Реферат на тему изоляция

Обновлено: 02.07.2024

Рациональное использование топливно-энергетических ресурсов является одной из приоритетных задач в развитии российской экономики. Существенная роль в решении проблемы энергосбережения принадлежит высокоэффективной промышленной тепловой изоляции.

Содержание

Введение. 3
ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ТЕПЛОИЗОЛЯЦИОННЫМ МАТЕРИАЛАМ, И ИХ СВОЙСТВА. 4
ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, ИЗДЕЛИЯ И КОНСТРУКЦИИ ПРИ НАДЗЕМНОЙ И ПОДЗЕМНОЙ ПРОКЛАДКАХ ТЕПЛОВЫХ СЕТЕЙ В КАНАЛАХ. 7
ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ И КОНСТРУКЦИИ БЕСКАНАЛЬНЫХ ПРОКЛАДОК. 14
Заключение. 19
Список использованной литературы. 22

Работа содержит 1 файл

Реферат по инж сетям.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра теплогазоснабжения и вентиляции

Выполнил: ст.гр.08ЭС402 Гизатуллина Д.Р.

Проверил: Фаттахов А.Р.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ТЕПЛОИЗОЛЯЦИОННЫМ МАТЕРИАЛАМ, И ИХ СВОЙСТВА. 4

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, ИЗДЕЛИЯ И КОНСТРУКЦИИ ПРИ НАДЗЕМНОЙ И ПОДЗЕМНОЙ ПРОКЛАДКАХ ТЕПЛОВЫХ СЕТЕЙ В КАНАЛАХ. 7

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ И КОНСТРУКЦИИ БЕСКАНАЛЬНЫХ ПРОКЛАДОК. 14

Список использованной литературы. 22

ТЕПЛОИЗОЛЯЦИЯ ТРУБОПРОВОДОВ ТЕПЛОСЕТЕЙ

Рациональное использование топливно- энергетических ресурсов является одной из приоритетных задач в развитии российской экономики. Существенная роль в решении проблемы энергосбережения принадлежит высокоэффективной промышленной тепловой изоляции.

Тепловая изоляция трубопроводов и оборудования определяет техническую возможность и экономическую эффективность реализации технологических процессов и широко применяется в энергетике, ЖКХ, химической, нефтеперерабатывающей, металлургической, пищевой и других отраслях промышленности.

В энергетике объектами тепловой изоляции являются паровые котлы, паровые и газовые турбины, теплообменники, баки-аккумуляторы горячей воды, дымовые трубы.

В промышленности тепловой изоляции подлежат вертикальные и горизонтальные технологические аппараты, насосы, теплообменники, резервуары для хранения воды, нефти и нефтепродуктов. Особенно высокие требования предъявляются к эффективности тепловой изоляции низкотемпературного и криогенного оборудования.

Тепловая изоляция обеспечивает возможность проведения технологических процессов при заданных параметрах, позволяет создать безопасные условия труда на производстве, снижает потери легко испаряющихся нефтепродуктов в резервуарах, дает возможность хранить сжиженные и природные газы в изотермических хранилищах.

Теплоизоляционные материалы и конструкции предназначены для уменьшения потерь тепла трубопроводами и оборудованием тепловых сетей, поддержания заданной температуры теплоносителя, а также недопущения высокой температуры на поверхности теплопроводов и оборудования.

Уменьшение транспортных потерь тепла является главнейшим средством экономии топлива. Учитывая сравнительно небольшие затраты на теплоизоляцию трубопроводов (5. 8% от капиталовложений в строительство тепловых сетей), очень важным в вопросах сохранения транспортируемого тепла по трубопроводам является их покрытие высококачественными и эффективными теплоизоляционными материалами.

Теплоизоляционные материалы и конструкции непосредственно контактируют с окружающей средой, характеризующейся колебаниями температуры, влажности, а при подземных прокладках - агрессивными действиями грунтовых вод по отношению к поверхности труб

Теплоизоляционные конструкции изготавливают из специальных материалов, главное свойство которых - малая теплопроводность. Различают три группы материалов в зависимости от теплопроводности: низкой теплопроводности до 0,06 Вт/(мв°С) при средней температуре материала в конструкции 25°С и не более 0,08 Вт/(м*°С) при 125°С; средней теплопроводности 0,06.. 0,115 Вт/(мв°С) при 25°С и 0,08.. .0,14 Вт/(мв°С) при 125°С; повышенной теплопроводности 0,115. ОД75 Вт/(мв°С) при 25°С и 0,14 .0,21 Вт/( мв°С) при 125°С.

Для основного слоя теплоизоляционных конструкций для всех видов прокладок кроме бесканальной, следует применять материалы со средней плотностью не более 400 кг/м3, и теплопроводностью не более 0,07 Вт/(м*°С) при температуре материала 25°С. При бесканальной прокладке - соответственно не более 600 кг/м3 и 0,13 Вт/(мв°С)

Другим важным свойством теплоизоляционных материалов является их устойчивость к действию температур до 200°С, при этом они не теряют своих физических свойств и структуры. Материалы не должны разлагаться с выделением вредных веществ, а также веществ, способствующих коррозии поверхности труб и оборудования (кислоты, щелочи, агрессивные газы, сернистые соединения и т.п.)

По этой причине для изготовления тепловой изоляции не допускается применение котельных шлаков, содержащих в своем составе сернистые соединения.

Также важным свойством является водопоглощение и гидрофобность (водоотталкивание) Увлажнение тепловой изоляции резко повышает ее коэффициент теплопроводности вследствие вытеснения воздуха водой. Кроме того, растворенные в воде кислород и углекислота способствуют коррозии наружной поверхности труб и оборудования.

Воздухопроницаемость теплоизоляционною материала также необходимо учитывать при проектировании и изготовлении теплоизоляционной конструкции, которая должна обладать соответствующей герметичностью, не допуская проникновения влажного воздуха

Теплоизоляционные материалы также должны обладать повышенным электросопротивлением, не допускающим попадания блуждающих токов к поверхности трубопроводов, особенно при бесканальных прокладках, что вызывает электрокоррозию труб

Теплоизоляционные материалы должны быть достаточно биостойкими, т.е. не подвергаться гниению, действию грызунов и изменениям структуры и свойств во времени

Индустриальность в изготовлении теплоизоляционных конструкций является одним из главных характеристик теплоизоляционных материалов Покрытие трубопроводов тепловой изоляцией по возможности должно осуществляться на заводах механизированным способом. Это существенно уменьшает трудозатраты, сроки монтажа и повышает качество теплоизоляционной конструкции. Изоляция стыковых соединений, оборудования, ответвлений и запорной арматуры должна производиться ранее заготовленными частями с механизированной сборкой на месте монтажа.

Теплотехнические свойства теплоизоляционных материалов ухудшаются при увеличении их плотности, поэтому минераловатные изделия не следует подвергать чрезмерному уплотнению Детали крепления тепловой изоляции (бандажи, сетка, проволока, стяжки) должны применять из агрессивно стойких материалов или с соответствующим покрытием, противостоящим коррозии.

И, наконец, теплоизоляционные материалы и конструкции должны иметь невысокую стоимость, применение их должно быть экономически оправданным.

Теплоизоляционные материалы

Основным теплоизоляционным материалом в настоящее время для тепловой изоляции трубопроводов и оборудования теплосетей является минеральная вата и изделия из нее. Минеральная вата представляет собой тонковолокнистый материал, получаемый из расплава горных пород, металлургических шлаков или их смеси. В частности, широкое применение находит базальтовая вата и изделия из нее.

Из минеральной ваты изготавливают путем уплотнения и добавки синтетических или органических (битум) связующих или прошивки синтетическими нитями различные маты, плиты, полуцилиндры, сегменты и шнуры.

Маты минераловатные прошивные изготавливают без обкладок и с обкладками из асбестовой ткани, стеклоткани, стекловолокнистого холста, гофрированного или кровельного картона; упаковочной или мешочной бумаги.

В зависимости от плотности различают жесткие, полужесткие и мягкие изделия. Из жестких материалов изготавливают цилиндры с разрезом по образующей, полуцилиндры для изоляции труб малых диаметров (до 250 мм) и сегменты - для труб диаметром более 250 мм. Для изоляции труб больших диаметров применяют маты вертикальнослоистые, наклеенные на покровный материал, а также маты прошивные из минеральной ваты на металлической сетке.

Для теплоизоляции на месте монтажа стыков трубопроводов, а также компенсаторов, запорной арматуры изготавливается шнур теплоизоляционный из минеральной ваты, который представляет собой сетчатую трубку, как правило, из стеклоткани, плотно наполненную минеральной ватой. Теплопроводность изделий из минеральной ваты зависит от марки (по плотности) и колеблется в пределах 0,044. 0,049 Вт/(м*°С) при температуре 25°С и 0,067. ..0,072 Вт/(м*°С) при температуре 125°С.

Стеклянная вата представляет собой тонковолокнистый материал, получаемый из расплавленной стеклянной шихты путем непрерывного вытягивания стекловолокна, а также центробежно-фильерно-дутьевым способом. Из стеклянной ваты методом формования и склеивания синтетическими смолами изготавливают плиты и маты жесткие, полужесткие и мягкие. Изготавливаются также маты и плиты без связующего, прошивные стеклянной или синтетической нитью.

Величина коэффициента теплопроводности изделий из стекловаты также зависит от плотности и колеблется в пределах 0,041. 0,074 Вт/(мв°С)

Находят широкое применение в качестве оберточного и покровного материала холст стекловолокнистый (нетканый рулонный материал на синтетическом связующем) и полотно холстопрошивное из отходов стекловолокна, представляющее собой многослойный холст, прошитый стеклонитями.

Вулканитовые изделия получают смешиванием диатомита, негашеной извести и асбеста, формованием и с обработкой в автоклавах. Изготавливают плиты, полуцилиндры и сегменты для изоляции трубопроводов Ду 50 ..400 Теплопроводность изделий от 0,077 Вт/(м*°С) при 25°С до 0,1 Вт/(мв°С)при 125°С. Известково-кремнистые материалы -тонкоизмельченная смесь негашеной извести, кремнеземистого материала (трепел, кварцевый песок) и асбеста Выпускают изделия также в виде плит, сегментов и полуцилиндров для изоляции трубопроводов Ду 200.. .400. Теплопроводность материала от 0,058 Вт/(мв°С) при 25°С до 0,077 Вт/(м*°С) при 125°С.

Перлит - пористый материал, получаемый при термической обработке вулканического стекла с включениями полевых шпатов, кварца, плагиоклазов Сырьем для получения вспученного перлита служат и другие силикатные породы вулканического происхождения (обсидиан, пемза, туфы и пр.) В виде щебня и песка перлит используется как заполнитель для приготовления теплоизоляционных бетонов и других теплоизоляционных изделий, как например, битумоперлит.

Смешивая перлитный песок с цементом и асбестом путем формования получают перлитоцементные изделия в виде полуцилиндров, плит и сегментов. Коэффициент теплопроводности от 0,058 Вт/(м*°С) при 25°С до 128 Вт/(м*°С) при 300°С.

Все более широкое применение в качестве основного теплоизоляционного слоя находят пенопласты. Пенопласты представляют собой пористый газонаполненный полимерный материал. Технология их изготовления основана на вспенивании полимеров газами, образующимися в результате химических реакций между отдельными смешивающимися компонентами. К пенопластам, допускаемым к применению для изоляции теплопроводов, следует отнести фенолформальдегидные пенопласты ФРП-1 и резолен, изготавливаемые из резольной смолы ФРВ-1А или резоцела и вспенивающего компонента ВАГ-3. Из этого материала изготавливаются цилиндры, полуцилиндры, сегменты, изолированные фасонные части марок ФРП-1 и резолен. Теплопроводность составляет 0,043. 0,046 при 20°С.

Вид как совокупность связанных между собой популяций. Препятствия, затрудняющие обмен генами (изоляция), между популяциями и группами популяций. Географическая и биологическая изоляция, их длительность. Отсутствие новых генотипов и внутривидовых форм.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 06.05.2015
Размер файла 26,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"Курганский государственный университет" (КГУ)

Факультет естественных наук

Кафедра Зоологии и Биоэкологии

По дисциплине: "Теории эволюции”

На тему: " Виды изоляции и их роль в процессе эволюции”

Выполнила: Лунёва Е.Ю.

Преподаватель: Прояева Л.В.

Оглавление

    Введение
  • 1. Классификация
  • 1.1 Географическая
  • 1.2 Биологическая
  • 2. Роль изоляций в процессе эволюции
  • Список литературы

Введение

У организмов, размножающихся половым путем, вид представляет совокупность связанных между собой популяций. Пока особи разных популяций внутри вида хоть изредка могут скрещиваться между собой и давать плодовитое потомство, т.е. пока существует поток генов из одной популяции в другую, вид остается целостной системой. Однако, если между отдельными популяциями или группами популяций возникнут какие-либо препятствия, затрудняющие обмен генами (изоляция), это приведет к расчленению вида. Изолированные группы популяций, отдельные популяции или изолированные части одной и той же популяции могут эволюционировать самостоятельно, что в конечном итоге может привести к возникновению новых видов. Находясь в несколько разных условиях среды и испытывая влияние постоянно действующих элементарных эволюционных факторов, изолированные популяции будут все более и более различаться по своим генофондам. Таким образом, изоляция - это постоянное ограничение панмиксии, т.е. ограничение свободного скрещивания.

1. Классификация

Проявления изоляции в при роде подразделяются на две группы: пространственная изоляция, биологическая изоляция.

Географическая изоляция связана с различными изменениями в ландшафте ( возникновение горных хребтов, водных барьеров, лесных массивов и т.п. ). Она играет также заметную роль при расселении живых организмов, расчленяя популяции на группы и нарушая поток генов между изолированными частями . Такая изоляция оказывает особенно сильное влияние на малоподвижные виды - растения, некоторые виды животных ( например, улитки ) и т.п. Еще в большей степени ей подвержены сидячие водные виды . Географическая изоляция встречается и у подвижных видов, например у птиц, в том числе и перелетных, поскольку репродуктивный период их жизни приходится на одни и те же места ( например, аисты, ласточки ). Географическая изоляция может также иметь место и в тех случаях, когда вид занимает достаточно обширный ареал и особи разных популяций в силу большого расстояния между ними не могут встречаться и скрещиваться . Например, ареал соболя в результате активного отстрела человеком разорван на две части, удаленные на значительное расстояние одна от другой . Географическая изоляция имеет важное значение в видообразовании . Эволюционные преобразования в территориально разобщенных популяциях могут привести к биологической изоляции, что в дальнейшем может вести к образованию самостоятельных видов . При пространственной ( территориально-механической или географической ) изоляции популяция подразделяется на части барьерами, лежащими как бы " вне " .

Пространственная изоляция может существовать в разных формах: водные барьеры разделяют население "сухопутных" видов, а барьеры суши изолируют население видов-гидробионтов, возвышенности изолируют равнинные популяции, а равнины - горные популяции и т.д. Примеры такой изоляции чрезвычайно наглядны. Сравнительно малоподвижные животные - наземные моллюски на Гавайских островах, каждой долинкой резко изолированы от остальных пригодных для их жизни соседних долин; в каждой из долин возникает самостоятельная популяция со своими специфическими особенностями.

Хорошо изучены примеры пространственной внутривидовой изоляции и значительно большего масштаба.

Эти и подобные случаи возникновения территориально-механической изоляции объясняются историей развития видов на определенных территориях. В приведенных случаях изоляции, несомненно, ведущей причиной явилось наступление ледников. За время,, прошедшее после ледников, изолированные формы еще не приобрели значительных морфофизиологических различий и относятся к единым видам. Дальнейшие исследования могут показать, что это - формы уже возникшего видового ранга. Полной изоляции на протяжении жизни десятков тысяч поколений обычно бывает достаточно для возникновения видов.

В настоящее время, в связи с деятельностью человека, в биосфере все чаще и чаще возникает подобная пространственная изоляция отдельных популяций внутри очень многих видов. Типичным примером явилось возникновение разорванного ареала у соболя (Martes zibellina) в Евразии к началу XX в. (результат интенсивного промысла). Обычно возникновение подобного разорванного ареала служит опасным симптомом - возможно постепенное исчезновение вида. Пространственная изоляция может возникнуть внутри видов, малоподвижных животных и растений и не разделенных заметными физико-географическими барьерами. Известно, что обыкновенный соловей (Luscinia iuscinia), населяющий многие районы центральной части Европейской территории СССР, в настоящее время практически сплошь находит подходящие условия для гнездования как в необжитых человеком местах, так и в зарослях по обочинам дорог, в парках и даже скверах больших городов. При этом наблюдается четко выраженная клинальная1 изменчивость пения этих птиц: по числу "коленец", по тембру и другим особенностям существуют постепенные переходы от одной местности другой (при этом известно, что характер песни наследственно обусловлен). Возникновение такой клинальной изменчивости возможно только потому, что соловьи, несмотря на существование у них больших сезонных перелетов, обладают большим гнездовым консерватизмом: молодые возвращаются практически на то же место, где они вывелись. Рассмотрев пространственную изоляцию внутри вида, мы пришли к заключению о существовании двух ее проявлений: изоляция какими-либо барьерами между частями видового населения и изоляция, определяемая большей возможностью спаривания близко живущих особей, т.е. изоляция расстоянием. Разбирая основные характеристики популяции, мы подчеркнули значение радиуса индивидуальной активности для особей разных видов. Возникновение пространственной изоляции связано с этой величиной. Радиус индивидуальной активности наземных моллюсков обычно равен нескольким десяткам метров, а чирков - тысяче километров. Значение физико-географических барьеров в пространственной изоляции связано с биологическими особенностями вида в целом.

1.2 Биологическая

Биологическая изоляция, или репродуктивная, определяется всевозможными различиями индивидуумов внутри вида, предупреждающими скрещивание . Выделяют 3 основные формы биологической изоляции : экологическую, морфофизиологическую и генетическую .

Экологическая изоляция наблюдается, когда потенциальные партнеры по спариванию не встречаются. Это может быть в тех случаях, когда особи одной популяции имеют разные местообитания в пределах одной и той же территории (биотопическая изоляция) либо когда половое созревание у потенциальных партнеров по спариванию наступает неодновременно (сезонная изоляция).

Морфофизиологическая изоляция обусловлена особенностями строения и функционирования органов размножения, когда изменяется не вероятность встреч (как при экологической изоляции), а вероятность скрещивания. Скрещиванию препятствуют размеры особей, несоответствие в строении копулятивных аппаратов, гибель половых клеток и т.п.

Генетическая изоляция наступает тогда, когда скрещивающиеся пары имеют существенные генетические различия, например, по числу и строению хромосом, в результате чего снижается жизнеспособность зигот и зародышей, образуются стерильные потомки.

Биологическую изоляцию обеспечивают две группы механизмов: устраняющие скрещивание (докопуляционные) и изоляция при скрещивании (послекопуляционные). Первые механизмы предотвращают потерю гамет, вторые - связаны с потерей гамет в процессе эволюции (Э. Майр).

Спариванию близких форм препятствуют различия во времени половой активности и созревания половых продуктов. Известно существование "яровых" и "озимых" рас у миног (род Lampetra) и некоторых лососевых рыб (род Oncorhynchus), которые резко отличаются временем нереста; между особями каждой из рас существует высокая степень изоляции. Среди растений известны случаи генетически обусловленного сдвига в периоде цветения, создающего биологическую изоляцию этих форм (явление фенологического полиморфизма). Весьма обычна в природе биотопическая изоляция, при которой потенциальные партнеры по спариванию не встречаются; они чаще обитают в разных местах. Так, часть зябликов (Fringilla coelebs) гнездится в Московской области в лесах таежного типа, а другая - в невысоких и редких насаждениях с большим числом полян. Потенциальная возможность перекрестного спаривания особей этих групп несколько ограничена. Интересный пример биотипической изоляции - симпатрические внутривидовые формы (возможно популяций) у обыкновенной кукушки (Cuculus саnоris). В Европе обитает несколько "биологических рас" кукушек, различающихся генетически закрепленной окраской яиц. Одни откладывают голубые яйца в гнезда обыкновенной горихвостки и лугового чекана, другие - светлые в крапинку яйца - в гнезда мелких воробьиных птиц, имеющих яйца сходной окраски. Изоляция между этими формами кукушек поддерживается за счет уничтожения видами-хозяевами недостаточно замаскированных яиц. У многих видов предпочтение биотопа - эффективный изоляционный механизм. Большое значение в возникновении и поддержании биологической изоляции у близких форм имеет этологическая изоляция - осложнения спаривания, обусловленные особенностями поведения. Вскрыто большое разнообразие и распространение способов этологической изоляции у животных. Возможно, у животных этологические механизмы - наиболее обширная группа из докопуляционных изолирующих механизмов. Ничтожные на первый взгляд отличия в ритуале ухаживания и обмене зрительными, звуковыми, химическими раздражителями будут препятствовать продолжению ухаживания. Таков в общих чертах механизм этологической изоляции. Зрительные раздражители всегда обеспечивают эффективную этологическую изоляцию, обеспечиваемую различием в окраске, характере рисунка, форме движения или комбинации отдельных движений. Важным изолирующим механизмом, затрудняющим скрещивание близких видов, оказывается возникновение морфофизиологи-ческих различий в органах размножения (морфофизиологическая изоляция). Развитие сложных по форме цветов у ряда насекомо-опыляемых растений связано с приспособлением строения цветка к виду насекомых-опылителей. У животных близких видов различия копулятивных органов особенно характерны для некоторых легочных моллюсков, насекомых, а среди млекопитающих - для ряда групп грызунов. Морфофизиологической изоляции, связанной с различием в строении полового аппарата, придавалось ведущее значение в возникновении биологической изоляции. В настоящее время убедительные экспериментальные данные показывают подчиненное значение такой изоляции. Описанные выше механизмы изоляции обычно достаточны для предотвращения в природных условиях возможности скрещивания форм, принадлежащих к разным видам, и понижения эффективности скрещивания у внутривидовых форм, далеко разошедшихся в процессе эволюции (подвидов, групп удаленных географических популяций и т.п.). Вторая большая группа изолирующих механизмов в природе связана с возникновением изоляции после оплодотворения, или собственно-генетической изоляции, включающей гибель зигот после оплодотворения, развитие полностью или частично стерильных гибридов, а также пониженную жизнеспособность гибридов. При межвидовом спаривании часто образуются вполне жизнеспособные гибриды, но у них, как правило, не развиваются нормальные половые клетки. В случае же нормального развития гамет гибриды оказываются малоплодовитыми

2. Роль изоляций в процессе эволюции

Изоляция как эволюционный фактор не создает новых генотипов или внутривидовых форм. Для начала ее действия необходимо наличие гетерогенности, а для углубления различий между изолированными группами - и других факторов эволюции, в первую очередь естественного отбора; изоляция всегда взаимодействует с другими эволюционными факторами. Важной характеристикой действия изоляции как фактора эволюции является ее длительность. В большинстве случаев причина возникновения биологической или пространственной изоляции сохраняется на достаточно длительный период времени. Длительность действия изоляции не является направленным эволюционным фактором. Действие изоляции на эволюционный материал по существу статично и ненаправленно, и в этом изоляция сходна с другими эволюционными факторами (мутации и популяционные волны). Существенный результат изоляции на микроэволюционном уровне - возникновение системы близкородственных скрещиваний (инбридинг); значение инбридинга хорошо известно в селекционной практике. С помощью инбридинга редкие и содержащиеся в гетерозиготном состоянии аллели могут реализоваться в фенотипе в процессе гомозиготизации на окраинах ареала особо изолированных популяций животных и растений; для человека - в изолированных по разным причинам (кастовость, сектантство) от общей массы населения изолятах. Во всех таких случаях изоляция как эволюционный фактор нарушает панмиксию (вернее, ту или иную степень панмиксии) исходной обще; популяции. Итак, принципиальное значение изоляции в процессе эволюции состоит в том, что она закрепляет и усиливает начальные стадии генотипической дифференцировки, а также в том, что разделенные части популяции или вида неизбежно попадают под несколько различное давление отбора. Сравнивая относительное значение давления элементарных эволюционных факторов, надо отметить, что давление изоляции обычно превосходит давление мутационного процесса и, видимо, близко к величине давления волн жизни (в конкретных условиях эти величины могут быть различными). Изоляция расчленяет исходные популяции на две или более, а группы популяций на различающиеся формы. Любая группа особей в природе давлением изоляции генетически отделена от других близких групп. Следовательно, действие изоляции - обязательное условие всякого эволюционного процесса.

Три элементарных эволюционных фактора, действуя на элементарный эволюционный материал, - наследственные изменения и их комбинации в природных популяциях вместе (и каждый в отдельности) - приводят к изменению генотипического состава популяции. Механизм действия трех факторов совершенно различен, но общим для них является ненаправленность, неопределенность и стохастичность действия. Оценивая роль трех элементарных эволюционных факторов, можно сказать, что первые два фактора (мутационный процесс и волны жизни) - факторы-поставщики элементарного эволюционного материала (хотя и действуют совершенно по-разному), а изоляция оказывается фактором-усилителем генетических различий между группами особей; элементарные факторы эволюции различаются и по средним давлениям. Если давление мутационного процесса в природе всегда очень незначительно (хотя и постоянно), то давление популяционных волн резко колеблется в разные периоды жизни популяции. Давление изоляции обычно более или менее длительно и всегда сравнительно велико. В природе три эволюционных фактора действуют совместно, но роль каждого может усиливаться. Но даже совместное действие трех элементарных факторов не обеспечивает устойчивого протекания направленного процесса эволюции. Направленность эволюции придает действие естественного отбора.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

Реферативная работа

Характеристики электроизоляционных материалов……………………….4

Электроизоляционные материалы…………………………………………. 8

По агрегатному состоянию……………………………………………….8

Природные неорганические……………………………………. 11

Электроизоляционными материалами, или диэлектриками, называют такие материалы, с помощью которых осуществляют изоляцию, т. е. препятствуют утечке электрического тока между какими-либо токопроводящими частями, находящимися под разными электрическими потенциалами. Диэлектрики имеют очень большое электрическое сопротивление.

С электрическими установками приходится сталкиваться практически всем работающим. Электрический ток представляет большую потенциальную опасность для человека. Статистика показывает, что хотя число электротравм невелико и составляет всего 0.5. 1% от общего числа травм на производстве, однако среди причин смертельных несчастных случаев на долю электротравм уже приходится 20…40%. Это связано со следующими причинами:

органы чувств человека не могут на расстоянии обнаружить наличия электрического напряжения на оборудовании.

электрический ток через нервную систему проходит сквозь все тело.

после легких ударов током человек способен сразу продолжить работу, поэтому эти удары не фиксируются даже как микротравмы.

Проходя через тело человека, электрический ток оказывает на него сложное воздействие, являющееся совокупностью термического (нагрев тканей), электролитического (разложение крови и плазмы) и биологического (раздражение и возбуждение нервных волокон) воздействий. Наиболее сложным является биологическое действие, свойственное только живым организмам. Любое из этих воздействий может привести к электротравме. Различают местные электротравмы и электрические удары. Приблизительно 55% случаев носят смешанный характер. Электроизоляционные материалы (диэлектрики) играют важную роль в безопасности обслуживающего персонала от поражения электрическим током.

Электроизоляционные материалы можно подразделить:

по агрегатному состоянию:

по происхождению:

Характеристики электроизоляционных материалов

В современном электромашиностроении широко применяют разнообразные электроизоляционные материалы. Важнейшими электрическими характеристиками электроизоляционных материалов являются электрическая прочность, удельное электрическое сопротивление (объемное и поверхностное), диэлектрическая проницаемость и значение диэлектрических потерь. Однако для практических целей немаловажное значение имеют и другие характеристики этих материалов: механическая прочность, гибкость и эластичность, нагревостойкость, морозостойкость, гигроскопичность.

1.1 Электрические характеристики

Электрическая прочность характеризуется напряженностью однородного электростатического поля, при которой наступает пробой. Эта величина численно равна напряжению, при котором наступает пробой электроизоляционного материала толщиной в единицу длины.

Электрическая прочность определяется по формуле:

где U – напряжение кВ, h - толщина образца электроизоляционного материала, мм.

Удельное сопротивление. В реальном диэлектрике всегда имеется некоторое количество свободных электронов и ионов. Под действием электрического поля эти электроны и ионы перемещаются внутри диэлектрика, образуя так называемый ток утечки. Ток утечки при нормальных условиях работы электрической установки должен быть очень малым по сравнению с рабочими токами, протекающими по ее токоведущим частям (проводам, шинам, кабелям). В соответствии с этим различают объемные и поверхностные токи утечки, а также удельное объемное сопротивление диэлектрика и его удельное поверхностное сопротивление v. Удельное объемное сопротивление измеряют, как и у проводниковых материалов, в омметрах (Ом*м); оно равно сопротивлению куба из данного материала с ребром 1 м при прохождении тока от одной его грани к противоположной. Удельное поверхностное сопротивление измеряют в омах, оно представляет собой сопротивление квадрата, вырезанного из поверхности изоляции данного материала, при прохождении тока от одной его стороны к противоположной.

Диэлектрическая проницаемость безразмерная величина e, показывающая, во сколько раз сила взаимодействия F между электрическими зарядами в данной среде меньше их силы взаимодействия Fo в вакууме:

Диэлектрическая проницаемость показывает, во сколько раз поле ослабляется диэлектриком, количественно характеризуя свойство диэлектрика поляризоваться в электрическом поле.

Значение относительной диэлектрической проницаемости вещества, характеризующее степень его поляризуемости, определяется механизмами поляризации. Однако величина в большой мере зависит и от агрегатного состояния вещества, так как при переходах из одного состояния в другое существенно меняется плотность вещества, его вязкость.

Диэлектрическими потерями называют энергию, рассеиваемую в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика.

Потери энергии в диэлектриках наблюдаются как при переменном напряжении, так и при постоянном, поскольку в материале обнаруживаются сквозной ток, обусловленный проводимостью. При постоянном напряжении, когда нет периодической поляризации, качество материала характеризуется значениями удельных объемного и поверхностного сопротивления. При переменном напряжении необходимо использовать какую-то другую характеристику качества материала, так как в этом случае, кроме сквозной электропроводимости, возникает ряд добавочных причин, вызывающих потери энергии в диэлектрике.

Механическая прочность электроизоляционных и других материалов оценивается при помощи следующих характеристик:

предел прочности материала при растяжении;

относительное удлинение при растяжении;

предел прочности материала при сжатии;

предел прочности материала при статическом изгибе;

Нагревостойкость — способность изоляционных материалов выдерживать кратковременно или длительно действие высокой температуры без ухудшения свойств в течение всего срока службы. В соответствии с ГОСТом 8865-70 по наибольшим длительно допустимым рабочим температурам все диэлектрики, применяемые для изоляции электрических машин и аппаратов, разделяют на семь классов нагревостойкости, °С: У—90 0 ; А — 105 0 ; Е— 120 0 ; В — 130 0 ; F— 155 0 ; R — 180; С >180 0 . Это значит, что при данных температурах изоляция электрооборудования будет работать установленный целесообразный срок службы.

Морозостойкость . Во многих случаях эксплуатации важна морозостойкость, т.е. способность изоляции работать без ухудшения эксплуатационной надежности при низких температурах, например от -60 до -70 0 С. При низких температурах, как правило, электрические свойства изоляционных материалов улучшаются, однако многие материалы, гибкие и эластичные в нормальных условиях, при низких температурах становятся хрупкими и жесткими, что создает затруднения для работы изоляции. Испытания электроизоляционных материалов и изделий из них на действие низких температур нередко проводятся при одновременном воздействии вибраций.

Теплопроводимость. Практическое значение теплопроводимости объясняется тем, что тепло, выделяющееся вследствие потерь мощности в окруженных электрической изоляции проводниках и магнитопроводах, а также вследствие диэлектрических потерь в изоляции, переходит в окружающую среду через различные материалы. Теплопроводимость влияет на электрическую прочность при тепловом пробое и на стойкость материала к тепловым импульсам.

2.1 По агрегатному состоянию

Газообразные диэлектрики делят на две группы: естественные и искусственные.

Естественные газообразные диэлектрики . Наибольшее применение из них в силу своей распространенности получил воздух, даже в тех случаях, когда его присутствие в изоляции нежелательно.

Воздух — смесь газов с электрической прочностью £ПР = 3,2 кВ/мм (при 0,1 МПа и 20°С), плотностью— 1,293 кг/м3. Епр воздуха зависит в основном от расстояния между электродами, давления, температуры и влажности. Приведенная величина соответствует +20°С, давлению 0,1 МПа и расстоянию между электродами 10 мм. Ток утечки через воздух крайне мал, поэтому tgδ его практически равен нулю.

В воздушных линиях электропередачи, сухих трансформаторах, коммутационных аппаратах, распределительных устройствах и т.п. воздух является основной изоляцией. Во многих электрических объектах он играет роль дополнительной изоляции к твердым и жидким диэлектрикам.

Азот по электрическим характеристикам близок к воздуху, однако в отличие от него не содержит кислорода, который оказывает окисляющее воздействие на соприкасающиеся с ним материалы.

Водород — очень легкий газ с высокой теплопроводностью и удельной теплоемкостью, что делает его весьма полезным для использования в качестве охлаждающей среды вместо воздуха. Применение его в электрических машинах снижает потери электрической мощности на трение и вентиляцию, а отсутствие окисляющего фактора замедляет старение органической изоляции.

Гелий — инертный газ, используется в качестве низкотемпературного хладагента, например, для получения сверхпроводимости.

Искусственные газообразные диэлектрики . К ним относятся элегаз, хладоген 12 и др. Из них в ремонтной практике определенный интерес представляет элегаз. Он нетоксичен, химически стоек, не разлагается при нагреве до 800°С, распространен в конденсаторах, кабелях и пр.

В электровакуумных лампах и приборах широко применяются инертные газы и пары ртути, в качестве охлаждающей среды — водород, для получения сверхпроводимости — жидкий гелий.

Для неполярных жидкостей ε невелика и близка к значению квадрата показателя преломления света n

Для нейтральных жидкостей ε уменьшается с ростом температуры, что связано с уменьшением плотности жидкости с ростом температуры, а, значит, и уменьшением концентрации молекул.

В дипольных (полярных) жидкостях одновременно протекают и электронная, и дипольно – релаксационная поляризации. ε тем больше, чем больше электрический момент диполей μ и чем больше число молекул в единице объема. Диэлектрическая проницаемость полярных жидкостей больше чем у неполярных. Например, ε касторового масла = 4,5.

Температурная зависимость ε полярных жидкостей характеризуется дипольным максимумом в области резкого изменения вязкости жидкости. С ростом частоты электрического поля диэлектрическая проницаемость полярных жидкостей снижается до значений, определяемых электронной поляризацией.

hello_html_255c2a46.jpg

В твердых диэлектриках возможны все виды поляризации.

Для нейтральных диэлектриков ε = n2, что подтверждается ниже

приведенными результатами для неполярных диэлектриков при температуре 20 ºС.

Ионные кристаллы с плотной упаковкой частиц обладают электронной и ионной поляризацией. ε изменяется в широких диапазонах. С ростом температуры ε обычно растет. В неорганических аморфных диэлектриках (стеклах) ε изменяется в пределах от 4 до 20, возрастает с ростом температуры, хотя в ряде случаев (рутил TiO2, титанат кальция CaTiO3) может и уменьшаться.

Органические полярные диэлектрики имеют дипольно – релаксационную поляризацию. ε изменяется в широких пределах, но обычно имеет значение 4 – 10. Диэлектрическая проницаемость зависит от температуры, частоты приложенного напряжения, подчиняясь, в целом, закономерностям, проявляющимся у полярных жидкостей.

2.2.1 Природные неорганические

К природным минеральным неорганическим диэлектрикам относятся слюда и асбест.

Слюда обладает высокими электроизоляционными свойствами, нагревостойкостью, механической прочностью, гибкостью. В тонких слоях многие виды слюды прозрачны.

Слюда встречается в виде кристаллов, которые легко расщепляются на тонкие пластинки по параллельным друг другу плоскостям. По химическому составу слюда – водный алюмосиликат. Важнейшие виды слюды: мусковит, состав которого приближенно может быть выражен формулой

Фактический состав природных слюд много сложнее из-за присутствия в них примесей.

По сравнению с флогопитом мусковит обладает лучшими электроизоляционными свойствами, более прочен механически, тверд, гибок и упруг. Допустимая рабочая температура слюд ограничивается выделением входящей в их состав воды (у мусковитов обычно при 500 - 600 °С, у флогопитов – при 800 - 900 °С), что связано с потерей прозрачности, увеличением толщины (“вспучиванием”) и разрушением кристаллической структуры; обезвоженные слюды плавятся при температуре 1250 - 1300°С

Значение ε слюд составляет 6 – 8; tg δ ~ 10-4; ρ =1011 – 1014 Ом·м.

По применению в радиоэлектронике различают конденсаторную слюду – прямоугольные пластинки мусковита, применяемые в качестве диэлектрика в слюдяных конденсаторах; телевизионную слюду – пластинки мусковита, образующие диэлектрическую основу фотокатодов и мишеней в передающих телевизионных трубках.

Слюдяные детали для электронных приборов – штампованные фасованные детали, служащие для крепления и электрической изоляции внутренней арматуры в электронных приборах.

Асбест – неорганический природный волокнистый материал, состоящий в основном из минерала хризотила 3MgO·2SiO2·2H2O. Для улучшения механических свойств к асбестовому волокну добавляют в небольших количествах хлопчатобумажное. Из асбестовых нитей получают шнуры, ткани, бумагу и другие изделия.

Основным преимуществом асбеста является высокая нагревостойкость: он разрушается, теряя кристаллизационную воду лишь при 450 - 700 °С (температура плавления 1450 - 1500 °С). Значение ρ=106 – 1010 Ом·м. Асбестовые электроизоляционные материалы применяют главным образом для высокотемпературной электроизоляции, а также теплоизоляции.

2.2.2 Природные органические

К природным (естественным) смолам принадлежат продукты жизнедеятельности животных или растительных организмов. Из естественных смол в производстве электроизоляционных лаков и компаундов наиболее широко применяется канифоль, значительно меньше шеллак и копалы. Природные растительные смолы получают упариванием растительных соков, которые вытекают из растений естественным путем или при надрезании стеблей и стволов. Их можно экстрагировать из растительного сырья такими растворителями, как спирт и эфир. К растительным смолам относится, например, сосновая канифоль, а также смола, получаемая из клубней скаммонии (вьюнка смолоносного Convolvulus scammony), и ископаемые окаменелые смолы янтарь и копал. Смолы животного происхождения редки. Одна из них, шеллак, представляет собой выделения лаковых червецов, живущих на растениях семейства мимозовых в Индии. Некоторые растительные смолы используют в медицине; так, смола скаммонии применяется как слабительное. Другие смолы, например, шеллак, входят в состав политур. Имеется множество сортов синтетических смол, и спользуемых для получения пластмасс.

Канифоль (гарпиус) - хрупкая прозрачная в тонком слое смола, получаемая из смолы (живицы) хвойных деревьев, преимущественно сосны, способом отгонки жидких составных частей -- терпентинного масла (скипидара). Состав живицы может колебаться в зависимости от условий местности и сорта живицы. Другой способ добывания канифоли -- экстракционный, заключающийся в том, что куски дерева, пни, ветви обрабатываются растворителями, которые затем подвергаются разгонке. Существуют также смолы деревьев других хвойных пород, например, кедра, пихты и лиственницы. Их обычно называют бальзамами. Пихтовый бальзам (канадский бальзам), отличается очень высокой степенью прозрачности и нормированным показателем преломления. Его применяют в качестве клея для склеивания оптических линз. По химическому составу канифоль состоит главным образом из абиетиновой кислоты (С 20 Н 30 О 2 ) и ее изомеров, остальное -- неомыляемые, зола, влага и механические примеси. Содержание кислот в канифоли составляет 85 -90%. Канифоль хорошо растворима в спирте, бензоле, скипидаре, минеральных и растительных маслах

Электроизоляционные материалы, предназначены для работы в электрических и магнитных полях. Электроизоляционные материалы в современной электротехнике занимают одно из главных мест. Всем известно, что надежность работы электрических машин, аппаратов и электрических установок в основном зависит от качества и правильного выбора соответствующих электроизоляционных материалов. Анализ аварий электрических машин и аппаратов показывает, что большинство из них происходит вследствие выхода из строя электроизоляции, состоящей из электроизоляционных материалов.

При рациональном выборе электроизоляционных, магнитных и других материалов можно создать надежное в эксплуатации электрооборудование при малых габаритах и весе. Но для реализации этих качеств необходимы знания свойств всех групп электроизоляционных материалов.

При нормальных атмосферных условиях электрическая прочность воздушных промежутков относительно невелика и в однородном поле при межэлектродных расстояниях бо­лее I см имеет значение, не превышающее 30 кВ/см. В боль­шинстве изоляционных конструкции при приложении высо­кого напряжения создается резко-неоднородное электриче­ское поле. Электрическая прочность воздуха в таких полях еще меньше и при расстояниях между электродами поряд­ка 1—2 м составляет приблизительно 5 кВ/см, а при рас­стояниях 10—20 м снижается соответственно до 2,5— 1,5 кВ/см. В связи с этим габариты воздушных линий элек­тропередачи и распределительных устройств в значительной мере определяются электрической прочностью воздуха и при увеличении номинального напряжения, очень быстро возра­стают.

На разрядные напряжения воздушных промежутков ока­зывают влияние давление р, температура T и абсолютная влажность у воздуха, поэтому изоляционные расстояния по воздуху выбираются таким образом, чтобы они имели до­статочную электрическую прочность при неблагоприятных атмосферных условиях. В частности, электрооборудование обычного исполнения предназначено для работы на высотах до 1000 м над уровнем моря и при температурах окружаю­щего воздуха до 40 °С. В связи с этим при проектировании внешней изоляции электрооборудования учитывается, что подъем на каждые 100 м над уровнем моря дает снижение разрядных напряжений примерно на 1 % и такое же сни­жение дает увеличение температуры на каждые 3 °С сверх нормалью. В качестве нормальной температуры принима­ется T0 = 293 К (t=20°С), в качестве нормального дав­ления, соответствующего уровню моря, — давление P0 =100 кПа (760 мм рт. ст.) в качестве нормальной влажности воздуха — абсолютная влажность уо = 11 г/м 3 . Уменьшение абсолютной влажности воздуха в 2 раза приводит к снижению разрядных напряжений внеш­ней изоляции на 6—8%. Следует отметить, что приведен­ные данные, характеризующие изменение разрядных напря­жений под влиянием атмосферных условии, относятся к межэлектродным расстояниям до 1 м. При расстояниях между электродами больше 1 м влияние атмосферных ус­ловий снижается по мере увеличения расстояния. Дождь практически не оказывает влияния на разрядные напряже­ния промежутков с неоднородным полем.

НАЗНАЧЕНИЕ И ТИПЫ ИЗОЛЯТОРОВ

Диэлектрики, из которых изготавливаются изоляторы, должны обладать высокой механической прочностью, по­скольку изоляторы, являясь элементом конструкции, несут значительную нагрузку. Изоляторы линий электропередачи, например, несут нагрузку от натяжения проводов, исчисляе­мую тоннами, а иногда и десятками тонн. Опорные изоля­торы, на которых крепятся шины распределительных уст­ройств, выдерживают громадные нагрузки от электродина­мических сил, возникающих между шинами при коротких замыканиях.

Диэлектрики должны иметь высокую электрическую прочность, позволяющую создавать экономичные и надеж­ные конструкции изоляторов. Нарушение электрической прочности изолятора может происходить или при пробое твердого диэлектрика, из которого он изготовлен, или в результате развития разряда в воздухе вдоль внешней поверх­ности изолятора. Пробой твердого диэлектрика означал бы выход изолятора из строя, тогда как разряд по поверхно­сти при условии быстрого отключения напряжения не при­чиняет изолятору никаких повреждений. Поэтому пробив­ное напряжение твердого диэлектрика в изоляторе должно быть (и всегда делается) примерно в 1,5 раза более высо­ким, чем напряжение перекрытия по поверхности, которым и определяется электрическая прочность изолятора.

Диэлектрики должны быть негигроскопичны и не долж­ны изменять своих свойств под действием различных мете­орологических факторов. При неблагоприятных условиях (дождь, увлажненные загрязнения) на поверхностях изоля­торов, устанавливаемых на открытом воздухе (изоляторов наружной установки), могут возникать частичные электри­ческие дуги. Под их действием поверхность может обугли­ваться и на ней могут появляться проводящие следы — треки, снижающие электрическую прочность изоляторов. Поэтому диэлектрики для изоляторов наружной установки должны обладать высокой трекингостойкостыо.

Всем указанным требованиям в наибольшей степени удовлетворяют глазурованный электротехнический фарфор и стекло, получившие широкое распространение, а также не­которые пластмассы.

Электрическая прочность фарфора воднородном поле при толщине образца 1,5 мм составляет 30—40 кВ/мм и уменьшается при увеличении толщины. Электрическая проч­ность стекла при тех же условиях — 45 кВ/мм.

Механическая прочность фарфора и стекла зависит от вида нагрузки. Например, прочность фарфоровых образцов диаметром 2—3 см составляет при сжатии 450 МПа, при изгибе — 70 МПа, а при растяжении — всего 30 МПа. По­этому наиболее высокой механической прочностью облада­ют изоляторы, в которых фарфор работает на сжатие.

Стекло по механической прочности не уступает фарфору и тоже лучше всего работает на сжатие. Стеклянные изо­ляторы в процессе изготовления подвергаются закалке: на­греваются до температуры примерно 700 0 С и затем обду­ваются холодным воздухом. Во время закалки наружные слои стекла твердеют значительно раньше внутренних, по­этому при последующей усадке внутренних слоев в толще стекла образуются растягивающие усилия. Такая предва­рительно напряженная конструкция имеет высокую проч­ность на сжатие. Стеклянные подвесные изоляторы тарельчатого типа для линий электропередачи изготовляют­ся на нагрузки до 530 кН.

Изоляторы из закаленного стекла имеют ряд преиму­ществ перед фарфоровыми: технологический процесс их из­готовления полностью автоматизирован; прозрачность стек­ла позволяет легко обнаружить при внешнем осмотре мел­кие трещины и другие внутренние дефекты; повреждение стекла приводит к разрушению диэлектрической части изо­лятора, которое легко обнаружить при осмотре линии элек­тропередачи эксплуатационным персоналом.

Полимерные изоляторы наружной установки изготовля­ются из эпоксидных компаундов на основе циклоолифатических смол, из кремнийорганической резины, из полиэфир­ных смол с минеральным наполнителем и добавкой фторо­пласта. Такие изоляторы имеют высокую электрическую прочность и достаточную трекипгостойкость. Высокая меха­ническая прочность полимерных изоляторов достигается по­средством армирования их стеклопластиком. Применение полимерных изоляторов на линиях электропередачи позво­ляет существенно уменьшить массу подвесных изоляторов. В закрытых помещениях изоляторы не подвержены вли­янию атмосферных осадков, поэтому для их изготовления в некоторых случаях используется бакелизированная бу­мага. Для уменьшения гигроскопичности такие изоляторы покрываются снаружи водостойкими лаками. Однако наи­большее распространение для внутренней установки полу­чили изоляторы из фарфора и стекла, отличающиеся от изо­ляторов наружной установки более простой формой.

Поскольку перекрытие изоляторов происходит в резуль­тате развития разряда в воздухе вдоль поверхности, на раз­рядные напряжения изоляторов оказывают влияние те же факторы, которые влияют на разрядные напряжения воз­душных промежутков, т. е. давление, температура и абсо­лютная влажность воздуха. Помимо этого на разрядные напряжения изоляторов влияет состояние их поверхности. Условия развития разряда по поверхности изоляторов на­ружной установки существенно изменяются, если на их по­верхностях имеются увлажненные загрязнения или же они смачиваются дождем. Тогда разрядные напряжения значи­тельно уменьшаются. В связи с этим по существующей ме­тодике испытанные изоляторы подвергаются воздействию напряжения в сухих условиях (сухоразрядное напряжение), под дождем (мокроразрядное напряжение) и при увлажненном загрязнении (влагоразрядное напрояжение).

Сухоразрядные напряжения определяются при сухой и чистой поверхности изоляторов и приводятся к нормальным атмосферным условиям. При измерениях мокроразрядных и влагоразрядных напряжений искусственный дождь и ув­лажненные загрязнения создаются по стандартным методи­кам. Это обеспечивает возможность сопоставления резуль­татов, полученных в разное время или в разных лаборато­риях, и объективность оценки изоляторов различной конструкции.

По своему назначению изоляторы делятся на опорные, подвесные и проходные. Опорные изоляторы в свою очередь подразделяются на стержневые и штыревые, а подвесные — на изоляторы тарельчатого типа и стержневые.

Опорно-стержневые изоляторы применяют в закрытых и открытых распределительных устройствах для крепления на них токоведущих шин или контактных деталей. Изоляторы внутренней установки конструктивно представляют собой фарфоровое тело, армированное крепежными металлически­ми деталями (рис. 4.1).


Арматура одновременно является внутренним экраном, с помощью которого снижается напря­женность поля у края электрода, где она максимальна.

Ребро на теле изолятора играет роль барьера, заставляя разряд развиваться под углом к силовым линиям поля, т. е. по пути с меньшей напряженностью. Внутренний экран и ребро существенно увеличивают разрядное напряжение изолятора.

Изоляторы внутренней установки выпускаются на напря­жения до 35 кВ. Обозначение изоляторов, например, ОФ-35-375 расшифровывается следующим образом: опорный, фарфоровый на 35 кВ, с минимальной разрушающей силой на изгиб 375 даН.

Опорно-стержневые изоляторы наружной установки от­личаются большим количеством ребер, чем изоляторы вну­тренней установки. Ребра служат для увеличения длины пути утечки с целью повышения разрядных напряжений изоляторов под дождем и в условиях увлажненных загряз­нений. Изоляторы на напряжения 35—110 кВ состоят из сплошного фарфорового стержня, армированного чугунны­ми фланцами (рис. 4.2). Обозначение, например, ОНС-35-2000 расшифровывается следующим образом: опорный, на­ружной установки, стержневой на 35 кВ, с минимальной разрушающей силой 2000 даН.


Опорно-штыревые изоляторы применяют для наружных установок в тех случаях, когда требуется высокая механическая прочность и опорно-стержневые изоляторы применены быть не могут. Опорно-штыревой изолятор состоит из фарфоровой или стеклянной изолиру­ющей детали, с которой при помощи цемента скрепляется металлическая арматура—штырь с фланцем и колпа­чок (шапка). Изолирующая деталь опорных штыревых изоляторов на напряжения 6—10 кВ выполняется одно­элементной, а на напряжение 35 кВ — двух или трехэлементной (рис. 4.3).

В установках напряжением 110 кВ и выше используются колонки, состоя­щие из нескольких установленных друг на друга опорно-штыревых изо­ляторов на напряжение 35 кВ. В обозначение изоляторов введена буква Ш (штыревой).

Штыревые линейные изоляторы на напряжение 6—10 кВ состоят из фарфоровой или стеклянной изолирующей дета­ли, в которую ввертывается металлический крюк или штырь (рис. 4.4). Крюк служит для закрепления изолятора на опоре. Провод укладывается в бороздки на верхней или боковой поверхности изолятора и крепится посредством проволочной вязки или специальных зажимов. На напря­жение 35 кВ изоляторы выполняются из двух склеенных между собой изолирующих деталей, что увеличивает их электрическую и механическую прочность. Обозначение штыревых линейных изоляторов, например ШФ6, означает:


штыревой фарфоровый на 6 кВ. Буква С в обозначении (ШС) указывает на то, что изолятор стеклянный.

Подвесные изоляторы тарельчатого типа широко приме­няются на воздушных линиях электропередачи 35 кВ и вы­ше. Они состоят из изолирующей детали (стеклянной или фарфоровой), на которой при помощи цемента укрепляется металлическая арматура — шапка и стержень (рис. 4.5).

Требуемый уровень выдерживаемых напряжений дости­гается соединением необходимого количества изоляторов в гирлянду. Это осуществляется путем введения головки стержня в гнездо на шапке другого изолятора и закрепле­ния его замком. Гирлянды благодаря шарнирному соедине­нию изоляторов работают только на растяжение. Однако изоляторы сконструированы так, что внешнее растягиваю­щее усилие создает в изоляционном теле в основном напря­жения сжатия. Тем самым используется высокая прочность фарфора и стекла на сжатие.

У фарфорового изолятора наружная и внутренняя по­верхности головки (средней части изолирующей детали) покрывают фарфоровой крошкой, которая при обжиге спе­кается с фарфором. Это обеспечивает прочное сцепление це­ментной связки с головкой. Для компенсации температур­ных расширений цементной связки применяют эластичные промазки, которыми покрывают все элементы изолятора соприкасающиеся с цементом. В стеклянных изоляторах внутренняя и наружная поверхности головки имеют опорные выступы, что обеспечивает лучшее распределение усилий в изоляторе.

Верхняя часть тарелки подвесного тарельчатого изолятора имеет гладкую поверхность, наклоненную под углом 5—10° к горизон­тали, что обеспечивает стекание воды во время дождя. Нижняя поверхность тарел­ки для увеличения длины пути утечки выполняется ребристой.

Наиболее частой причи­ной выхода из строя та­рельчатых изоляторов явля­ется пробой фарфора (стек­ла) между шапкой и стерж­нем, однако механическая прочность изолятора при этом не нарушается и паде­ния провода на землю не происходит. Это является существенным достоинст­вом тарельчатых изоля­торов.

Обозначение изоляторов тарельчатого типа, напри­мер ПС-16Б, означает: П —гарантированная электромеханическая прочность 160 кН, индекс Б означает вид конструктивного исполнения изо­лятора. Электромеханическая прочность изолятора — это величина разрушающей механической силы при приложе­нии к изолятору напряжения, равного 75—80 % разрядно­го напряжения в сухом состоянии.


Подвесные стержневые изоляторы представляют собой стержень из изолирующего материала с выступающими на нем ребрами, армированный с обоих концов металлическими шапками (рис. 4.6).

Эти изоляторы, как правило, выполня­ются из электротехнического фарфора. Однако в последнее время начат выпуск стержневых полимерных изоляторов. Стержневые изоляторы из фарфора не нашли в СССР широкого применения вследствие сравнительно невысокой механической прочности, а также возможности полного разрушения с падением на землю.

Проходные изоляторы применяются для изоляции токоведущих частей при прохождении их через стены, потолки и другие элементы конструкций распределительных, уст­ройств и аппаратов. Проходной изолятор в самом простом случае состоит из полого фарфорового элемента, внутри которого проходит токоведущий стержень (шина), и фланца, служащего для механического крепления изолятора к кон­струкции, через которую осуществляется ввод напряжения (рис. 4.7). Проходные изоляторы, предназначенные для на­ружной установки, имеют более развитую поверхность той части изолятора, которая располагается вне помещения.

Обозначение проходного изолятора содержит значение номинального тока, например ПНШ-35/3000-2000 означает: проходной, наружной установки, шинный на напряжение 35 кВ и номинальный ток 3 кА с механической прочностью 20 кН.

Читайте также: