Реферат на тему история астрономии

Обновлено: 02.07.2024

Астрономия развивалась независимо в Древней Греции, Египте и в Месопотамии. И уже в 3000 году до нашей эры был создан календарь, который делит год на 365 дней. Тогда впервые началось разделение дня на двенадцать частей. В то время были придуманы первые имена созвездий, шумерами жившим в древней Месопотамии. Некоторые из этих имен используются и по сей день. Речь идет о созвездиях Тельца, Льва и Скорпиона.

В пятом веке до нашей эры вавилонская астрономия ввела знаки зодиака. Эта концепция касалась как совокупности созвездий, так и называемого большого круга, ставшего основой системы координат в небе. Вавилонские астрономы также создали первые математические модели, из которых можно было рассчитать даты возникновения астрономических явлений.

В Древней Греции астрономы научились использовать геометрию для описания явлений в небе. Развитие греческой астрономии относится к шестому столетию до нашей эры. В то время было создано много теоретических космологических моделей. Астрономы пытались объяснить, например, природу света или небесных тел. Во главе этой школы были в основном Анаксимандр и Пифагор. Говорят, что Пифагор первый, предположил, что Земля может иметь форму сферы.

На рубеже пятого и четвертого веков до н. э. жил Платон, который предположил, что движения тел в небе круговое и однообразное. Он также передал свои знания и предположения своим ученикам. Одним из них был Евдоксос из Книдоса ставшим автором модели Вселенной, которая предполагает, что она состоит из системы сфер с общей средой, и они движутся вокруг Земли.

Эта модель несколько лет спустя была слегка расширена Каллиппсом Кизикский. Он увеличил количество сфер с 26 до 35. Аристотель также работал над этой моделью, но он предполагал, что в итоге сфер должно быть 55.

Однако это была чисто теоретическая модель. В последующие годы греческая астрономия шла в направлении объединения таких теоретических предположений с данными наблюдений. В третьем веке до нашей эры, Аполоний Перги, построил две геометрические модели планетарных орбит. Первая из них предположила, что планеты движутся вокруг Земли по кругу с постоянной скоростью, но Земля не находится в центре этого круга. Это должно было объяснить изменением расстояния между Землей и остальными планетами. Вторая модель предполагала движение планет и называлась эпициклом.

Предположения первой из моделей были использованы во втором веке до нашей эры Гиппархом. Он попытался описать движение Солнца вокруг Земли. Он даже установил параметры для предполагаемой солнечной орбиты в зависимости от продолжительности весны и лета. Гиппарх также использовал вторую модель Аполлония.

Наука затем вступила в новую эру, где наибольшее влияние на ее развитие сделали в первую очередь исламские астрономы, а также отдельные ученые в Европе. Венцом этих многовековой теории была работа Коперника.

В XI веке арабские астрономические работы стали все более популярными в Западной Европе. Таким образом, теории Птолемея, переведенные ранее на арабский язык, попали в Западную Европу. В тринадцатом веке на основе предположений Птолемея были созданы новые астрономические таблицы для расчета положений планет.

Астрономия возникла на основе практических потребностей человека и развивалась вместе с ними. Зачатки астрономии существовали уже тысячи лет назад в Вавилоне, Египте и Китае для целей измерения времени и ориентировки по странам света. И в наше время астрономия используется для кораблевождения, для определения точного временя и для других практических нужд.
Астрономия изучает физическую природу небесных тел, их влияние на Землю. Например, Луна и Солнце вызывают на Земле приливы и отливы.

Содержание работы

1. Астрономия
2. История астрономии
- Древнее представление о Вселенной. Античность.
- Средневековье
- Эпоха просвещения
- Открытие Коперника
- Джордано Бруно
- Галилео Галилей
3. Список литературы

Файлы: 1 файл

История развития астрономии.doc

Афанасьева Алиса 1 ПСР

История развития астрономии

1.Астрономия
2. История астрономии
- Древнее представление о Вселенной. Античность.

- Средневековье
- Эпоха просвещения

- Джордано Бруно
- Галилео Галилей
3.Список литературы

Астрономия- это наука о Вселенной, изучающая расположение, движение, строение, происхождение и развитие небесных тел и образованных ими систем.

В частности, астрономия изучает Солнце, другие звёзды, планеты Солнечн ой системы и их спутники, внесолнечные планеты (экзопланеты), астерои ды, кометы, метеориты, межпланетное вещество, межзвёздное вещество, пульсары, чёрные дыры, туманности, галактики и их скопления, квазары и многое другое.

Астрономия возникла на основе практических потребностей человека и развивалась вместе с ними. Зачатки астрономии существовали уже тысячи лет назад в Вавилоне, Египте и Китае для целей измерения времени и ориентировки по странам света. И в наше время астрономия используется для кораблевождения, для определения точного временя и для других практических нужд.
Астрономия изучает физическую природу небесных тел, их влияние на Землю. Например, Луна и Солнце вызывают на Земле приливы и отливы. Разного рода солнечные излучения иногда переменной интенсивности влияют на процессы в земной атмосфере и на жизнедеятельность организмов. Различные явления на Земле и в космосе взаимосвязаны и взаимообусловлены.
Астрономия изучает во Вселенной вещество в таких состояниях и масштабах, которые неосуществимы в физических лабораториях. Поэтому астрономия помогает расширить физическую картину мира и стимулирует развитие физики и математики. Она в свою очередь пользуется их методами и выводами. Астрономия взаимосвязана и с другими науками, например с химией, геологией.
Научившись предвычислять появления комет и наступление затмений Солнца и Луны, астрономия положила начало борьбе с суевериями. Она показывает возможность естественного научного объяснения происхождения Земли и других небесных светил.
Астрономия — наука, в основе которой лежат наблюдения. Но в последнее время облет небесных тел и посадки на них снабжают астрономию экспериментальным материалом. Объекты астрономического исследования — небесные светила, бывшие еще недавно недосягаемыми, — стали доступны для непосредственного изучения.

Древнее представление о Вселенной.Античность.

Правильное понимание наблюдаемых небесных явлений пришло не сразу. Представители лучших умов человечества трудились долго и упорно в поисках истины. Им приходилось вести борьбу с невежеством, косностью, вековыми предрассудками, которые поддерживались церковью, насаждавшей религиозное мировоззрение. Жрецы — служители религии — использовали науку для утверждения своей власти. Установление календарных дат, связанных с небесными явлениями, побуждало жрецов изучать эти явления. Жрецы накопили много фактических данных о небесных явлениях, но не умели их правильно объяснить.
В древнейшие времена сложилось представление о том, что Земля неподвижная и плоская, прикрытая, как колпаком, твердым куполом неба. Небесные светила считались то вестниками богов, то светильниками, созданными богом для украшения неба.
Развитие мореплавания требовало умения ориентироваться по небесным светилам. К наиболее ярким из них относятся планеты. При движении по небосводу они описывают петли. Пытаясь объяснить движение планет, исходили из представления о неподвижности Земли и округлости неба. Философ и ученый IV в. до н. э. Аристотель считал, что каждая планета укреплена на хрустальной сфере. Сферы вложены друг в друга и вращаются вокруг шарообразной Земли. На последней и самой далекой сфере укреплены звезды.
Позднее, во II в. н. э., древнегреческий ученый Птолемей объяснил петлеобразное движение планет тем, что каждая планета равномерно движется по окружности, центр которой равномерно обращается вокруг неподвижной Земли. Птолемей подобрал отношения радиусов окружностей и периоды обращения планет так, что по его теории можно было даже предвычислять положение планет на небе. Этого и требовала практика мореходства. Система мира с Землей в центре называлась геоцентрической (по-гречески Земля — ге).

Именно в Древней Греции были заложены основы современного научного мышления. Тогда были заложены научные представления обо всё, что нас окружает. Небо утверждено на плоской Земле. На чём же тогда держится сама Земля? А ни на чём. Оказывается, под ней простирается огромное пустое пространство — Тартар, ставший тюрьмой для титанов, побеждённых богами.

Наука отражена в мифологии. В представлениях древних греков Вселенная разделялась Землёй на светлую и тёмную части: верхняя была небом, а в нижней царил Эреб — подземный мрак. Считалось, что туда не заглядывает Солнце. Днём оно объезжает небо на колеснице, а ночью плывёт в золотой чаше по окружающему Землю океану к месту восхода. Примерно такое же было представление и у древних египтян.

Парменид (около 540–480 до н. э.) из италийского города Элей, младший современник Пифагора, вошёл в историю как неординарный мыслитель, на многие века определивший облик и проблематику философии. Но главное: в системе мира Парменида впервые упоминается шарообразная Земля.

Наличие нескольких конкурирующих астрологических школ привело к пестрой символике, используемой средневековыми астрологами. Поэтому нельзя говорить об унифицированных астрологических обозначениях. Более того, каждая школа вырабатывала свою систему языка и символов. Кстати, полезно напомнить, что современные обозначения планет введены астрологами. Планеты описывают на небе приблизительно одну и ту же траекторию. Круг их движения вдоль плоскости эклиптики назван Зодиаком. Он разделен на 12 частей - созвездий . Астрология считала, что существует особая связь между планетами и каждым из созвездий Зодиака. На этот счет была разработана детальная теория. В частности, каждое созвездие и каждая планета были наделены "характером". Например, Марс - воинственен, Юпитер - божественен, Сатурн - смертоносен и т.д. "Если мы в настоящее время взглянем беспристрастно на астрологию XVI века. то первое, что мы испытаем, это – изумление по поводу той громадной роли, какую играла в ту эпоху вера во влияние звезд. Не только невежественная масса верила в него, ее примеру следовали и выдающиеся люди. Достаточно только обратить внимание на массу сочинений по астрологии, которые появились в XV и XVI веках. Сочинения, которые сохранились в двух только главных библиотеках Копенгагена, составляют довольно объемистую груду. Писали эти сочинения не какие-нибудь неизвестные люди, а выдающиеся умы своего времени. В Скандинавии XVI века, например, нет ни одного имени, которое можно было бы поставить на ряду с величайшим представителем точной науки.

Эпоха развития научной, философской и общественной мысли. Эпоха великих географических открытий.

Открытие Коперника 1473- 1543

Николай Коперник был учённым переломного момента перехода от Средневековых принципов к Эпохе Просвещения. Поэтому его открытие вызвало резонанс в обществе.

XV—XVI вв. были эпохой великих географических открытий и связанного с ними расширения торговли, укрепления класса буржуазии и усиления ее борьбы с феодализмом. Развитие торговли требовало развития мореплавания, для кораблевождения необходима была астрономия. Расчеты небесных явлений по теории Птолемея, в частности положений планет на небе, были уже недостаточно точны. А представление о Вселенной, по Птолемею, соответствовало библейской картине мира с неподвижной Землей в центре. Поднять руку на теорию Птолемея значило начать революцию в науке, бросить вызов могущественной церкви. Этот революционный шаг осуществил великий польский ученый Николай Коперник . Он опроверг теорию которая существовала более 1300 лет. Долго размышляя над геоцентрической системой мира Птолемея, Коперник пришел к выводу о ее принципиальной ошибочности. Взамен ее Коперник выдвинул гелиоцентрическую систему мира с Солнцем в центре (Солнце— по-гречески — Гелиос). Тем самым Коперник объявил Землю не центром Вселенной, а лишь одной из планет, обращающихся вокруг Солнца. Это был величайший переворот в понятиях, имевший колоссальное влияние на все дальнейшее развитие наук.
Коперник объяснил смену дня и ночи суточным вращением Земли, смену времен года наклоном оси вращения Земли к плоскости земной орбиты и обращением Земли вокруг Солнца, Кажущееся годовое перемещение Солнца по эклиптике Коперник объяснил движением Земли вокруг Солнца. Он правильно расположил планеты по их расстоянию от Солнца и Земле отвел в этом ряду третье место. Петлеобразное движение планет на фоне звезд Коперник объяснил сочетанием движения наблюдателя с Землей и движения планеты. Истинность новой, гелиоцентрической системы мира была подтверждена открытиями Галилея.

Идеи Коперника воспринял итальянский писатель и философ Джордано Бруно. В своих смелых мыслях он пошел дальше Коперника. Он утверждал, что звезды тоже солнца, подобные нашему, но очень от нас далекие. Он учил, что Вселенная бесконечна и бесконечно в ней число звезд и планет, что жизнь существует на многих из планет. Это еще больше противоречило церковным учениям и подрывало к ним доверие. За свои научные идеи Бруно, не захотевший от них отказаться, был по решению инквизиции сожжен живым на костре. Так церковь расправилась с прозорливым мыслителем, сделавшим из теории Коперника логические философские выводы.

Галилео Галилей 1564- 1642

4) Астрономическая картина мира и ее творцы / А. И. Еремеева.--М.: Недра, 1984.--224 с.

5) История астрономии: Пер. с англ. / А. Панненкук.--М.: Наука, 1966.--592 с.: ил.

Астрономия - наука о расположении, строении, свойствах, происхождении, движении и развитии космических тел(звезд, планет, метеоритов и т.п.) образованных ими систем ((звездные скопления, галактики и т.п.) и всей Вселенной в целом.

Как наука, астрономия основывается прежде всего на наблюдениях. В отличие от физиков астрономы лишены возможности ставить эксперименты. Практически всю информацию о небесных телах приносит нам электромагнитное излучение. Только в последние сорок лет отдельные миры стали изучать непосредственно: зондировать атмосферы планет, изучать лунный и марсианский грунт.

Астрономия тесно связана с другими науками, прежде всего с физикой и математикой, методы которых широко применяются в ней. Но и астрономия является незаменимым полигоном, на котором проходят испытания многие физические теории. Космос - единственное место, где вещество существует при температурах в сотни миллионов градусов и почти при абсолютном нуле, в пустоте вакуума и в нейтронных звездах. В последнее время достижения астрономии стали использоваться в геологии и биологии, географии и истории. Что изучает астрономия

Астрономия изучает Солнце и звезды, планеты и их спутники, кометы и метеорные тела, туманности, звездные системы и материю, заполняющую пространство между звездами и планетами, в каком бы состоянии эта материя ни находилась. Изучая строение и развитие небесных тел, их положение и движение в пространстве, астрономия в конечном итоге дает нам представление о строении и развитии Вселенной в целом. Слово "астрономия" происходит от двух греческих слов: "астрон" - звезда, светило и "номос" - закон. При изучении небесных тел астрономия ставит перед собой три основные задачи, требующие последовательного решения:

1. Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы.

2. Изучение физического строения небесных тел, т.е. исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел.

3. Решение проблем происхождения и развития, т.е. возможной дальнейшей судьбы отдельных небесных тел и их систем.

Вопросы первой задачи решаются путем длительных наблюдений, начатых еще в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для небесных тел, сравнительно близких к Земле.

О физическом строении небесных тел мы знаем гораздо меньше. Решение некоторых вопросов, принадлежащих второй задаче, впервые стало возможным немногим более ста лет назад, а основных проблем - лишь в последние годы.

Что изучает астрономия

Астрономия изучает Солнце и звезды, планеты и их спутники, кометы и метеорные тела, туманности, звездные системы и материю, заполняющую пространство между звездами и планетами, в каком бы состоянии эта материя ни находилась. Изучая строение и развитие небесных тел, их положение и движение в пространстве, астрономия в конечном итоге дает нам представление о строении и развитии Вселенной в целом. Слово "астрономия" происходит от двух греческих слов: "астрон" - звезда, светило и "номос" - закон. При изучении небесных тел астрономия ставит перед собой три основные задачи, требующие последовательного решения:

1. Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы.

2. Изучение физического строения небесных тел, т.е. исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел.

3. Решение проблем происхождения и развития, т.е. возможной дальнейшей судьбы отдельных небесных тел и их систем.

Вопросы первой задачи решаются путем длительных наблюдений, начатых еще в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для небесных тел, сравнительно близких к Земле.

О физическом строении небесных тел мы знаем гораздо меньше. Решение некоторых вопросов, принадлежащих второй задаче, впервые стало возможным немногим более ста лет назад, а основных проблем - лишь в последние годы.

Подразделение астрономии

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии, в известном смысле, условно. Главнейшими разделами астрономии являются:

1. Астрометрия - наука об измерении пространства и времени. Она состоит из: а) сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем; б) фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звездных положений и определение числовых значений важнейших астрономических постоянных, т.е. величин, позволяющих учитывать закономерные изменения координат светил; в) практической астрономии, в которой излагаются методы определения географических координат, азимутов направлений, точного времени и описываются применяемые при этом инструменты.

2. Теоретическая астрономия дает методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).

3. Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем. Эти три раздела в основном решают первую задачу астрономии, и их часто называют классической астрономией.

4. Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой на основании законов физики даются объяснения наблюдаемым физическим явлениям. Ряд разделов астрофизики выделяется по специфическим методам исследования. О них будет сказано в § 101,

5. Звездная астрономия изучает закономерности пространственного распределения и движения звезд, звездных систем и межзвездной материи с учетом их физических особенностей. В этих двух разделах в основном решаются вопросы второй задачи астрономии.

6. Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.

7. Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают ее третью задачу.

Астрономия - наиболее древняя среди естественных наук. Она была высоко развита вавилонянами и греками - гораздо больше, нежели физика, химия и техника. В древности и средние века не одно только чисто научное любопытство побуждало производить вычисления, копирование, исправления астрономических таблиц, но прежде всего тот факт, что они были необходимы для астрологии. Вкладывая большие суммы в построение обсерваторий и точных инструментов, власть имущие ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний. Сохранилось лишь очень небольшое число книг тех времен, свидетельствующих о чисто теоретическом интересе учёных к астрономии; большинство книг не содержит ни наблюдений, ни теории, а лишь таблицы и правила их использования. Одно из немногих исключений - "Альмагест" Птолемея, написавшего, однако, также и астрологическое руководство "Тетрабиблос".

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.

В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений. Астрономия, как и все другие науки, возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла паука о небесных телах - астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др. В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время - расчетом орбит искусственных небесных тел.

Следующий, очень важный этап в развитии астрономии начался сравнительно недавно, с середины XIX в., когда возник спектральный анализ и стала применяться фотография в астрономии. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики - рентгеновской астрономии (см. § 160).

Значение этих достижений астрономии трудно переоценить. Запуск искусственных спутников Земли. (1957 г., СССР), космических станций (1959 г., СССР), первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США), - эпохальные события для всего человечества. За ними последовали доставка на Землю лунного грунта, посадка спускаемых аппаратов на поверхности Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.

Здравствуй, дорогой читатель. В школах опять появляется астрономия, представляете? Эта наука долго не могла толком проникнуть в среднее образование, многие дети и взрослые не знают даже планеты Солнечной системы! Сегодня я расскажу вам, что за наука – астрономия и какая история развития астрономии. Итак!

Что такое астрономия и почему она не астрология

В Древнем Мире пытливый ум человека смотрел вниз и наверх. Те, кто смотрел себе под ноги, развивали физику, архитектуру и другие прикладные науки.

Смотрители неба видели звезды, которые двигались по определенным траекториям, пропадали старые и появлялись новые. Магия творилась на ночном небе, но она помогала ориентироваться в море и считать дни.

Астрономия считается одной из древнейших наук, едва человек вышел за пределы своей деревни, как ему понадобились ориентиры. А календарь был нужен для счета времени, посевов и религиозных обрядах. Старейшее задокументированное упоминание науки о звездах относят к 9 тысячелетию до нашей эры.

В широком смысле, астрономия – наука о Вселенной. Если вначале астрономы наблюдали звезды, то позже открывали планеты солнечной системы, их спутники.

История развития астрономии1

А чем же отличается астрология? И почему астрономия – круто, а астрология попахивает шарлатанами? Во все времена люди желали сделать свой мир более предсказуемым.

Боги, религии, гадания… и однажды решили, что небесные тела обязаны влиять на судьбу человека. Этим и занимается астрология – просчитывает, как звезды и планеты влияют на нашу судьбу. Объективных доказательств правдивости науки нет, так что это вопрос веры. А вера, то есть мысли, материальна.

Астрономия в древнем мире

Звучит как тема доклада, нет? Или школьной презентации. В древности наука была не слишком абстрактна. Люди видели, что есть смена дня и ночи, смена фаз луны, влияние луны на Землю, времена года.

Обыденные для нас вещи, которые тоже надо было заметить, осознать и привести к общему пониманию. Люди обозначили день, ночь, сутки, месяц и год. Примерно, конечно, но это было важно для развития науки дальше.

История развития астрономии3

В то же время зародилась астрология. Смотрите, что случилось. Человек наблюдает за небом. На нем есть звезды, которые из ночи в ночь неподвижны или предсказуемо меняют свое положение. И появляются новые тела.

До телескопа было далеко, но простые измерительные приборы, используемые и геодезистами, люди использовали. Тогда изобрели солнечные часы и другие способы измерять время и дни.

История развития астрономии4

Астрономические открытия есть у каждой древней цивилизации, от Китая и до Египта. В основном приходили к одним выводам примерно в одно время, так что выделить кого-то сложно.

Ну максимум вавилонян, они придумали 7-дневную неделю, мы ей до сих пор пользуемся. Длина года разнилась и не соответствовала современной, хотя многие пришли к относительно верной цифре, например китайцы и египтяне.

Средние века

На смену любопытных греков, римлян и египтян пришли варвары и мусульмане, которые опосредованно вызвали деградацию науки в средние века.

В Европе наука была фактически уничтожена религией. Но полностью не заставишь людей перестать думать. И все равно находились исследователи и ученые. Они были вынуждены подгонять свои наблюдения под точку зрения, которой придерживалась церковь. Это ограничивало развитие, но оно все же шло.

История развития астрономии5

Другое дело в исламских странах. Из-за удачного географического расположения, они не только отрезали Европу от древних цивилизаций, но и сами стали их преемниками.

Сначала наука просто переводила на арабский язык все то, что написали греки, египтяне, индусы и другие народности, которые ранее жили на этих территориях. А на основе их знаний развивали свои по математике, физике, астрономии и других.

Арабам мы обязаны первыми обсерваториями, созданием первой системы астрономических постоянных и инструментарию. Они достаточно точно просчитали многие расстояния и углы наклона, которые непрофессионалу мало что скажут. Но эти данные использовались вплоть до Нового времени.

Возрождение и Новое время

На смену упадку пришло Возрождение. В искусстве, науке и, конечно, астрономии. Помните Коперника, Галилея? Эти уникальные умы жили как раз в эпоху Возрождения. Фокус научных открытий уходит от арабских стран и возвращается в Европу.

Коперник предложил солнечную систему с Солнцем в центре. Его система имела много погрешностей и неточностей, но простота изложения и понятная концепция сделала ее прорывной. Доказывать домыслы Коперника взялся Галилей, попутно изобретя первый в мире телескоп.

История развития астрономии6

Открывались планеты, звезды, спутники. Галилей даже сумел разглядеть рельеф Луны и Сатурна. Часть идей церковь, тогда еще имевшая безграничную власть, принимала, часть отвергала. Но остановить маховик науки у нее уже не получилось.

Одновременно с Галилеем работал Кеплер. Сейчас один из крупнейших телескопов назван в его честь. Кеплер вывел два закона. Один гласил, что планеты описывают вокруг Солнца не круг, а эллипс. И второй, что по прохождению этого эллипса скорость планет меняется. А позже и формулу для вычисления расстояния между планетой и Солнцем, также для расчета скорости вращения планеты.

Это титаны астрономии, а единичные открытия совершали сотни людей. Кольца Сатурна, спутники, физические данные планет и звезд. Максимум можно выделить Ньютона, который кроме законов в физике открыл закон всемирного тяготения.

Кометами занимался Галлей, комета, названная в его честь, частенько мелькает в новостях и на небосводе. Кстати, именно тогда основали обсерваторию в Гринвиче.

История развития астрономии12

Этот период закончим 18 веком. Тогда совершенствовались телескопы и другое оборудование, уточнялись одни цифры и рассчитывались другие. Философы начали предлагать теории возникновения Земли и Вселенной в целом. Доказывались более ранние гипотезы.

19 век

Развивали полученные в 18 веке технологии, строили обсерватории, в том числе в южном полушарии. Начали изучать звезды не только визуально, но и фотометрически. С помощью инфракрасного излучения и полученных спектров, определяли, из чего состоит Солнце и другие звезды. Потом этим исследованиям помог спектральный анализ.

История развития астрономии13

Именно в 19 веке ученые поняли, что невозможно охватить всю астрономию в одиночку. Появлялись подотрасли. Например, отделились исследователи метеоров.

Просчитали и определили все 9 планет солнечной системы, а также пояс астероидов на месте планеты, которая должна быть там по расчетам, но почему-то отсутствовала в реальности.

И астрономы начали пользоваться фотографиями. Теперь можно было зафиксировать не только памятное событие, но и звезду, спутник или любое другое событие. Фотографии позволяли использовать одно наблюдение тысячам ученых.

Из любопытных открытий 19 века еще нужно сказать, что впервые зафиксировали часовые пояса на всей планете. А еще астрономия перешла из обсерваторий в тетради – появилась астрофизика.

История развития астрономии14

Еще в период Возрождения астрономы многие теории рассчитывали на бумаге и потом подтверждали или опровергали наблюдениями. Но посмотрите во что это превратилось сейчас – компьютер сам фотографирует рассчитанные места космоса, а люди и вовсе не вылезают из-за своих ноутбуков.

20 век

Вот он, расцвет астрономии. Если бы у нас была сводка за весь 21 век, то нынешнее время продуктивнее будет. Ну а пока 20 век – время наибольшего развития астрономии.

Начался век с того, что в 1902 году рассчитали точную скорость света. Ю-ху, теперь расстояния до планет можно еще раз уточнить и подтвердить старые данные. Чуть позже открыли магнитное поле за пределами Земли и предложили теорию строения звезд.

История развития астрономии15

Теоретически изучали звезды и планеты, определяли атмосферы, рассчитывали массы вселенной и теоретическую ее форму. В общем, всем было чем заняться. Вплоть до 1957 года, когда запустили первый искусственный спутник Земли. Тогда ученые разделились на два фронта: одни продолжили изучать вселенную, а другие переключились на человека.

В 61 году человек полетел в космос и понеслось. Корабли отправляли на Венеру, Марс и дальше. Не забывали и Луну. В общем, солнечная система превратилась из просто интересной штуки в потенциально полезную для человека.

21 век

Человек так и не долетел до Марса, хотя Илон Маск и обещает обратное. Ну, подождем. Сейчас же у нас практически рейсовый автобус до Марса, ежедневно запускаются спутники. В атмосфере Марса спутников примерно как в 70-е года прошлого века в атмосфере Земли.

История развития астрономии16

Хокинг рассчитывал феноменальные и новые мысли, аппаратура их подтверждала. Астрономия частично вернулась в область прикладной науки, а частично стала совсем абстрактна – за формулами уже совсем не видно звезд.

Такая краткая история астрономии. Вы ее изучали в школе? А может, сможете назвать все 8 (или 9?) планет нашей системы? Пишите в комментариях, что думаете про статью и есть ли у вас знакомые астрономы.

Читайте также: