важна их роль, вероятно, в пространственной стабилизации частиц золя. В основном условия стабильности дисперсной системы будут теми же, что и для растворимости той части стабилизирующей макромолекулы, которая обращена в сторону дисперсионной среды. Если возникает агрегация частиц, то она будет ослабляться и становиться легко обратимой (флокуляция) благодаря адсорбированным макромолекулам протектора, которые способствуют разделению частиц. Равновесие между стабилизацией и флокуляцией очень подвижно и может меняться при изменении температуры. ПАВ также могут играть роль мощных стабилизаторов. Они обычно сильно адсорбируются на поверхности частиц и делают ее более лиофильной. Адсорбированные ионы ПАВ часто увеличивают электростатическую стабилизацию.

реферат сопровождается большой презентацией, которая разбита на 3 части: начало, продолжение. окончание.

Похожие презентации

Презентация на тему: " Реферат с презентацией на тему: "Коллоидные системы"" — Транскрипт:

3 Коллоидные системы. Коллоидные системы (от греч. kolla - клей и eidos – вид) англ. colloid systems; нем. Kolloidsysteme; фр. systemes colloidaux; исп., ит. sistemas coloidales, sistemas coloideas), коллоидно-дисперсные системы, коллоиды, - это ультра микрогетерогенные системы, представляющие собой совокупность множества мелких частиц дисперсной фазы, распределённых в объёме непрерывной дисперсионной среды. Величина частиц дисперсной фазы от 1000 нм – 100 нм до 1 нм. B отличие от частиц грубодисперсных систем (суспензий, эмульсий, пен, различных сыпучих материалов, размер которых обычно превышает 1000 нм), коллоидные частицы в легкоподвижной среде участвуют в интенсивном броуновском движении и противостоят седиментации в поле сил земного притяжения, то есть, обладают высокой кинетической устойчивостью.

5 Основные свойства: Коллоидные частицы не препятствуют прохождению света. В прозрачных коллоидах наблюдается рассеивание светового луча (эффект Тиндаля).эффект Тиндаля Дисперсные частицы не выпадают в осадок – Броуновское движение поддерживает их во взвешенном состоянии. Броуновское движение

8 Основные виды: Гидрозоли – двухфазные микрогетерогенные дисперсные системы, характеризующиеся предельно высокой дисперсностью, в которых дисперсионной средой является вода.вода Органозоли – дисперсионной средой являются неводные (органические) растворители.

9 Образование коллоидных систем: Путем конденсации (при выделении коллоидно-дисперсной фазы из перенасыщенного пара, раствора или расплава). Путем диспергирования.

11 Коллоидные частицы в легкоподвижной среде участвуют в интенсивном броуновском движении и противостоят седиментации в поле сил земного притяжения, то есть, обладают высокой кинетической устойчивостью. Дисперсные частицы не выпадают в осадок – Броуновское движение поддерживает их во взвешенном состоянии. Броуновское движение

12 Коллоидные системы необычайно лабильны, т.е. неустойчивы. Для многих из них достаточно прибавления ничтожного количества электролита, чтобы вызвать выпадение осадка. Причина столь легкого изменения состояния коллоидных систем связана с непостоянством степени их дисперсности. Присутствие в жидкой дисперсионной среде адсорбционно-активных веществ – стабилизаторов – обеспечивает агрегативную устойчивость, т.e. длительное постоянство их дисперсного состава. Устойчивость таких систем связана с наличием слоя стабилизатора на поверхности коллоидных частиц. Стабилизаторами коллоидных систем могут быть электролиты или другие вещества, не имеющие электролитной природы, например высокомолекулярные соединения (ВМС) или поверхностно-активные вещества (ПАВ).

13 Коллоидные растворы проявляют специфические свойства: коагуляции и адсорбции. Коагуляция (от лат. coagulatio свертывание, сгущение), также старение – объединение мелких частиц дисперсных систем в более крупные под влиянием сил сцепления с образованием коагуляционных структур.лат.дисперсных системкоагуляционных структур Коагуляция физико-химический процесс слипания коллоидных частиц, выпадение осадка происходит в результате лишения коллоидных частиц адсорбционной оболочки, нейтрализации заряда или химических превращений.

16 Причины коагуляции: Столкновение коллоидных частиц в результате броуновского движения; Нагревание; Замораживание; Действие электрического поля; Добавление коагулянтов (электрокоагуляция);электрокоагуляция Механическое воздействие на систему.

17 Скорость старения (коагуляции) зависит: от напряжения на границе раздела фаз, радиуса частиц, коэффициента диффузии,диффузии температуры, температуры растворимости макро фазы.

18 Адсорбция. Адсорбция – самопроизвольный процесс увеличения концентрации одного вещества (адсорбата) на поверхности другого (адсорбента). Адсорбция происходит на любых межфазовых поверхностях, адсорбироваться могут любые вещества.

19 Применение адсорбции: Адсорбция широко применяется в различных отраслях народного хозяйства. В медицинской практике при пищевых отравлениях в качестве адсорбентов используют молоко и активированный уголь. В сельском хозяйстве в качестве банков удобрений используют цеолиты. Они выделяют ионы К +, NH -4, а поглощают и удерживают Са 2+, Mg 2+. В химической технологии адсорбцию используют для очистки нефтепродуктов от малых содержаний воды, серы, селена, мышьяка, фосфора. В производстве полимеров адсорбенты используют в качестве активных наполнителей, придающих изделию повышенную прочность. Так, изделия, изготовленные из саженаполненной резины, в 10 раз прочнее, чем изделия, изготовленные из резины, наполненной нейтральными наполнителями. Очистка промышленных газовых выбросов в атмосферу, выхлопных газов, кондиционирование воздуха осуществляются с помощью адсорбентов. Процессы адсорбции лежат в основе разделения трудноразделимых соединений. Этот метод назван хроматографией, он предложен в 1903 г. русским учёным М.С. Цветом. Хроматография широко используется при разделении и очистке лекарственных веществ, витаминов, пигментов, алкалоидов. С помощью этого метода были разделены искусственно приготовленные трансурановые элементы: Es(99), Fm(100), Md(101). В горнодобывающей отрасли адсорбенты используют для улавливания ценных элементов из больших объёмов жидкости, из которых выделить эти вещества другими методами нерентабельно. В текстильной и кожевенной промышленности техника адсорбции применяется при крашении волокон, шерсти, кожи. Адсорбция является необходимым условием для катализа.

20 Коллоидные системы, состоящие из частиц диспергированного вещества, способных свободно перемещаться в жидкой дисперсионной среде совместно с адсорбированными на их поверхности молекулами или ионами третьего компонента (стабилизатора), называют лиозолими, Сами частицы, обладающие сложным строением - мицеллами.

22 Золи. Золь иначе лиозоль; коллоидный раствор (англ. sol от лат. Solutio – раствор) – высокодисперсная коллоидная система (коллоидный раствор) с жидкой (лиозоль) или газообразной (аэрозоль) дисперсионной средой, в объеме которой распределена другая (дисперсная) фаза в виде капелек жидкости, пузырьков газа или мелких твердых частиц, размер которых лежит в пределе от 1 до 100 нм (10 9 – 10 7 м).англ.лат.коллоидная система дисперсионной средой

23 В зависимости от дисперсионной среды золи бывают: золитвердыеаэрозолилиозолигидрозолиорганозолиалкозолиэтерозоли

24 3 оли занимают промежуточное положение между истинными растворами и грубодисперсными системами (суспензиями, эмульсиями). истинными растворамисуспензиямиэмульсиями Золи диффундируют медленнее, чем неорганические соли. Обладают эффектом светорассеяния (Эффект Тиндаля).Эффект Тиндаля В противоположность гелям, в золях частицы дисперсной фазы не связаны в пространственную структуру, а свободно участвуют в броуновском движении.гелямброуновском движении Частицы дисперсной фазы лиозоли вместе с окружающей их сольватной оболочкой из молекул (ионов) дисперсионной среды называют мицеллами.

25 К лиозолим относятся мицеллярные растворы различных типов, водные растворы биополимеров, органо- и гидрозоли металлов, синтетические латексы. Примером аэрозоля на основе жидкости является туман взвесь капель воды в воздухе; находящийся в воздухе дым или пыль пример твердотельного аэрозоля.

26 Свойства: большая удельная поверхность; адсорбция и плёнкообразование на поверхностях раздела; агрегация, как следствие взаимодействия частиц; частицы на поверхности обладают большей энергией, чем частицы внутри фазы. Получение и применение: Получают золи при помощи диспергаторов и гомогенизаторов. Применяют в химии, фармацевтике, военном деле, т.к. вышеперечисленные свойства позволяют резко улучшить качественные и количественные показатели химических реакций. военном деле химических реакций

27 Мицеллярная структура геля

3. Устойчивость и разрушение коллоидных растворов …………….

Коллоидные системы для человека играют большую роль. По сути, человеческий организм - одна общая коллоидно-дисперсионная система. Потому что в организме практически все вещества растворены одно в другом и находятся в постоянном движении. Коллоидные системы занимают промежуточное положение между грубодисперсными системами и истинными растворами. Они широко распространены в природе. Весь наш организм состоит из коллоидных систем. Белки, кровь, лимфа, углеводы, пектины находятся в коллоидном состоянии. Коллоидные системы играют важную роль не только в жизнедеятельности человеческого организма. Они имеют и огромное прикладное значение.

На основе изучения коллоидно-дисперсных процессов были созданы новые материалы, изобретено множество химических процессов, которые активно применяются в производстве, а также для очистки воды (в том числе, сточных вод . Пищевая, текстильная, резиновая, кожевенная, лакокрасочная, керамическая промышленности, технология искусственного волокна, пластмасс, смазочных материалов) связаны с коллоидными системами.

Дисперсные системы

Чистые вещества в природе встречаются очень редко. Кристаллы чистых веществ – сахара или поваренной соли, например, можно получить разного размера – крупные и мелкие. Каков бы ни был размер кристаллов, все они имеют одинаковую для данного вещество внутреннюю структуру – молекулярную или ионную кристаллическую решетку. В природе чаще всего встречаются смеси различных веществ. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы. Такие системы мы будем называть дисперсными

Дисперсной называется система, состоящая из двух или более веществ, причем одно из них в виде очень маленьких частиц равномерно распределено в объеме другого. То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ. Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой.

Между дисперсионной средой и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называются гетерогенными (неоднородными). И дисперсную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях – твердом, жидком и газообразном.

Дисперсионные системы можно разделить по размеру частиц дисперсионной фазы. Если размер частиц составляет меньше одного нм – это молекулярно - ионные системы, от одного до ста нм - коллоидные, и более ста нм - грубодисперсные. Группу молекулярно дисперсных систем представляют растворы. Это однородные системы, которые состоят из двух или более веществ и являются однофазными. К ним относятся газ, твердое вещество или растворы. В свою очередь эти системы можно разделить на подгруппы:
- Молекулярные. Когда органические вещества, такие как глюкоза, соединяются с неэлектролитами. Такие растворы назвали истинными для того, чтобы можно было отличать от коллоидных. К ним относятся растворы глюкозы, сахарозы, спиртовые и другие.
- Молекулярно-ионные. В случае взаимодействия между собой слабых электролитов. В эту группу входят кислотные растворы, азотистые, сероводородные и другие.

- Ионные. Соединение сильных электролитов. Яркие представители - это растворы щелочей, солей и некоторых кислот.

Типы коллоидных растворов

Лиофобные золи, могут быть получены: методом диспергирования (измельчения крупных тел), и методам конденсации веществ. Устойчивые дисперсные системы состоят из трех компонентов:

1. дисперсионной среды;

2. дисперсной фазы;

Стабилизатор имеют ионную, молекулярную, или высокомолекулярную, природу.

II тип – ассоциативные (мицеллярные коллоиды) - полуколлоиды. Частицы этого типа возникают при достаточной концентрации дифильных молекул низкомолекулярных веществ в агрегаты молекул – мицеллы. Мицеллы - скопления правильно расположенных молекул, удерживаемых дисперсионными силами. Образование мицелл характерно для водных растворов моющих веществ и некоторых органических красителей. В других средах, эти вещества растворяются с образованием молекулярных растворов.

Способы получения коллоидов

Поскольку коллоидные системы по размеру частиц занимают промежуточное положение между грубодисперсными системами и истинными растворами, то методы их получения можно разделить на две группы: диспергационные и конденсационные.


  • механическое дробление с помощью шаровых или коллоидных мельниц;

  • измельчение с помощью ультразвука;

  • электрическое диспергирование (для получения золей металлов);

  • химическое диспергирование (пептизацию).

Конденсационные методы состоят во взаимодействии молекул истинных раствор с образованием частиц коллоидных размеров, что может быть достигнуто как физическими, так и химическими методами.

Физическим методом является метод замены растворителя (напрмер, к истинному раствору канифоли в спирте добавляют воду, затем спирт удаляют).

Химическая конденсация состоит в получении коллоидных растворов путем химических реакций с образованием труднорастворимых соединений:

Способы очистки коллоидов

Существуют три основных способа очистки коллоидов.

1) Диализ. Простейшим прибором для диализа - диализатором - является мешочек из полупроницаемого материала (коллодия), в который помещается диализируемая жидкость. Мешочек опускается в сосуд с растворителем (водой). Периодически или постоянно меняя растворитель в диализаторе можно практически полностью удалить из коллоидного раствора примеси электролитов и низкомолекулярных неэлектролитов.

2) Электродиализ - процесс диализа, ускоряемый действием электрического тока. Электродиализ применяют для очистки коллоидных растворов, загрязненных электролитами. Если необходима очистки коллоидных растворов от низкомолекулярных неэлектролитов, процесс электродиализа малоэффективен. Процесс электродиализа мало отличается от обычного диализа.

3) Ультрафильтрация - фильтрование коллоидных растворов через полупроницаемую мембрану, пропускающую дисперсионную среду с

низкомолекулярными примесями и задерживающую частицы дисперсной фазы или макромолекулы. Для ускорения процесса ультрафильтрации ее проводят при перепаде давления по обе стороны мембраны: под вакуумом или повышенным давлением.

Ультрафильтрация есть не что иное, как диализ, проводимый под давлением.

Устойчивость и разрушение коллоидных растворов

Для коллоидных систем введены понятия о кинетической и агрегативной устойчивости.

Под кинетической устойчивостью понимают способность частиц коллоидного раствора находиться во взвешенном состоянии даже при существенном различии в плотностях дисперсионной среды и дисперсной фазы. Кинетическая устойчивость свойственна сильно разбавленным растворам и очень высокодисперсным золям.

Aгрегативная устойчивость — способность системы сохранять свою степень дисперсности. Устойчивость коллоидных растворов связана с наличием одноименного заряда у коллоидных частиц. Двигаясь, частицы сближаются, при этом проявляются действие отталкивания одноименных ядер частиц и действие притяжения за счет межмолекулярных сил. В зависимости от того, какие силы преобладают, система либо устойчива, либо частицы дисперсной фазы слипаются и укрупняются.

Устойчивость коллоидных растворов можно повысить введением стабилизаторов. В качестве стабилизаторов используют высокомолекулярные соединения, такие, как белки, поверхностно-активные вещества и т.д. Стабилизаторы адсорбируются в поверхностном слое частиц и как бы придают золю свойства раствора использованного стабилизатора.

Под воздействием различных факторов коллоидные растворы способны разрушаться. Разрушение может сопровождаться слипанием отдельных частиц с образованием крупных агрегатов. Такой процесс разрушения коллоидного раствора называется коагуляцией. Коагуляция нарушает агрегативную устойчивость коллоидного раствора, крупные агрегаты частиц легкo седиментируют под действием гравитационных сил.

Причиной коагуляции могут быть самые разнообразные факторы: изменение температуры и концентрации коллоидного раствора, его старение, механические воздействия, введение в раствор золей с противоположным знаком заряда, добавление электролитов. Наибольшее практическое значение имеет последний фактор.

При введении в золь электролита (коагулянта) коагулирующее действие оказывает ион, имеющий противоположный заряд: для отрицательно заряженных золей — катион, для золей с положительным зарядом частицы — анион. Наименьшая концентрация электролита, вызывающая коагуляцию, называется порогом коагуляции. Чем выше заряд коагулирующего иона, тем ниже его пороговая концентрация. Коагуляция золя происходит при достижении в растворе критической величины § - потенциала, т.е. еще до достижения системой изоэлектрического состояния.

При определенных условиях процесс коагуляции может оказаться обратимым, и образовавшийся коагулят вновь может перейти в золь. Этот процесс называет пептизацией. Пептизация тем вероятнее, чем выше гидрофильность осажденного золя, и легче происходит в свежеосажденной системе с рыхлой структурой осадка. Причиной пептизации может быть введение в систему электролита с потенциало-образующими ионами, которые, адсорбируясь на частицах осадка, сообщают им заряд. В такой системе возрастает § -потенциал, одноименно заряженные частицы отталкиваются друг от друга и начинают переходить в раствор.

Таким образом, коллоидные системы суть основа химического состояния всех веществ, из которых построены клетки, ткани и органы организма человека. Этим и обусловлено многообразие функций, которые обеспечивают в организме коллоидные системы.

Можно сказать только одно, что без коллоидной химии нельзя представить повседневную жизнь человека в общем. Сам человек это и есть коллоидная система. Множество процессов и реакций происходят за счет коллоидной химии.


Значение коллоидных систем в функционировании клетки и целостного организма

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Коллоидно-химическая физиология человека – это раздел науки, изучающий функционирование систем организма человека, образующих коллоидные соединения.

Из 10 функций организма, выделенных в отдельные системы, каковыми являются пищеварительная, сердечно-сосудистая, дыхательная, нервная, иммунная, эндокринная, мочеполовая, крови, печени, почек, выделим те, которые представляют из себя коллоидные системы.

Можно смело сказать, что весь человек – это ходячий коллоид, а все органы и системы организма дисперсная система в их связи с поверхностными явлениями.

Кости – это коллаген, насыщенный кальцием и фосфором, мигрирующими в присутствии витамина Д.

Кровь – это дисперсная система, в которой ферментные элементы эритроциты, тромбоциты, лейкоциты являются фазой, а плазма – дисперсной средой.

Из коллоидов, богатых белками соединительной ткани (аминокислоты пролин и глицин), состоят кожа, мышцы, ногти, волосы, кровеносные сосуды, легкие, весь желудочно-кишечный тракт и многое другое, без чего немыслима сама жизнь.

Все человеческое тело – это мир частиц, находящихся в постоянном движении строго по определенным правилам, подчиняющимся физиологии человека.

Коллоидные системы организмов обладают рядом биологических свойств, характеризующих то или иное коллоидное состояние:

1.2 Коллоидная система клеток.

С точки зрения коллоидно-химической физиологии человека его организм представляет собой сложный комплекс коллоидных систем в их постоянном динамическом взаимодействии. Мельчайшей структурно-функциональной единицей организма является клетка. Уже сама клетка представляет собой сложный комплекс коллоидных образований, основными из которых являются клеточные мембраны, гиалоплазма, ядро, ЭПР, рибосомы, лизосомы, комплекс Гольджи и др.

Гиалоплазма: представляет собой совокупность лиофильных и лиофобных коллоидов со свойствами золей, гелей и эмульсий, участие в формировании которых принимают белки, нуклеиновые кислоты (РНК), соли металлов, липиды и другие вещества. Крупные конгломераты веществ, находящихся в коллоидном состоянии, обозначаются как клеточные включения (например, жировые). Для гиалоплазмы характерны переходы из состояния золя в гель при определенных условиях. Многообразие коллоидов гиалоплазмы и их взаимных переходов создает условия для биохимических процессов (в том числе поддержание осмотического давления), происходящих в цитоплазме клеток и формирует цитоскелет клетки (коллоидно-белковая система, пронизывающая клетку). Цитоскелет обеспечивает движение клеток, цитоплазмы, органелл, транспорт веществ и формирует каркас клетки. Гиалоплазма и ее коллоиды объединяют клетку в единое целое.

Ядро: коллоидная среда ядра обеспечивает процессы репликации ДНК и биосинтеза белка – работу информационных и транспортных РНК (диффузный и конденсированный хроматин), процессы сборки белковых молекул на и-РНК и формирование структур белковых молекул. Процесс репликации клеточной ДНК во время митоза возможен только в определенной динамически меняющейся среде, обеспечиваемой свойствами коллоидов.

ЭПР: также объединяет клетку в единое целое (контакт всех органелл), участвует в синтезе белковых, липидных коллоидов, их накоплении, транспортировке, а также детоксикации ядовитых веществ (гепатоциты).

1.3 Ткани организма как коллоидные системы

Кровь является типичными примером ткани организма, где одни коллоиды находятся внутри других. В.А.Исаев дает определение крови как дисперсной системе, в которой форменные элементы – эритроциты, тромбоциты, лейкоциты являются фазой, а плазма – дисперсной средой. Однако по определению максимальных размеров, которых могут достигать коллоидные частицы он составляет 10 -7 м., тогда как размер тромбоцитов равен 0,5-0,75 x 10 -6 м, эритроцитов: 7 x 10 -6 м., а размеры лейкоцитов превышают размеры эритроцитов в несколько раз. Таким образом, форменные элементы не могут считаться дисперсной фазой коллоидной системы и сами представляют из себя коллоид в коллоиде. Тем не менее именно они обусловливают вязкость крови, которая в 5 раз превышает вязкость воды.

К настоящему времени наиболее изученными являются коллоидные системы плазмы крови. Практически все органические составляющие плазмы находятся в ней в коллоидном состоянии. Основной дисперсионной средой является вода, дисперсионная фаза представляет собой самые разнообразные по химическому составу и молекулярному строению вещества: от молекул аминокислот и олигопептидов до крупных белковых молекул (фибрин, альбумины, глобулины, ферменты, нуклеопротеиды, гормоны белковой природы, транспортные белки и др.), от молекул моно- и дисахаридов и жирных кислот до лецитинов, триглицеридов и липидных хиломикронов высокой и низкой плотности. Плазма крови содержит изобилие низкомолекулярных органических веществ, таких как мочевина, креатинин, холестерин, стероидные гормоны, витамины. В плазме находятся катионы электролитов калия, натрия, магния, кальция, анионы хлора, сульфата, фосфата, карбоната, а также полный спектр микроэлементов.

С точки зрения коллоидной химии плазма крови представляет собой сложную систему коллоидов. Белки представляют собой основную составляющую дисперсионной фазы. Обращая свои лиофобные группы (- CH 2 , - С H 3 и др.) в сторону нерастворимых в воде молекул липидов, стероидов и жирных кислот, а гидрофильные концы (- COOH , - NH 2, - SH ) – в сторону молекул воды и электролитов, белки являются основными стабилизаторами коллоидной системы плазмы крови. Обладая наряду с этим амфотерными свойствами, они являются основными переносчиками, транспортерами низкомолекулярных веществ в организме. Основными белками крови являются сывороточные альбумины и фибриноген. Именно эти соединения обеспечивают коллоидные свойства плазмы в т.ч. её вязкость и др.

В крови находится целый ряд белков , представляющих собой каскадные системы, обеспечивающие осуществление жизненно важных функций организма. Сюда относятся свёртывающая и противосвёртывающая системы крови (система фибринолиза), калликреин-кининовая система и система комплемента. Нарушение целостности тканей в результате травм, попадания в кровь чужеродных объектов (вирусы, бактерии) нарушают поверхностное натяжение и другие свойства этих коллоидных систем. Это приводит к активации фактора Хагемана, который запускает в действие первые три из названных систем. Активация системы свёртывания приводит к образованию на поверхности бактерий и вирусов, а также на повреждённых тканях нитей фибрина из фибриногена . Одновременно фактор Хагемана активирует плазмин из системы фибринолиза, который разрубает нити фибрина на фибринпептиды. Т.о. запускается каскад белков двух действующих в противоположном направлении систем, которые приходят в динамическое равновесие между собой. При этом растворённый в плазме в виде золя фибриноген ферментативным способом переходит в фибрин, представляющий собой гель и обратно, подобно тому как это происходит при изотермическом обратимом переходе золь в гель и обратно, что получило название тиксотропии. Явление тиксотропии ранее было описано вне живого организма (Г. Фрейндлих). Тиксотропные структуры возникают лишь при определённой концентрации коллоидных частиц и электролитов и относятся к коагуляционным структурам, образующимся при определённых условиях. В нашем примере такой переход осуществляется под действием ферментов свёртывающей и противосвёртывающей систем крови.

Активация фактором Хагемана калликреин-кининовой системы также приводит к последовательной, каскадной активации белков этой системы, расширению капилляров и повышению их проницаемости.

Система комплемента имеет колоссальное значение в сохранении иммунного гомеостаза и борьбе с чужеродными агентами (бактерии, вирусы, злокачественные клетки). Система состоит из 25 белков, которые активируются компонентом С3 и последовательно переходят в состояние золь-гель, присоединяясь к комплексу антиген-антитело.

Липиды находятся в плазме в виде эмульсий. Частицы дисперсной фазы липидных эмульсий получили название хиломикронов. Дисперсное состояние и величина хиломикронов напрямую зависят от участия в процессе их эмульгации белковых молекул. Белки способствуют эмульгированию липидов, находящихся в плазме, осуществляют их транспорт и как бы передают другим белкам при передаче через мембраны. Хиломикроны крови состоят из холестерина и жирных кислот, нейтральных липидов и фосфолипидов с присоединенными к ним молекулами белков. В клинической практике их называют липопротеидами высокой (ЛПВП) и низкой (ЛПНП) плотности. Определение их количественного содержания в крови пациентов имеет большое значение в диагностике гиперхолестеринемии и борьбы с ней.

При патологических состояниях в плазме крови могут оказаться вещества различной химической природы, которые в норме либо отсутствуют в ней, либо присутствуют в очень небольших количествах. Так, при заболеваниях, сопровождающихся нарушениями выделительной функции пораженных органов, в плазме крови резко изменяется содержание ряда ее компонентов: при желтухах резко возрастает содержание желчных кислот и продуктов распада гемоглобина, при уремии – продуктов катаболизма белков мочевины и креатинина, ионов калия; при различных инфекциях в ней появляются микробные токсины белковой или полисахахаридной природы, при химических отравлениях - чужеродные химические вещества. Изменения в белковом составе плазмы крови могут происходить при многих заболеваниях. Они бывают наиболее выражены при миеломной болезни и болезни Вальденстрема, при которых в крови в больших количествах обнаруживаются так называемые парапротеины - макроглоблины М типа белка Бенс Джонса, а также при коллагенозах и злокачественных новообразованиях, сопровождающихся гиперпродукцией иммуноглобулинов. Эти изменения нарушают биохимический состав и влияют на коллоидные свойства плазмы крови и те функции, которые функции, которые должны выполнять ее коллоидные компоненты. Так, например, нарушения в системах свертывания – противосвертывания крови сдвигает динамическое равновесие между ними в сторону преобладания процесса свертывания, что приводит к образованию тромбов в кровеносных сосудах. Это, в свою очередь, является патогенетической основой развития инфарктов миокарда, ишемических инсультов головного мозга и тромбозов сосудов любой локализации.

Подобно крови лимфа состоит из жидкой части и форменных элементов. Причем эритроцитов в ней находится очень незначительное количество.

Качественный состав жидкой части лимфы совершенно одинаков с составом плазмы крови, но в количественном отношении резко отличается. Лимфа содержит меньше плотных веществ, особенно мало в ней фибриногена и протромбина, Количество же минеральных веществ (особенно солей натрия) в лимфе больше чем в плазме крови. Лимфа является посредницей между кровью и каждой клеткой организма, осуществляя транспорт к клеткам питательных веществ и унося от них продукты жизнедеятельности. Лимфа, оттекающая от кишечника, содержит в больших количествах продукты пищеварения, которые она получает во время всасывания. Она носит название хилюса и представляет собой эмульсию, содержащую крупные хиломикроны эмульгированного жира. Точный состава лимфы не известен. Он очень подвержен индивидуальным колебаниям. На него влияют такие факторы как состояние иммунной системы, деятельность различных органов и систем, кровяное давление и др.

3. Соединительная ткань

Практически любая жидкость или ткань организма человека представляет собой коллоидно-дисперсную среду. Таковыми являются, например, содержимое желудочно-кишечного тракта, желчь, спинномозговая жидкость, моча. При патологических изменениях в организме в коллоидном состоянии находятся белки отечной жидкости (транссудаты) или белки в воспалительных экссудатах. Нарушение коллоидных свойств вышеуказанных сред организма приводят в крови к образованию тромбов, и как следствие развитие инсультов и инфарктов. В желчи и моче при этом образуются камни, в суставной ткани – выпадение солей мочевой кислоты (подагра).

Список литературы:

Збарский Б.И., Иванов И. И., Мардашёв С. Р., Биологическая химия, М., 1954

Читайте также: