Реферат на тему графит

Обновлено: 02.07.2024

Графит – это самородный минерал на основе углерода, имеющий слоистую структуру. Представляет собой кристаллы различного размера с чешуйчатой структурой. Имеет темно-серый цвет с характерным металлическим блеском. В своем большинстве встречается в виде небольших включений, добыча и переработка которых нецелесообразна в экономическом плане. Однако существуют и большие месторождения. В них присутствует практически чистый минерал с небольшими примесями глины.

Добыча графита

Графитовые залежи располагаются в тех же местах, что и пирита, граната. Его можно найти в кварцевых жилах, мраморе. Минерал образовывается в результате воздействия высоких температур на вулканические и магматические породы. Также он формируется в результате пиролиза каменного угля.

Добыча графита осуществляется открытым и шахтным способом. Экономически оправданным является разработка месторождений, руда которых содержит его в количестве не менее 30%. Процесс добычи весьма похож на технологию работы с углем. В залежах графита пробуриваются отверстия, в которые закладывается взрывчатка.

Взорванная руда доставляется на поверхность, где измельчается. Она замешивается с водой и нефтью, что позволяет отделить графит от примесей. Его частицы прилипают к пузырькам воздуха, образовываемыми при перемешивании массы, и всплывают. Минерал снимается как пенка, после чего циклы очистки повторяются 4-5 раз, чтобы довести концентрацию графита до 90-96%.

Завершающим технологическим процессом является сушка графита. В результате добычи и очистки образовывается мелко дисперсионный красящий порошок. Чтобы сделать из него графитовое изделие, он смешивается с глиной с добавлением воды. В зависимости от того какая добавка используется, зависит конечная прочность и свойства изделия.

Готовая масса спрессовывается, и после сушки формируется в готовые изделия, к примеру, грифели простых карандашей. Та как они за счет присутствия воды получаются мягкими, то для увеличения жесткости обжигаются при температуре выше 1000°C. По результатам обработки изделие приобретает окончательную твердость. Однако это сопровождается появлением ломкости.

Свойства графита

Минерал обладает рядом важных качеств, которые делают его очень востребованным в промышленном производстве. К его основным параметрам можно отнести:
  • Токопроводность.
  • Мягкость.
  • Отвердевание при воздействии высоких температур.
  • Стойкость к плавке.
  • Устойчивость к трению.

При пропускании через графит электрического тока происходит его нагревание. При этом материал в таких условиях не перегорает. Теплопроводность графита стала причиной его применения для изготовления щеток для двигателей, сердцевин батареек, контактов для электротранспорта.

Существует больше десяти видов графита, используемых в промышленности. Все они способны передавать электрический ток. Минимальное значение проводимости в интервале 300-1300 К. Лучшим проводником из графитов является рекристаллизованный.

В чистом виде минерал имеет твердость 1 по шкале Мооса. Это очень низкий показатель. Именно по этой причине для увеличения его твердости выполняется смешивание с глиной и запекание.

Низкая твердость стала причиной использования графитового порошка в качестве смазочного материала для трущихся деталей. Он добавляется в солидол. Графитная смазка превосходит все остальные по эффективности работы. К тому же она превышает обычные аналоги по термостойкости.

Графит становится более твердым при обжиге, даже без добавления в его состав глины. Однако его механическая прочность в таком виде слишком низкая. После обжига материал становится ломким. Включение глины компенсирует это свойство минерала.

Минерал не расплавляется при воздействии высоких температур. За счет этого он пользуется спросом для изготовления контактов для передачи больших токов. В условиях отсутствия воздуха возможен разогрев графита до предельных температур, при которых сталь просто превращается в жидкость. Такой же мощный подогрев в воздушной среде приводит к выгоранию материала. Чтобы его расплавить, требуется создать температуру порядка 3890°C.

При трении графитовые изделия начинают оставлять после себя след на боле твердых поверхностях. Благодаря этому качеству материал и применяется для изготовления простых карандашей. Из него делают их сердцевины.

Материал обладает хорошей теплопроводностью порядка 100 до 354,1 Вт/(м·К). Нужно отметить, что этот показатель сильно зависит от вида графита. Ввиду особой кристаллической решетки построения молекул графита, он обладает разной токопроводностью в зависимости от направления передачи электричества. В обычных условиях по этому свойству минерал практически приравнивается к металлу. При перпендикулярном направлении передачи скорость продвижения электричества замедляется в сотни раз.

Весьма необычным является то, что он сжимается при нагреве, а не расширяется как металлы, жидкости, дерево и т.д. Самый твердый материал алмаз образовывается в результате сильного давления на графит. Однако сам исходный минерал настолько мягкий, что его легко поцарапать ногтем. Отличительным качеством графита является тактильное ощущение жирности на его поверхности. За счет этой скользкости он может использоваться как для смазки трущихся деталей без добавления нефтепродуктов. Это особенно ценно для механизмов, работающих в условиях повышенных температур.

Виды природного графита

Свойства минерала отличаются, в зависимости из того, из какого сырья он образовался.

Различают следующие виды природных графитов:
  • Тигельный.
  • Литейный кристаллический.
  • Аккумуляторный.
  • Для изготовления пишущих грифелей.
  • Элементарный.

Тигельный отличается высокой стойкостью к повышенным температурам. Он нормально переносит резкие колебания температуры. Материал отлично передает тепло. Из него делают огнеупорные изделия.

Литейный используется для изготовления форм для отлива металлов. У него малый коэффициент расширения. Он не теряет прочность при повышении температуры.

Аккумуляторный имеет подходящие качества для изготовления на его основе стержней, которые используются в батарейках, аккумуляторах и прочих изделиях, задействованных в накоплении электрической энергии. Он не заменим при изготовлении литий-ионных АКБ.

Где используется графит
Область потребления графита очень община. Из него делают разные изделия в таких областях:
  • Машиностроение.
  • Химпромышленность.
  • Металлургия.
  • Изготовление стройматериалов.
  • Атомная энергетика.
  • Медицина.
  • Производство электрооборудования в частности накопителей заряда.

Большие графитовые стержни применяются в качестве замедлителя нейтронов. Путем их погружения, возможно остановить работу ядерного реактора. Графитовые изделия имеют большую сферу использования в металлургии. Они применяются для изготовления тиглей для плавки металла. Также их них изготавливают формы для заливки стали. Минерал используется для насыщения железа углеродом. Это важный компонент для повышения твердости металлов. Графитовым порошком посыпаются литейные формы. В этом случае он применяется в качестве разделителя, препятствующего прилипанию металла к ним.

Существенная часть добываемого графита используется в сфере машиностроения. Из него делают скользящие контакты для электромоторов, генераторов. Также нашли широкое применение подшипники из графита. На его основе делают электростатическое покрытие, нагревательные элементы, электроды. С повышением популярности литий-ионных аккумуляторов, потребление графита увеличилось, так как он используется для их производства.

Искусственный графит

Образование графита в природе является долгим процессом, который сопровождается воздействием высоких температур. Сделать минерал со схожей кристаллической решеткой на основе углерода можно и искусственно. Такие технологии получили распространение.

Разделяют следующие виды искусственного графита:
  • Ачесоновский.
  • Рекристаллизованный.
  • Пиролитический.
  • Доменный.
  • Карбидный.

В отдельных случаях его производство искусственным способом является экономически целесообразно, так как фактические физические и химические качества такого материала могут быть уникальными, подходящими для конкретных способов применения. Так, ачесоновский графит производится путем нагрева кокса и пека, смешанных в строгой пропорции, до температуры 2800°C. Это один из самых бюджетных и простых методов получения минерала искусственным путем.

Рекристаллизованный способ производства подразумевает механическую обработку смеси кокса, пека, природного графита и специальных карбидообразующий добавок под воздействием высокой температуры. В результате кристаллическая структура включений минерала перестраивает прочие компоненты под себя.

Пиролитическим способом производят так называемый электро-графит, используемый в сфере электроники. Его получают методом пиролиза углеродов в газообразном состоянии в условиях вакуума при воздействии температуры 1,5 тыс. градусов. Это продолжается до образования пироуглерода, который для формирования графита доводится до температуры 3 тыс. градусов под давлением не менее 50 МПа.

Доменный образовывается в результате медленного охлаждения объемных масс чугуна. В результате длительного температурного воздействия образуются большие графитовые включения. Карбидный получают в результате разложения карбидов под воздействием высоких температур.

Физические и химические свойства графита. Электрическая проводимость монокристаллов и коэффициент теплового расширения материала. Особенности происхождения метаморфического и магматического графита. Применение графита в металлургии, атомной технике и др.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 01.11.2016
Размер файла 111,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Иркутский национальный исследовательский технический университет

Кафедра машиностроительных технологий и материалов

Выполнил студент группы МТМ-15-1

Проверил доцент Е.А. Гусева

Содержание

1. Физические свойства

2. Химические свойства

6. Месторождения / проявления

8. Марки графита

Список используемых источников

Введение

Графимт (от др. греч. гсЬцщ -- пишу) -- минерал из класса самородных элементов, одна из аллотропных модификаций углерода.

Синонимамы - карбидное железо, серебристый свинец, чёрный свинец . Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально-скаленоэдрический). Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода. Кристаллы пластинчатые, чешуйчатые. Образует листоватые и округлые радиально-лучистые агрегаты, реже -- агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто треугольная штриховка на плоскостях (0001).

1. Физические свойства

Теплопроводность графита от 278,4 до 2435 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры.

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном -- в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300--1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

2. Химические свойства

Со многими веществами (щелочными металлами, солями) образует соединения включения.

Реагирует при высокой температуре с кислородом, сгорая до углекислого газа. Фторированием в контролируемых условиях можно получить (CF)x.Графит весьма инертен при нормальных условиях. Окисляется О2 воздуха до СО2 выше 400°С, СО2 - выше 500 °С. Температура начала реакций тем выше, чем совершеннее кристаллическая структура графита.

Окисление ускоряется в присутствии Fe, V, Na, Cu и др. металлов, замедляется в присутствии С12, соединений фосфора и бора. С молекулярным азотом графит практически не реагирует, с атомарным при обычной температуре образует цианоген C2N2, в присутствии Н2 при 800°C-HCN.

Наиболее химически и термически стоек пирографит. Он практически непроницаем для газов и жидкостей, при 600 °С его стойкость к окислению во много раз выше, чем у других графитов. В инертной среде пирографит работоспособен при 2000 °С в течение длительного времени.

графит магматический металлургия атомный

3. Структура

Каждый атом углерода ковалентно связан с тремя другими окружающими его атомами углерода.

Различают две модификации графита: б-графит (гексагональный P63/mmc) и в-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У б-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у в-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

в-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

4. Получение

Исходное сырье для получения графита-нефтяной или металлургический кокс, антрацит и пек (остаток от перегонки каменноугольного, торфяного, древесного дёгтя, а также нефтяной смолы. При ударе раскалывается с раковистым изломом; под постоянной нагрузкой проявляет пластичность. Твердая (иногда вязкая) масса чёрного цвета).

Отдельные частицы исходных углеродных материалов в результате карбонизации при обжиге связываются в монолитное твёрдое, которое затем подвергают графитации (кристаллизации).

По одному из методов кокс или антрацит измельчают и смешивают с пеком в определенных соотношениях, прессуют при давл. до 250 МПа, а затем подвергают обжигу при 1200°С и графитации при нагреве до 2600-3000 °С. Для уменьшения пористости полученный графит пропитывают синтетической смолой или жидким пеком, после чего снова подвергают обжигу и графитации. В производстве графита повышенной плотности пропитку, обжиг и графитацию повторяют до пяти раз.

Пирографит получают пиролизом газообразных углеводородов с осаждением образовавшегося углеводорода из газовой фазы на подложку из графита. Осадки имеют кристаллическую структуру различной степени совершенства - от турбостратной неупорядоченной (пироуглерод) до упорядоченной графитовой (пирографит).

Искусственный графит -- это одна из разновидностей углерода. Его характерной особенностью является пористость, от структуры и величины которой зависят все его свойственные характеристики. Зачастую готовится в электропечи путем нагрева при очень высокой температуре (2500-3200 градусов) смеси тонкоизмельченного кокса и углеродистых связующих (гудрона, пека)

5. Происхождение

Графит может быть метаморфического и магматического происхождения.

Метаморфический графит присутствует в кристаллических сланцах, мраморах, в гнейсах. Он возникает за счёт органических остатков в осадочных породах и за счёт разложения карбонатов.

Магматический графит образуется в вулканических и интрузивных горных породах, в пегматитах, в скарнах.

За счёт разложения летучих соединений углерода могут возникать крупные пневматолито-гидротермальные графитовые жилы. Часто графит встречается в кварцевых жилах с вольфрамитом и в жилах свинцово-цинковых месторождений.

Также графит образуется в результате пиролиза каменного угля, когда происходит его сухая перегонка.

Графит является обычным акцессорным минералом железных метеоритов.

6. Месторождения / проявления

Скопления графита, имеющие промышленное значение, известны в гнейсах Криворожского, Мариупольского, Шахтамирибугского районов в Украине. В России подобные месторождения разрабатывают на Урале, в Шахтаминском районе Читинской области. Графитовые сланцы добывают в Узбекистане и Хабаровском крае (Россия).

Листоватые агрегаты были найдены в Шри-Ланке (Радегара,Галле). Известны месторождения графита в Чехии. В России встречается в гранитах и гранитных пегматитах в Ильменский горах (Челябинская обл.), в щелочных породах в Хибинах (Мурманская обл.), добывается на Ботогольском месторождении (Бурятия). Графит встречается в Гренландии, США, Канаде.

Крупные залежи графита известны в Тунгусском бассейне в Сибири (Курейское месторождение). Ведущим добытчиком графита является КНР, также большая доля добычи приходится на КНДР, Индию, Корею и Бразилию.

7. Применение

Графит используют в металлургии для изготовления плавильных тиглей и лодочек, труб, испарителей, кристаллизаторов, футеровочных плит, чехлов для термопар, в качестве противопригарной "присыпки" и смазки литейных форм. Он также служит для изготовления электродов и нагревательных элементов электрических печей, скользящих контактов для электрических машин, анодов и сеток в ртутных выпрямителях, самосмазывающихся подшипников и колец электромашин (в виде смеси с Al, Mg и Pb под назв. "графаллой"), вкладышей для подшипников скольжения, втулок для поршневых штоков, уплотнительных колец для насосов и компрессоров, как смазка для нагретых частей машин и установок. Его используют в атомной технике в виде блоков, втулок, колец в реакторах, как замедлитель тепловых нейтронов и конструкционный материал (для этих целей применяют чистый графит с содержанием примесей не более 10-2% по массе), в ракетной технике - для изготовления сопел ракетных двигателей, деталей внеш. и внутр. теплозащиты и др., в хим. машиностроении - для изготовления теплообменников, трубопроводов, запорной арматуры, деталей центробежных насосов и др. для работы с активными средами. Графит используют также как наполнитель пластмасс) компонент составов для изготовления стержней для карандашей, при получении алмазов. Пирографит наносится в виде покрытия на частицы ядерного топлива.

8. Марки графита

Малозольный : ГМЗ, ГМЗ-0, ГМЗ-А

Мелкозернистый: АРВ-У, АРВ-1, АРВ-2, МГ, МГ-1

Мелкозернистый прочный: МПГ-6, МПГ-7, МПГ-8

Изостатический: GS-1800, GS-1900, И-1, И-3

Алюмокарбидкремниевый: ГАКК 55/40

Список используемых источников

1. Веселовский В.С. Требования промышленности к качеству минерального сырья. Графит. М.: Госгеолтехиздат, 1960. 48 с.

2. Мазор Ю.Р., БогомоловА.Х.,ПронинаН.В.Генетическая классификация месторождений графита// Докл. АН СССР. 1982. Т. 264. No2. С. 396-400.

3. Мармер Э.Н. Углеграфитовые материалы. М.: Металлургия, 1973. 136 с.

4.Островский В.С. Пористость и проницаемость углеродных материалов. Москва, Минцвет СССР, 1971, с. 89.

5. Островский B.C., Виргильев Ю.С., В.И. Костиков, Н.Н. Шипков. Искусственный графит. М.: Металлургия, 1986. 272 с.

6.Фиалков А.С. Углерод, межслоевые соединения и композиты на его основе. М.: Аспект-Пресс,1997. 718 с.

7.Технологические аспекты синтеза солей графита (обзор) /А.П.Ярошенко, А.Ф.Попов, В.В.Шапранов// Журнал прикладной химии.1994.Т. 67. Вып. 2. С. 204-211.

8. Минералы: Справочник. М.: Изд. АН СССР, 1960. Т. 1. 620 с.

9. Краткая химическая энциклопедия. М.: Советская энцикл., 1967. Т.5. Ст. 303-313.

Подобные документы

Структура графита, определяющая его электрофизические свойства. Однослойные и многослойные углеродные нанотрубы. Энергия связи брома с графитовым слоем. Методика эксперимента и характеристика установки. Феноменологическое описание процесса бромирования.

курсовая работа [43,4 K], добавлен 17.09.2011

Классификация углеродных наноструктур. Модели образования фуллеренов. Сборка фуллеренов из фрагментов графита. Механизм образования углеродных наночастиц кристаллизацией жидкого кластера. Методы получения, структура и свойства углеродных нанотрубок.

курсовая работа [803,5 K], добавлен 25.09.2009

Критические температуры превращений железа. Различия критических точек при нагревании и охлаждении. Механические свойства железа. Условия перехода алмаза в графит. Особенности жидкого раствора углерода в железе. Сходство в строении графита и цементита.

презентация [456,8 K], добавлен 29.09.2013

Автоматизированные анализаторы изображений. Кристаллическая решетка графита, его применение, свойства. Исследование зависимости параметра формы (вытянутость и диаметр) от размера графитовых включений. Построение графиков и выявление зависимостей.

курсовая работа [1,0 M], добавлен 16.02.2015

Классификация чугунов по составу и технологическим свойствам. Температуры эвтектического и эвтектоидного превращений. Процесс образования графита в сплавах железа с углеродом. Схема образования структур при графитизации. Специальные свойства чугунов.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное образовательное учреждение

Жирновского муниципального района Волгоградской области

http://korporacia.ru/sites/default/files/upload/grafit2.jpg

Выполнила работу: Рудая Маргарита, 15 лет, ученица 10 класса.

Руководитель: Бударина Е.В.,

Актуальность темы. Еще совсем недавно, в середине XX графит находил сравнительно ограниченное применение в качестве материала для электродов, анодов контактных щеток и т.д. Использование графита в атомной промышленности и ракетной технике существенно повысило требования к повышению прочности и термической стойкости, а главное к воспроизводимости его свойств. Современное развитие технологий привело к тому, что графиты находят применение при создании новой высокотемпературной техники: в электротехнике для электродов ртутных и электровакуумных ламп, в метрологии для создания излучателей высокотемпературных моделей, работающих при температуре около 3000 К, а также в качестве материала для нагревателей. В школьном же курсе естественных наук свойства графита практически не рассматриваются. Поэтому я и выбрала в качестве объекта своего исследования именно графит, его физические свойства: изучить их теоретически и продемонстрировать доступным для школьника способом.

Цель работы:

1. Теоретически изучить физические свойства графита.

2. Продемонстрировать свойства графита доступным способом.

Этапы работы:

1. Изучение научно-популярной литературы.

2. Проведение эксперимента – создание лампы накаливания в домашних условиях.

3. Обобщение и систематизация знаний по данному вопросу.

GraphiteUSGOV.jpg
фотография Графит

Графит – уникальный самородный минерал, аллотропная модификация элемента углерода, наиболее устойчивая в земной коре. Свойства графита хорошо изучены и находят широкое применение. Образуется графит в результате вулканической деятельности при высоких температурах, поэтому и находят его в природе в магматических горных породах, где содержание кристаллического графита может доходить до 50%. Встречается графит также совместно с вольфрамитом - в кварценосных жилах, совместно с другими минералами – в полиметаллических среднетемпературных месторождениях, а в таких метаморфических породах, как мраморы, гнейсы, сланцы, графит распространен очень широко. С помощью ионной масс-спектрометрии российским учёным удалось обнаружить в составе графита золото, серебро и платиноиды (платина, палладий, иридий, осмий и проч.) в форме металлоорганических нанокластеров. Крупное графитовое месторождение находится в Тунгусском каменноугольном бассейне, образовавшееся в результате высокотемпературного воздействия на уголь – так называемая скрытокристаллическая форма графита, содержание которого лежит в пределах от 60 до 80%.

https://upload.wikimedia.org/wikipedia/ru/6/68/Hex.jpg


α-модификция гранита β- модификация графита

В бетта-графите атомы слоев связаны между собой точно так же, но чередование горизонтального смещения происходит через два слоя. Ромбоэдрическая структура считается нестабильной, разрушающейся при температуре более 2230оС, но в природных графитах с гексагональной структурой встречается до 30% β-модификации графита.

Физические свойства графита. Цвет графита варьирует от железо-черного до стального серого с характерным металлическим блеском. На ощупь минерал жирный, скользкий, пачкает пальцы и бумагу.

В отличие от алмаза обладает низкой твёрдостью (1 по шкале Мооса ). Относительно мягкий. После воздействия высоких температур становится немного тверже, и становится очень хрупким. Плотность 2,08—2,23 г/см³. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах ).

Электропроводность графита в 2,5 раза больше электропроводности ртути. При температуре 0 град. удельное сопротивление электрическому току находится в пределах от 0,390 до 0,602 ом. Низкий предел удельного сопротивления для всех видов графита одинаков и равен 0,0075 ом.

Графит обладает большой теплопроводностью, которая равняется 3,55вт*град/см и занимает место между палладием и платиной. Коэффициент теплопроводности 0,041( в 5 раз больше, чем у кирпича). У тонких графитовых нитей теплопроводность выше, чем у медных.

Температура плавления графита — 3845-3890 С при давлении от 1 до 0,9 атм.

Точка кипения доходит до 4200 С.

Температура воспламенения в струе кислорода составляет для явнокристаллических графитов 700-730С. Количество тепла, получаемого при сжигании графита, находится в пределах от 7832 до 7856 ккал.

Графит не обладает эластичностью, но тем не менее он может быть подвергнут резанию и изгибанию. Графитовая проволока легко сгибается и закручивается в спираль, а при вальцевании дает удлинение около 10%. Сопротивление на разрыв такой проволоки равно 2 кг/мм2, а модуль изгиба равен 836 кг/мм2.

Коэффициент светопоглощения графита постоянен для всего спектра и не зависит от температуры лучеиспускания тела; для тонких графитовых нитей он равен 0,77, с увеличением кристаллов графита светопоглащение уже находится в пределах 0,52-0,55.

Монокристаллы графита диамагнитны , магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

После облучения графита нейтронами его физические свойства изменяются: ρ увеличивается, а прочность , модуль упругости, твердость, теплопроводность уменьшаются на порядок. После отжига при 1000-2000 °С свойства восстанавливаются до прежних значений.

Жирность и пластичность графита являются важнейшими свойствами, которые дают возможность широко применять его в промышленности. Чем выше жирность графита, тем меньше коэффициент трения. От жирности графита зависит использование его в качестве смазочного материала, а также способность прилипания к твердым поверхностям.
Благодаря этим свойствам имеется возможность создавать тонкие пленки при натирании графитом поверхности твердых тел.

Химические свойства графита. Химически инертен и не растворяется ни в каких растворителях, кроме расплавленных металлов, особенно тех, у которых высокая точка плавления. При растворении образуются карбиды, наиболее важными свойствами которых являются карбиды вольфрама, титана, железа, кальция и бора.

При обычных температурах графит соединяется с другими веществами весьма трудно, но при высоких температурах он дает химические соединения со многими элементами.

Применение графита. Техническое применение минерала чрезвычайно разнообразно и обусловлено свойствами графита, главным образом его огнеупорностью и электропроводностью. Так, в металлургии графит используется для производства тугоплавких тиглей, чехлов для термопар, емкостей для кристаллизации. В литейном производстве графитовый порошок используется в качестве антипригарной присыпки, а также для смазывания литейных форм. Низкий коэффициент теплового расширения графита и связанная с этим высокая стойкость к температурным напряжениям, является решающим фактором применения его, как важного и незаменимого вспомогательного материала в металлообрабатывающей, чугунолитейной и сталелитейной промышленности, т.е. всюду, где рабочие поверхности должны предохраняться от прямого воздействия расплавленного металла. Важным преимуществом при таком использовании является также его несмачиваемость полностью восстановленными металлами и нейтральными шлаками, прочность при высоких температурах. Применение графита при отливе деталей повышает качество отливов, уменьшает количество брака, и предупреждает образование пригара, на удаление которого требуется большие усилия и затраты.

Из коллоидно-графитовых смесей изготавливают шлифовальные и полировочные пасты.

Хорошие электропроводящие свойства графита позволяют использовать его для производства электродов и контактов некоторых электрических приборов. Кроме производства карандашей, графит используется для изготовления красок и термостойких смазочных материалов, для наполнения пластмасс.

Даже в атомной энергетике замечательные свойства графита находят свое применение, в первую очередь, это его способность замедлять электроны в реакторах - чистый графит имеет низкий коэффициент поглощения нейтронов и самый высокий коэффициент замедления. В ракетостроении сопла ракетных двигателей и многие элементы теплозащиты также производятся с применением графита.

Использование графита основано на ряде его уникальных свойств.

· для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов

· электродов , нагревательных элементов — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).

· Для получения химически активных металлов методом электролиза расплавленных соединений. В частности, при получении алюминия используются сразу два свойства графита:

1. Хорошая электропроводность, и как следствие — его пригодность для изготовления электрода

2. Газообразность продукта реакции, протекающей на электроде — это углекислый газ. Газообразность продукта означает, что он выходит из электролизёра сам, и не требует специальных мер по его удалению из зоны реакции. Это свойство существенно упрощает технологию производства алюминия.

· твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках

· компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином )

· для получения синтетических алмазов

· для изготовления контактных щёток и токосъёмников для разнообразных электрических машин , электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов , а также прочих устройств, где требуется надёжный подвижный электрический контакт.

· как токопроводящий компонент высокоомных токопроводящих клеёв

Графические карандаши
http://s.pikabu.ru/post_img/2013/07/05/12/1373052892_433745567.jpg
http://megasklad.ru/data/photoes/973800.jpg

1. Графит – аллотропная модификация углерода, наиболее устойчивая в земной коре.

2. Графит – один из уникальнейших природных материалов, благодаря своим физическим свойствам.

3. Графит находит широкое применение в технике, промышленности, ракетостроении.

Графит – это представитель класса самородных камней. По своей структуре он многослойный, но мягкий настолько, что его можно резать ножом. Кристаллы вещества часто задействуют во многих промышленных сферах.

Графит

Что такое графит

Графит представлен веществом серого цвета с металлическим отблеском. Минерал очень распространен в природе, он образует крупные скопления кристаллов. Часто его можно найти выраженным кристаллическими включениями в другие горные породы: гнейсы, слюду, известняк и гранит.

Минерал формируется под влиянием экстремально высоких температур.

Особенности минерала обусловлены скольжением структурных слоев относительно друг друга. Он обладает высокой теплопроводностью, что ценится в промышленности.

В натуральной среде минерал имеет несколько модификаций и разновидностей. Он подразделен по структурному признаку на гексагональный и ромбоэдрический тип.

Для ромбоэдрической модификации первому идентичен каждый четвертый слой. Такой тип графита встречается преимущественно в качестве примесей. В гексагональном варианте характерна кристаллическая решетка, у которой половина атомов смещена к центру шестиугольника.

Разновидности минерала

Природный графит является аллотропным соединением из углерода с содержанием примесей. В зависимости от состава его можно классифицировать:

По сферам применения и содержанию примесей:

  • Пиролитический – искусственно воспроизведенный минерал применяется в инструментах для микроскопических исследований.
  • Коллоидный – технический графит, используемый в промышленности, преобразованный из чистейшего искусственного камня в порошок.
  • Силицированный – устойчивое к эрозиям и коррозиям вещество, полученное искусственным методом с добавлением жидкого кремния при изготовлении.
По структуреПо цвету
ЧешуйчатыйСеребристый серый
Графитовый сланецБелый
ВолокнистыйМатовый светлый
ПлотнокристаллическийЧерный

История и происхождение минерала

Точная история вещества не может быть установлена до сих пор. Причиной этому служит сходство с другими веществами, красящие свойства которых подобны графиту. Первое упоминание минерала в истории связано с глиняной посудой культуры Боян-Марицы, раскрашенной с использованием минерала.

Вкрапления минерала в виде кристаллов можно найти в других органических породах: сланцах, мраморах и др. Образование вещества происходит под воздействием давления и высоких температур среди вулканических или магматических пород. Внушительные россыпи графита появляются в результате естественного пиролиза каменного угля.

Сопутствующие по нахождению минералы:

  • шпинель;
  • гранаты;
  • пирит;
  • горный хрусталь.

Месторождения и обработка камня

Добыча графита может выполняться наземными и подземными способами. Часто структура минерала зависит от его местонахождения.

В крупнейшем Ботогольском месторождении добываются преимущественно плотнокристаллические виды. Они сосредоточены в виде гнезд и рассеянных россыпей близ сиенитов и известняков.

Минерал чешуйчатой структуры находят в Тайгинском месторождении. Добываемые там минералы отличаются формой кристаллов в виде лепестков или пластинок. Они пластичны, обладают жирным блеском и мажутся при взаимодействии.

Минерал, появившийся из-за каменноугольного пиролиза, добывают преимущественно в Курейском месторождении. Крупные залежи кристаллов образуются под влиянием природных явлений, например магматических излияний на каменноугольные отложения.

Главные экономически значимые центры по нахождению графита сосредоточены:

  • в России;
  • США;
  • Гренландии;
  • Германии;
  • Италии;
  • Австралии;
  • Канаде;
  • Бразилии.

В России расположены три крупнейших месторождения вещества. Славятся они разнообразием добываемого минерала:

  • Ботогольское месторождение в Бурятии – графит плотнокристаллического типа.
  • Курейское в Краснодарском крае – чешуйчатый, мелкокристаллический, графитовые сланцы.
  • Ногинское в Красноярском крае – минерал высочайшего качества, плотнокристаллический.

Тайгинский графитовый карьер

Обрабатывают минерал только в промышленных целях. Мягкость структуры требует осторожности и технологической точности в этом деле. Необходимо правильно выбирать инструменты и методы токарной обработки минерала, иначе он даст сколы, трещины. От обработки напрямую зависит качество будущего изделия.

В процессе промышленной обработки графита изменяется его структура. Поэтому у вещества под разными марками разные свойства и показатели прочности. Эти моменты зависят от квалификации специалистов, токарных устройств и программы шлифовки.

Иногда минерал не обрабатывают искусственным путем вовсе, в обиходе это зовется природным типом вещества.

К просмотру как обрабатывают графит:

Искусственный графит

Для производства синтетического графита на кокс (побочный продукт обработки каменного угля) и пек (остатки перегонки нефтяных смол и каменноугольного дегтя) при высоких температурах воздействуют химически и механически.

От марки графита зависит соотношение пека и кокса, что отражается на его дальнейших свойствах. Обычно такой минерал обладает высокой чистотой (до 99 %). От его технических характеристик зависит дальнейшая область применения. В производственном цикле часто присутствуют еще дополнительные стадии просева, отбраковки исходного материала, прокаливания, пропитки.

Искусственный графит подразделяют по маркам в зависимости от сферы применения:

  • элементный;
  • смазочный;
  • электроугольный;
  • литейный;
  • карандашный;
  • аккумуляторный;
  • специальная марка, применяемая в эксплуатации ядерных реакторов.

Свойства и применение графита

Еще при производстве графита закладываются специальные качества с уклоном в определенную отрасль. У некоторых видов повышена теплопроводность, у других – электропроводность или прочность. Используют вещество с учетом этих особенностей.

Читайте также: