Реферат на тему индикаторы

Обновлено: 30.06.2024

Понятие, свойства, назначение и история открытия индикаторов. Лакмус как самый известный кислотно-основной индикатор. Антоцианы, их свойства, особенности растений, содержащих антоцианы. Возможность использования природных объектов в качестве индикаторов.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 23.02.2016
Размер файла 495,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СОДЕРЖАНИЕ

1.2 Антоцианы

2.1 Особенности фиалки и леканоры

2.2 Особенности растений содержащих антоцианы

2.3 Исследования природных объектов на возможность использования их в качестве индикаторов

Цель работы: изучение природных индикаторов их свойств и применение.

Объект исследования: разные части растений и их экстракты.

Задачи исследования: доказать возможность использования экстрактов плодов растений в качестве химических индикаторов.

Лимонная кислота, уксус, нашатырный спирт, известь, аскорбиновая кислота, щавелевая кислота - вещества, часто встречающиеся в быту. Среди кислот и щелочей много опасных, агрессивных веществ, способных вызвать тяжелые химические ожоги. Многие растворы кислот и щелочей бесцветны, не имеют запаха, их нельзя пробовать на вкус. Как же различить эти вещества? Определить какими именно свойствами обладает вещество можно с помощью растений обладающих индикаторными свойствами, которые можно использовать в различных сферах.

Индикаторы - это вещества, которые изменяют свой цвет в зависимости от среды раствора.

Актуальность темы заключается в том, что в настоящее время возрос интерес к растениям в связи с их применением в различных областях науки, таких как химия, биология, экология и медицина. Например, по окраске растений и её интенсивности экологи определяют наличие вредных веществ в атмосферном воздухе и почве или определить кислотность почвы на участке. Растворы растительных индикаторов можно приготовить самостоятельно и применять в химической лаборатории и домашних условиях при необходимости определения среды раствора. Свойства растворов индикаторов зависит от способа получения;

Растворы индикаторов надо готовить прямо перед опытом, потому что они быстро портятся.

индикатор лакмус антоциан природный

1.1 Лакмус

Лакмус -- красящее вещество природного происхождения, один из первых и наиболее широко известных кислотно-основных индикаторов.

Впервые индикаторы обнаружил в 17 веке английский химик и физик Роберт Бойль.

Фактически природный лакмус представляет собой сложную смесь 10--15 различных субстанций.

Для получения лакмуса растительное сырьё измельчают до порошкообразного состояния и в течение нескольких недель вымачивают в содово-аммиачном растворе (сода или поташ + NH4OH) при постоянном перемешивании. После отделения осадка полученный продукт высушивается и размалывается. В результате образуется порошок. Прессовка осадка с гипсом или мелом позволяет получить легко крошащиеся блоки готового сухого лакмуса.

1.2 Антоцианы

Антоцианы - это одни из самых распространённых пигментов в растительном царстве. Известно большое количество природных объектов, богатых антоцианами: анютины глазки, малина, вишня, земляника, краснокочанная капуста, черника, клюква, клубника, черный виноград и многие другие (приложении 2). Они образуются в процессах гидролиза крахмала и по своему происхождению являются безазотистыми соединениями, близким к глюкозидам - соединениям сахара с неуглеводной частью.

Строение антоцианов установлено в 1913 немецким биохимиком Р. Вильштеттером. Все они имеют С15-углеродный скелет -- два бензольных кольца А и В, соединенные С3-фрагментом, который с атомом кислорода образует г-пироновое кольцо. При этом от других флавоноидных соединений антоцианы отличаются наличием положительного заряда и двойной связи в С-кольце. Известно более 500 индивидуальных антоциановых соединений, и число их постоянно увеличивается. При всем их огромном многообразии антоциановых соединений выделяют лишь шесть основных производных антоцианидинов: пеларгонидина, цианидина, пеонидина, дельфинидина, петунидина и мальвидина, которые отличаются боковыми радикалами R1 и R2 (приложение 1). Антоцианы придают тканям растений фиолетовую, синюю, красную, оранжевую и другие окраски. Эта окраска зависит от рН клеточного содержимого, и потому может меняться при созревании плодов, отцветании цветков -- процессах, сопровождающихся закислением клеточного содержимого. При этом окраска растений изменяется от зелёных до красных и синих цветов. Антоцианы хорошо растворимы в воде и присутствуют в соке вакуолей. Диапазон цветов изменяется благодаря наличию в растениях в основном трёх моделей антоцианов, различных между собой числом гидроксильных групп: пеларгонидин (красный), цианидин (фиолетовый) и дельфинидин (синий). Красный пеларгонидин содержится в цветках герани, плодах земляники, корнеплодах редиса. Цианидин находится в цветках тюльпанов, васильков, плодах черной смородины, ежевики. Дельфинидин определяет окраску цветков гиацинта, плодов баклажана, граната.

Существует ряд факторов, которые влияют на содержание антоцианов в сырье или продукте: разбавление или концентрирование, кислотность среды (рН), температура, действие окислителей, ферментов, ионов металлов, продолжительность хранения.

Вывод:

На первый взгляд, "хобби" к цветам было совершенно бесполезным и ничем не могло помочь Бойлю в его настоящей профессии, но ошибочно, что увлечения и наука не взаимосвязаны. Если бы Бойль не любил цветы и не принес бы корзину с фиалками в свою лабораторию, то неизвестно, кто, когда и каким образом открыл бы индикаторы. Открытие Боля сподвигло ученых исследовать растения на наличие красящих веществ и в 1913-1915 годах немецкий биохимик Рихард Вильштеттер открыл антоцианы.

2.1 Особенности фиалки и леканоры

Природный лакмус изготавливают из леканоры и фиалки. В чистом виде лакмус представляет собой тёмный порошок со слабым запахом аммиака. Хорошо растворяется в чистой воде, образуя растворы фиолетового цвета.

В кислых средах (pH 8,3) -- синюю.

Основными компонентами лакмуса считаются:

· азолитмин (англ. Azolitmin, сост. C9H10NO5) -- может быть выделен из лакмуса экстракцией и использоваться как самостоятельный кислотно-щелочной индикатор;

· эритролитмин (англ. Erythrolitmin или Orcein Erythrolein, сост. С13H22O6);

Листья содержит слизь, соль виннокаменной кислоты, салициловую кислоту, витамин С. Препараты фиалки обладают отхаркивающим, мягчительным, потогонным и мочегонным действием. Лечебные свойства фиалки очень действенны при воспаление почек, боли в суставах, бронхит. Настой из фиалки употребляют при шуме в ушах, при заикании у детей.

Леканора съедобная

Леканора съедобная род накипных лишайников семейство леканоровых порядка круглоплодных. Из леканоры готовят лакмус. Таллом в виде беловатых, сероватых, желтоватых, коричневатых и других толстых или тонких корочек.

Лишайники - индикаторы состояния окружающей среды, они очень чувствительны к загрязнению атмосферы, поэтому в крупных городах, как правило, не встречаются. При повышение загрязнения воздуха отмечается исчезновение лишайников: сначала вымирают кустистые, потом листовые, потом накипные.

2.2 Особенности растений содержащих антоцианы

В сутки здоровому человеку необходимо не менее 200 мг этих веществ, а в случае болезни - не менее 300 мг. Поступая в организм человека с фруктами и овощами антоцианы проявляют действие, схожие с витамином Р, они поддерживают нормальное состояние кровяного давления сосудов, предупреждая внутренние кровоизлияния.

Черная смородина

В ягодах черной смородины содержится в среднем 8% сахаров (преимущественно легкоусвояемых глюкозы и фруктозы), 2,5% органических кислот (яблочной, винной, лимонной), красящие и пектиновые вещества, микроэлементы (медь, марганец, железо, алюминий), летучие фитонциды, эфирные масла. Ягоды необычайно богаты калием -- веществом, выводящим из организма воду. Из витаминов содержатся В1, В2, РР, каротин.

Вишня - диетический продукт, она повышает аппетит, улучшает процесс пищеварения. Плоды вишни оказывают легкое послабляющее воздействие.

Вишня обладает антисептическими и противовоспалительными свойствами. Вишневый сок утоляет жажду при повышенной температуре. Вишня благотворно влияет на центральную нервную систему, ее отвар применяли при психических заболеваниях и эпилепсии.

Сливы богаты витаминами и минералами, антицианинами, подавляющими опухолевые процессы.

Сливы - это замечательное средство для улучшения аппетита и уникальный источник витамина Е. Она способствует расслаблению гладкой мускулатуры внутренних органов организма. Варенье из слив дает легкий мочегонный и слабительный эффект и часто используется при лечении изжоги, запоров и других нарушений в работе желудочно-кишечного тракта.

Шиповник является настоящим рекордсменом по содержанию иммуностимулирующего витамина С, богаты плоды и витаминами А, К, Е, Р, антиоксидантами и другими минеральными и биологически активными веществами. Благодаря отсутствию токсичности, его можно принимать в любых дохах и количествах, не опасаясь развития побочных эффектов.

Отвары из шиповника являются желчегонным, поливитаминным, слабомочегонным, понижающим артериальное давление средством. Плоды и корни стимулируют выработку кровяных телец, укрепляют сосуды, улучшают пищеварение и аппетит, повышают сопротивляемость организма к простуде и различным инфекциям.

Сок и чай из шиповника полезен для почек, желудка, печени и всего желудочно-кишечного тракта, выводит соли, токсины и шлаки из организма, нормализует кровообращение, активизирует обмен веществ, улучшает память, замедляет старение, предотвращает атеросклероз, дарит хорошее настроение и бодрость.

Плоды облепихи и облепиховое масло уменьшают боли и прекращают воспалительные процессы, ускоряют грануляцию и эпителизацию тканей, способствуют быстрому заживлению ран и обладают бактерицидным и поливитаминным действием.Масло облепихи используют и для приема внутрь и для наружного применения. Оно обладает болеутоляющим эффектом, ранозаживляющими и противовоспалительными свойствами. Лечит пролежни, трофические язвы, гнойные раны, ожоги.

Употребляя облепиху регулярно и в небольших количествах, можно избежать многих заболеваний и поддерживать организм в зимний период.

Облепиховое масло незаменимо при ринитах, фарингитах, ларингитах, тонзиллитах. Листья облепихи накапливают дубильные вещества, которые являются действующим началом лекарственного средства -- гипорамина, обладающего противовирусной активностью. Получаемый из листьев облепихи гипорамин в форме таблеток для рассасывания применяется как лечебно-профилактическое средство при гриппе (А и В), а также при лечении других острых респираторных вирусных инфекций.

Антоцианы оказывают бактерицидное действие - они могут уничтожать различные виды вредоносных бактерий.

Полезные свойства антоцианов используются в медицине при производстве различных биологических добавок, особенно для применения в офтальмологии. Ученые обнаружили, что антоцианы хорошо накапливаются в тканях сетчатки. Они укрепляют ее сосуды, уменьшают ломкость капилляров, как это бывает, например, при диабетической ретинопатии. Антоцианы улучшают строение волокон и клеток соединительной ткани, восстанавливают отток внутриглазной жидкости и давление в глазном яблоке, что используют при лечении глаукомы.

Антоцианы являются сильными антиоксидантами - они связывают свободные радикалы кислорода и препятствуют повреждению мембран клеток. Это тоже положительно сказывается на здоровье органа зрения. Люди, регулярно употребляющие в пищу богатые антоцианами продукты, имеют острое зрение. Также их глаза хорошо переносят высокую нагрузку и легко справляются с утомляемостью.

Применение и биохимическая роль природных индикаторов.

Свойства природных индикаторов имеют широкое применение (приложение 3).

2.3 Исследование природных объектов на возможность использования их в качестве индикаторов

Для исследования были взяты плоды: облепиха, черная смородина, вишня, слива, шиповник.

Отделили соцветия от стеблей и растерли в фарфоровых ступнях до получения однородной массы. Разложили по колбам и провели экстракцию с помощью органического растворителя - ацетона. Колбы плотно прикрыли пробками и выдержали в течении недели. Экстракт отделили от основной массы и в полученный раствор опустили нарезанные фильтровальные бумажки. После пропитки их вынимали, высушивали при комнатной температуре, определяя цвет исходного экстракта на фильтровальной полоске. Затем одну полоску опускали в воду, вторую в NaOH, третью в HCl.

Результаты исследования (приложение 4).

Растения, содержащие антоцианы обладают не только как индикационными свойствами, но и как рядом других полезных свойств.

Они широко используются в традиционной и нетрадиционной медицине. Синтез антоцианов в листьях растений в условиях антропогенного загрязнения может служить диагностическим признаком экологического состояния среды.

Химия - это наука, которая непосредственно связана с практической деятельностью человека. Исследуя растения на индикационные свойства, я определила, что в плодах, листья и цветах растений содержатся красители, обладающие индикаторными свойствами. В природе таких веществ большое количество. Получить растительные индикаторы можно из любого вида сырья (сахарного сиропа, свежих ягод, листьев и цветов растений) в виде отваров, вытяжек и сока.

Чтобы какое-либо вещество могло служить индикатором, оно должно удовлетворять следующим необходимым условиям:

* должно быть слабой кислотой или слабым основанием;

* его молекулы и ионы должны иметь разную окраску;

* окраска их должна быть чрезвычайно интенсивной, чтобы быть заметной при добавке к испытуемому раствору малого количества индикатора.

К сожалению, почти у всех природных индикаторов есть серьезный недостаток: их отвары довольно быстро портятся - скисают или плесневеют.

Поэтому отвар их надо готовить непосредственно перед опытом, но чаще используются более устойчивые спиртовые растворы. Другой недостаток - слишком широкий интервал изменения цвета. Поэтому в химических лабораториях используют синтетические индикаторы, резко изменяющие свой цвет в достаточно узких границах рН.

Рекомендации

· Природные индикаторы можно использовать на уроках химии, элективных курсах.

· Растительные индикаторы можно использовать в быту. Сок столовой свеклы в кислой среде изменяет свой рубиновый цвет на ярко-красный, а в щелочной - на желтый. Зная свойство свекольного сока, можно сделать цвет борща ярким. Для этого к борщу следует добавить немного столового уксуса или лимонной кислоты.

· Для определения состава лекарств, которые употребляют для лечения, можно использовать природные индикаторы.

· Результаты исследовательской работы можно использовать для определения рН (водородный показатель) различных растворов, например, молочных продуктов, бульонов, лимонада и других, а также для определения кислотности почвы, так как на одной и той же почве в зависимости от ее кислотности один вид растений может давать высокий урожай, а другие будут угнетенными.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Артамонов В.И. Занимательная физиология растений. - М.: Агропромиздат, 1991. - 337с.

3. Большая Советская Энциклопедия: в 30 т.: т. 2 / Гл. ред.: Прохоров А.М. -- М.: Сов. Энцикл., 1970. -- 97 с.

5. Оганесян Э. Т. Руководство по химии поступающим в вузы. - М.: Высш. школа, 1991. - 464с.

7. Химическая энциклопедия: в 5 т.: т. 2 / Гл. ред.: Кнунянц И.Л. - М.: Сов. Энцикл., 1990 - 671 с.

8. Энциклопедия для детей. Том. 17. Химия / Гл. ред.: Володин В.А. - М.: Аванта+, 2002 - 640 с.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-Петербурга

Школа БИОТОП Лаборатории непрерывного математического образования

Индикаторы в аналитической химии

Нематова Рената Батировна

Воронаев Иван Геннадьевич

Качественный анализ – один их видов экспериментальных методов в химии . Основы качественного анализа заложены английским естествоиспытателем Робертом Бойлем. В частности , он изготовил первый индикатор, позволяющий определить присутствие кислот в растворе. В качественном аналихе используются приемы , позволяющие определить химический состав вещества , определение веществ по характерным признакам и так далее .

Химический индикатор (лат. indicator — указатель) - вещества, изменяющие свой цвет в присутствии тех или иных химических соединений в исследуемой среде (в растворе, в воздухе, в клетках, в тканях), а также при изменении pH или окислительно-восстановительного потенциала среды; широко применяются в биохимических, клинических и санитарно-гигиенических лабораториях.

Их применяют для определения конца реакции (точки эквивалентности) при титровании, для колориметрического определения величин pH или окислительно-восстановительных потенциалов, для обнаружения различного рода веществ в тех или иных исследуемых объектах. Для всех этих целей Индикаторы применяют в виде водных или спиртовых растворов или в виде индикаторных бумажек, представляющих собой полоски фильтровальной бумаги, пропитанные Индикатором.

В зависимости от назначения и механизма действия Индикаторы подразделяют на ряд групп :

Кислотно-основные индикаторы представляют собой сложные органические соединения, изменяющие окраску (двухцветные индикаторы) или ее интенсивность (одноцветные индикаторы) в зависимости от pH среды. Двухцветным индикаторами является, например, лакмоид: в щелочной среде он имеет синюю окраску, а в кислой — красную. Примером одноцветных индикаторов может служить фенолфталеин, бесцветный в кислой среде и малиновый в щелочной.

Качественное определение кислотности и щелочности производят с помощью нейтральных И., точка перехода которых находится практически при pH 7,0. К ним относится лакмус, имеющий в кислой среде (pH меньше 7,0) красный, а в щелочной среде (pH больше 7,0) синий цвет; нейтральный красный, окрашивающийся в кислой среде в красный цвет, а в щелочной — в желтый цвет.

Приближенное измерение величины pH среды (с точностью до 0,5— 1,0 ед. pH) обычно производят с помощью универсального (комбинированного) индикатора ,представляющего собой смесь нескольких индикаторов ,интервалы перехода которых близки друг к другу и охватывают широкую область значений pH.

Окислительно-восстановительные индикаторы, или редоксиндикаторы , представляют собой органические красители, цвет которых в окисленном и восстановленном состоянии различен. Такие индикаторы применяют при оксидиметрическом титровании, а также для колориметрического определения величин окислительно-восстановительных потенциалов жидкостей, отдельных клеток и тканей в цитохим.Большинство редокс-индикаторов при восстановлении превращается в бесцветные соединения, а при окислении окрашивается.

Комплексонометрические индикаторы (металлоиндикаторы) представляют собой хорошо растворимые в воде органические красители, способные образовывать с ионами металлов окрашенные комплексные соединения. Эти индикаторы применяются для установления точки эквивалентности при комплексонометрическом титровании.

Адсорбционные индикаторы — это органические красители, адсорбирующиеся на поверхности осадков, образующихся при титровании по методу осаждения, и изменяющие свой цвет при достижении точки эквивалентности. Например ,тропеолин 00 при титровании хлоридов раствором азотнокислого серебра меняет окраску в точке эквивалентности с желтой на розовую.

Хемилюминесцентныe (флюоресцентные) индикаторы — органические соединения (например, люменол, люцегинин, силаксен и др.), обладающие способностью люминесцировать при естественном освещении или при облучении ультрафиолетовым светом. Интенсивность и цвет люминесценции зависят как от величины pH среды, так и от величины ее окислительно-восстановительного потенциала; эти И. применяются при титровании (при нейтрализации и оксидиметрии) сильно окрашенных или мутных жидкостей, когда изменение окраски обычных индикаторов незаметно.

Индикаторы используются во многих биохимических методах, применяемых в клинико-биохимических лабораториях. Наиболее употребимыми из них являются бромтимоловый синий (при определении активности фруктозодифосфатальдолазы в сыворотке крови, активности ацетилхолинэстеразы и холинэстеразы в сыворотке крови по А. А. Покровскому, а также активности карбоксилэстеразы в крови по А. А. Покровскому и Л. Г. Пономаревой), бромфеноловый синий (при электрофоретическом разделении различных белков для окраски электрофореграмм наряду с амидочерным и кислотным сине-черным), универсальный И., феноловый красный (при определении активности аспартат- и аланин-аминотрансфераз в сыворотке крови, активности холинэстеразы в сыворотке крови и т. д.), фенолфталеин, нитросиний тетразолий, используемый для качественной и количественной оценки активности различных дегидрогеназ, и др.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




ПРИРОДНЫЕ ИНДИКАТОРЫ И ИХ ИСПОЛЬЗОВАНИЕ


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В своей жизни мы встречаемся с различными веществами, которые нас окружают. В этом году мы начали изучать интересный предмет - химию. Сколько же в мире веществ? Какие они? Зачем они нам нужны и какую пользу приносят?

Я решила выяснить как можно больше об этих удивительных веществах, и можно ли в качестве индикаторов использовать те природные материалы, которые есть дома.

Актуальность темы: сегодня большой интерес вызывают свойства растений и возможности применения их в химии, биологии и медицине.

Цель работы: изучить природные индикаторы и как их мы можем использовать в повседневной жизни.

Для достижения цели были поставлены следующие задачи:

Изучить материал об индикаторах как химических веществах.

Изучить природные индикаторы.

Выяснить, как можно применять знания о природных индикаторах в повседневной жизни.

Для достижения поставленных задач я изучила литературу в библиотеке и кабинете химии, использовала материалы с сайтов Интернета, а так же использовала методы наблюдения, эксперимента, сравнения, анализа.

Моя работа состоит из трех глав. В первой главе я рассмотрела многообразии индикаторов и их химическую природу. Во второй, - какие растения являются индикаторами и их роль в природе и жизни человека. В третьей главе моё практическое исследование.

1.Химические индикаторы

1.1 История открытия индикаторов

Индикаторы (от лат.Indicator –указатель) – вещества, позволяющие следить за составом среды или за протеканием химической реакции[2]. На сегодняшний день в химии известно большое количество различных индикаторов как химических, так и природных. К химическим индикаторам относятся кислотно-основные, универсальные, окислительно-восстановительные, адсорбционные, флуоресцентные, комплексонометрические и другие [6].

Пигменты многих растений способны менять цвет в зависимости от кислотности клеточного сока. Следовательно, пигменты являются индикаторами, которые можно применить для исследования кислотности других растворов. Общее название таких растительных пигментов флавоноиды. В эту группу входят так называемые антоцианы, которые обладают хорошими индикаторными свойствами.

Самый используемый в химии растительный кислотно-основной индикатор – лакмус. Он был известен уже в Древнем Египте и в Древнем Риме, где его использовали в качестве фиолетовой краски-заменителя дорогостоящего пурпура. Использование пигментов для определения среды раствора впервые научно применено Робертом Бойлем (1627 – 1691)[3]. 1663 год, в лаборатории, как обычно, кипела напряженная работа: горели свечи, в ретортах нагревались разнообразные вещества. В кабинет к Бойлю вошел садовник и поставил в углу корзину с великолепными темно–фиолетовыми фиалками. В это время Бойль собирался проводить опыт по получению серной кислоты. Восхищенный красотой и ароматом фиалок, ученый, захватив с собой букетик, направился в лабораторию. Его лаборант Уильям сообщил Бойлю, что вчера доставили две бутылки соляной кислоты из Амстердама. Бойлю захотелось взглянуть на эту кислоту, и, чтобы помочь Уильяму налить кислоту, он положил фиалки на стол. Затем он взял со стола букетик и отправился в кабинет. Здесь Бойль заметил, что фиалки слегка дымятся от попавших на них брызг кислоты. Чтобы промыть цветы, Бойль опустил их в стакан с водой. Через некоторое время он бросил взгляд на стакан с фиалками, и случилось чудо: темно-фиолетовые фиалки стали красными. Естественно, Бойль, как истинный ученый, не мог пройти мимо такого случая и начал исследования. Он обнаружил, что и другие кислоты окрашивают лепестки фиалок в красный цвет. Ученый подумал, что если приготовить из лепестков настой и добавить немного к исследуемому раствору, то можно будет узнать, кислый он или нет[6.2]. Бойль начал готовить настои из целебных трав, древесной коры, корней растений. Однако самым интересным оказался фиолетовый настой, полученный из определенного лишайника. Кислоты изменяли его цвет на красный, а щелочи – на синий. Бойль распорядился пропитать этим настоем бумагу и затем высушить ее[3]. Так была создана первая лакмусовая бумажка, которая теперь имеется в любой химической лаборатории. Таким образом, было открыто одно из первых веществ, которые Бойль уже тогда назвал индикаторами.

1.2. Разновидности индикаторов

Химический энциклопедический словарь среди индикаторов выделяет: адсорбционные, изотопные, кислотно-основные, окислительно-восстановительные, комплексонометрические, люминесцентные индикаторы.

Моя работа посвящена кислотно-основным индикаторам. С развитием химии росло число кислотно-щелочных индикаторов. Индикаторы, полученные в результате химического синтеза: фенолфталеин, введенный в науку в 1871 году немецким химиком А.Байером, и метилоранж, открытый в 1877году [7.3].

Нажмите, чтобы узнать подробности

Проект позволит изучить действие химических и природных индикаторов в различных средах.

Индикаторы широко используют в химии, в том числе и в школе. Любой школьник, скажет, что такое фенолфталеин, лакмус или метилоранж. При знакомстве с кислотами и основаниями я узнал, что при добавлении того или иного индикатора в кислотную или щелочную среду, растворы меняют свою окраску. Поэтому индикаторы используются для определения реакции среды (кислая, щелочная или нейтральная). Ещё нам рассказали, что соки ярко окрашенных ягод, плодов и цветков обладают свойствами кислотно-основных индикаторов, т. к. тоже изменяют свою окраску при изменении кислотности среды.

Меня заинтересовал вопрос: какие растения могут использоваться в качестве индикаторов? Можно ли приготовить растворы растительных индикаторов самостоятельно? Пригодны ли самодельные индикаторы для использования в домашних условиях, например, для определения среды продуктов питания или средств бытовой химии с целью выявления их негативного влияния на кожу рук? Думаю, актуальность темы заключается в том, что свойства растительных объектов могут быть использованы для применения в разных областях науки, например, таких как химия.

Гипотеза: растворы растительных индикаторов можно приготовить самостоятельно и применять в домашних условиях для определения среды некоторых напитков и растворов моющих средств.

Цель работы: Изучить действие химических и природных индикаторов в различных средах.

- изучить литературные источники по теме;

- рассмотреть классификацию индикаторов;

- сделать определенные выводы по применению индикаторов в быту и природе;

- научиться выделять индикаторы из природного сырья;

- исследовать действие природных индикаторов в различных средах (определить среду растворов некоторых продуктов питания, ягодных соков и растворов моющих средств для посуды).

I. ИСТОРИЯ ОТКРЫТИЯ ИНДИКАТОРОВ

Впервые вещества, меняющие свой цвет в зависимости от среды, обнаружил в XVII веке английский химик и физик Роберт Бойль.Он провел тысячи опытов. Вот один из них.

В лаборатории горели свечи, в ретортах что-то кипело, когда некстати зашел садовник. Он принес корзину с фиалками. Бойль очень любил цветы, но предстояло начать опыт. Он взял несколько цветков, понюхал и положил их на стол. Опыт начался, открыли колбу, из нее повалил едкий пар. Когда же опыт кончился, Бойль случайно взглянул на цветы, они дымились. Чтобы спасти цветы, он опустил их в стакан с водой. И – что за чудеса - фиалки, их темно-фиолетовые лепестки, стали красными. Случайный опыт? Случайная находка? Роберт Бойль не был бы настоящим ученым, если бы прошел мимо такого случая. Ученый велел готовить помощнику растворы, которые потом переливали в стаканы и в каждый опустили по цветку. В некоторых стаканах цветы немедленно начали краснеть. Наконец, ученый понял, что цвет фиалок зависит от того, какие вещества содержатся в растворе. Затем Бойль заинтересовался, что покажут не фиалки, а другие растения.

Он приготовил для своих опытов водный настой лакмусового лишайника. Склянка, в которой он хранил настой, понадобилась для соляной кислоты. Вылив настой, Бойль наполнил склянку кислотой и с удивлением обнаружил, что кислота покраснела. Заинтересовавшись этим, Бойль на пробу добавил несколько капель настоя лакмуса к водному раствору гидроксида натрия и обнаружил, что в щелочной среде лакмус синеет.

Эксперименты следовали один за другим, проверялись васильки и другие растения, но всё же лучшие результаты дали опыты с лакмусовым лишайником. Так, в 1663 году, был открыт первый индикатор для обнаружения кислот и оснований, названный по имени лишайника лакмусом.

Именно индикаторы помогли ученому открыть новую кислоту - фосфорную, которую он получил при сжигании фосфора и растворении образовавшегося белого продукта в воде.

Лакмус стал самым древним кислотно-основным индикатором. Надо сказать, что само красящее вещество лакмус был известен ещё в Древнем Египте и Древнем Риме. Его добывали из некоторых видов лишайников, произраставших на скалах Шотландии, и использовали в качестве фиолетовой краски, но со временем, рецепт его приготовления был утерян.

ИНДИКАТОРов


ученик 8 класса

Гоголев Сергей

Л.Ю. Захарова,

ИСТОРИЯ ОТКРЫТИЯ ИНДИКАТОРОВ

Биохимическая роль индикаторов и применение в медицине

Применение природных индикаторов в народном хозяйстве

Применение индикаторов в быту

Приготовление природных индикаторов из растительного сырья

Определение среды некоторых средств бытовой химии с помощью полученного индикатора

Определение среды растворов некоторых

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

Индикаторы широко используют в химии, в том числе и в школе. Любой школьник, скажет, что такое фенолфталеин, лакмус или метилоранж. При знакомстве с кислотами и основаниями я узнал, что при добавлении того или иного индикатора в кислотную или щелочную среду, растворы меняют свою окраску. Поэтому индикаторы используются для определения реакции среды (кислая, щелочная или нейтральная). Ещё нам рассказали, что соки ярко окрашенных ягод, плодов и цветков обладают свойствами кислотно-основных индикаторов, т. к. тоже изменяют свою окраску при изменении кислотности среды.

Меня заинтересовал вопрос: какие растения могут использоваться в качестве индикаторов? Можно ли приготовить растворы растительных индикаторов самостоятельно? Пригодны ли самодельные индикаторы для использования в домашних условиях, например, для определения среды продуктов питания или средств бытовой химии с целью выявления их негативного влияния на кожу рук? Думаю, актуальность темы заключается в том, что свойства растительных объектов могут быть использованы для применения в разных областях науки, например, таких как химия.

Гипотеза: растворы растительных индикаторов можно приготовить самостоятельно и применять в домашних условиях для определения среды некоторых напитков и растворов моющих средств.

Цель работы: Изучить действие химических и природных индикаторов в различных средах.

- изучить литературные источники по теме;

- рассмотреть классификацию индикаторов;

- сделать определенные выводы по применению индикаторов в быту и природе;

- научиться выделять индикаторы из природного сырья;

- исследовать действие природных индикаторов в различных средах (определить среду растворов некоторых продуктов питания, ягодных соков и растворов моющих средств для посуды).

I . ИСТОРИЯ ОТКРЫТИЯ ИНДИКАТОРОВ


Впервые вещества, меняющие свой цвет в зависимости от среды, обнаружил в XVII веке английский химик и физик Роберт Бойль.Он провел тысячи опытов. Вот один из них.

В лаборатории горели свечи, в ретортах что-то кипело, когда некстати зашел садовник. Он принес корзину с фиалками. Бойль очень любил цветы, но предстояло начать опыт. Он взял несколько цветков, понюхал и положил их на стол. Опыт начался, открыли колбу, из нее повалил едкий пар. Когда же опыт кончился, Бойль случайно взглянул на цветы, они дымились. Чтобы спасти цветы, он опустил их в стакан с водой. И – что за чудеса - фиалки, их темно-фиолетовые лепестки, стали красными. Случайный опыт? Случайная находка? Роберт Бойль не был бы настоящим ученым, если бы прошел мимо такого случая. Ученый велел готовить помощнику растворы, которые потом переливали в стаканы и в каждый опустили по цветку. В некоторых стаканах цветы немедленно начали краснеть. Наконец, ученый понял, что цвет фиалок зависит от того, какие вещества содержатся в растворе. Затем Бойль заинтересовался, что покажут не фиалки, а другие растения.

Он приготовил для своих опытов водный настой лакмусового лишайника. Склянка, в которой он хранил настой, понадобилась для соляной кислоты. Вылив настой, Бойль наполнил склянку кислотой и с удивлением обнаружил, что кислота покраснела. Заинтересовавшись этим, Бойль на пробу добавил несколько капель настоя лакмуса к водному раствору гидроксида натрия и обнаружил, что в щелочной среде лакмус синеет.

Эксперименты следовали один за другим, проверялись васильки и другие растения, но всё же лучшие результаты дали опыты с лакмусовым лишайником. Так, в 1663 году, был открыт первый индикатор для обнаружения кислот и оснований, названный по имени лишайника лакмусом.

Именно индикаторы помогли ученому открыть новую кислоту - фосфорную, которую он получил при сжигании фосфора и растворении образовавшегося белого продукта в воде.


Лакмус стал самым древним кислотно-основным индикатором. Надо сказать, что само красящее вещество лакмус был известен ещё в Древнем Египте и Древнем Риме. Его добывали из некоторых видов лишайников, произраставших на скалах Шотландии, и использовали в качестве фиолетовой краски, но со временем, рецепт его приготовления был утерян.


В 1640 году ботаники описали гелиотроп – душистое растение с темно-лиловыми цветками, из которого тоже было выделено красящее вещество. Этот краситель наряду с соком фиалоктоже стал широко применяться химиками в качестве индикатора, который в кислой среде был красным, а в щелочной – синим.

Позже, в середине XIX века химики научились искусственно синтезировать кислотно–основные индикаторы. Так в 1871 годунемецкий химик-органик Адольф фон Байер, будущий лауреат Нобелевской премии, впервые осуществил синтез фенолфталеина.

В наши дни известны несколько сот кислотно-основных индикаторов, искусственно синтезированных.


II . ХИМИЧЕСКИЕ ИНДИКАТОРЫ

Индикатор (от лат инского indicator — указатель) — это прибор, устройство, информационная система, вещество или объект, отображающий изменения какого-либо параметра контролируемого процесса или состояния объекта в форме, наиболее удобной для непосредственного восприятия человеком визуально, акустически, тактильно или другим легко интерпретируемым способом. Мы будем рассматривать только химические индикаторы.

Химические индикаторы - это вещества, изменяющие окраску, люминесценцию или образующие осадок при изменении концентрации какого-либо компонента в растворе. Они бывают природного и химического происхождения. Индикаторы применяют чаще всего для установления конца какой-либо химической реакции или концентрации водородных ионов по легко заметному признаку.Химические индикаторы делят обычно на несколько групп.


В школе используются самые распространенные кислотно – основные индикаторы. Их преимуществом является дешевизна, быстрота и наглядность исследования. Это растворимые органические соединения, которые меняют свой цвет в зависимости от концентрации ионов водорода Н + (рН среды). Происходит это потому, что в кислой и щелочной среде молекулы индикаторов имеют разное строение. Примером может служить общеизвестный индикатор фенолфталеин. В кислой среде это соединение находится в виде недиссоциированных молекул и раствор бесцветен, а в щелочной среде – в виде ионов и раствор имеет малиновый цвет. Такие индикаторы резко изменяют свой цвет в достаточно узких границах рН.

Универсальные индикаторы – это смеси нескольких индивидуальных индикаторов, подобранных так, что их раствор поочередно меняет окраску, проходя все цвета радуги при изменении кислотности раствора в широком диапазоне рН.

pH - водородный показатель. Это понятие ввёл датский химик Сёренсен для точной числовой характеристики среды раствора и предложил математическое выражение для его определения:

Характер среды имеет большое значение в химических и биологических процессах. В зависимости от типа среды эти процессы могут протекать с различными скоростями и в разных направлениях. Поэтому во многих случаях важно как можно более точно определять среду раствора. При рН = 7 – среда нейтральная, при рН 7 – щелочная. Среду исследуемого раствора можно приблизительно определить по окраске индикаторов.

Больше всего распространены индикаторы лакмус, фенолфталеин и метилоранж.


Самым первым появился кислотно-основный индикатор лакмус. Фактически природный лакмус представляет собой сложную смесь.Это порошок черного цвета, растворим в воде, 95 % спирте, ацетоне, ледяной уксусной кислоте. Его основными компонентами являются: азолитмин (C9H10NO5) и эритролитмин (С13H22O6).

Читайте также: